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Figure 1: An example of our ballistic shadow art: a set of chess pieces in an initial arrangement (left) undergo ballistic motion until they cast a
targeted THE THINKER-shaped shadow (middle), before continuing on through their ballistic trajectories.

ABSTRACT

We present a framework for generating animated shadow art using
occluders under ballistic motion. We apply a stochastic optimization
to find the parameters of a multi-body physics simulation that
produce a desired shadow at a specific instant in time. We perform
simulations across many different initial conditions, applying a set of
carefully crafted energy functions to evaluate the motion trajectory
and multi-body shadows. We select the optimal parameters, resulting
in a ballistics simulation that produces ephemeral shadow art. Users
can design physically-plausible dynamic artwork that would be
extremely challengingif even possible to achieve manually. We
present and analyze number of compelling examples.

Keywords: Shadows, animation, optimization, physics simulation.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1 INTRODUCTION

The use of shadows in artwork dates back to pre-renaissance time
periods, and many contemporary artworks have even relied on the
use of shadows as their central visual medium. Specifically, shadow
art uses sculptures or arrangements of objects to create desired
target silhouettes under precise lighting conditions. Contructing
these artworks can, however, be a complex and time consuming task.

We propose a method that simplifies the task of dynamic shadow
art creation by partially automating the process. Furthermore, our
approach creates shadows that form recognizable silhouettes while
the objects are in motion, introducing a dynamic aspect that allows
the visualized result to be appreciated as both shadow art and kinetic
sculpture. Figure 1 gives an example of how ballistic motions
produce shadow art of THE THINKERsculpture’s profile.

The user provides a binary image that represents a target shadow
shape, along with a set of occluders and their starting configurations
(i.e., static positions and orientations). We then apply a stochastic
optimization technique to determine the initial velocities for the
collection of objects such that, at a specific instant in time, they cast
a shadow that matches the target silhouette image. This optimization
is challenging because the objective function involves a forward
multi-body dynamics simulation with contact, giving rise to an

inherently sensitive and noisy solution space. The dimensionality of
this space also grows linearly with the number of objects, quickly
becoming large for more complex scenes. Our framework therefore
makes several accommodations that improve the convergence rate
and tractability of the optimization problem.

Our paper is organized as follows. In Section 2 we discuss
previous work on computer generated shadow art and physics-based
simulation involving boundary value problems. We present an
overview and formalized version of the optimization problem solved
by our framework in Section 3, with specific details of the object
functions provided in Section 4. Moreover, we discuss the strategies
we use to improve the tractability and convergence of the stochastic
optimization in Section 5. Compelling examples of ballistic shadow
art synthesized with our framework are demonstrated in Section 6. In
Section 7 we provide a discussion of the advantages and limitations
of our framework, along with possible directions for future research.

2 RELATED WORK

Our work is built on the foundation prior art in many domains.
Specifically, our work involves three aspects. First, shadow
rendering techniques allow us to efficiently produce shadows for
use in our image objectives. Second, we are inspired by previous
work on controlling shadows . Finally, certain techniques from the
trajectory optimization literature are of particular interest to our
ballistic shadow art problem.

Shadow rendering. Shadow rendering remains a fundamen-
tal problem in interactive and offline rendering. Shadows help
disambiguate spatial relationships and lighting conditions, and are
thus crucial to realistic image synthesis. We require an efficient
and accurate shadow rendering technique. Generally there are three
options for such high-performance shadow rendering: projected
shadows, shadow mapping and shadow volumes.

Blinn [5] proposes an algorithm to create shadows by projecting
polygons onto a planar surface. This method is straightforward
but has artifacts. It produces false shadows when occluders are not
completely above the receiver, and anti-shadows when light source is
between occluders and the planar receiver. Furthermore, it requires
an offset between the shadow geometry and the planar receiver to
avoid co-planar polygon fighting.

Williams [30] first proposed the shadow mapping method. By
prerendering the geometry from the light source viewpoint to a depth
buffer, this technique can compute light-scene occlusion regardless
of the geometric complexity. Zhang [34] introduce a forward shadow
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Figure 2: An overview of our method. A point light source (yellow light bulb), planar receiver, and the initial configuration of the light
occluders are provided as input. We apply our stochastic optimization technique to find the optimal trajectory that produces the desired shadow
shape at time t, minimizing image, physical, and scene objectives. We visualize the optimal trajectory generated by our underlying ballistics
simulation (right), and the resulting shadow image Ishadow closely resembles that of the target image Itarget .

mapping method to improve performance, and Reeves et al. [21]
improve shadow quality with a filtering and self-shadowing bias.

Crow [6] introduced the shadow volume algorithmcapable of
computing shadows from point and directional sources by extruding
the volume along the lighting direction from the geometry silhouettes
visible to the light. Heidmann [10] propose GPU optimizations for
this approach, and Bergeron [3] reduce the volume complexity by
eliminating superfluous shadow polygons.

There are many other techniques and variations for improving the
rendering of shadows. Woo and Poulin [33] provide a comprehensive
survey on this topic. Given the performance, shadow quality,
implementation complexity and technical requirements of our
application, we opt for planar projection shadows; these are efficient
to compute, especially within the inner loop of an optimization.

Shadow editing. Research on editing shadows mainly falls
into two categories. The first treats the editing of rendered shadows
for visual effects, and optionally adjusting occluders correspondingly
or sacrificing correctness. Another research area involves finding a
configuration of shadow occluders that cast shadows matching an
input target, and potentially fabricating physical examples of such a
configuration.

For direct editing, Poulin and Fournier [20] describe how to allow
a user to interact with shadows and highlights in a rendered image,
providing an efficient alternative to manual light parameter edits
and re-rendering. Pellacini et al. [18] present a user interface to
permit artists to interactively design shadows in animated feature
films. DeCoro et al. [7] propose an algorithm for rendering stylized
shadows. They provide controls on tuning artistic properties for
shadow rendering, such as abstraction and softness. Obert et
al. [17] describe a method for editing visibility for the design of
all-frequency shadows. Mattausch et al. [14] present a method for
editing the boundaries of shadows inspired by freeform deformations.
More advanced techniques also allow for direct and intuitive control
of complex illumination and reflection effects, even in the context
of global illumination [23], and these works inspire our shadow
geometry manipulation solution. We refer interested readers to
Schmidt et al.’s survey on the topic [24] For ballistic shadow art,
the complexity, indirectness, and demand for precision requires an
alternative approach.

In terms of arranging or generating occluders, Mitra et al. [15]
present tools to design voxel-based occluders that cast different

shadows when illuminated from different directions. Bermano et
al. [4] provide a method of producing a 3D printable height field
illustrating multiple images from self-shadowing. Baran et al. [1]
fabricate a multi-layer light attenuator that casts multiple colored
shadows of several target images under different light configurations.
Won et al. [32] solve the very difficult optimization problem of using
human forms to create shadows. Inspired by shadow theater, they are
able to produce silhouettes and subtle animations. We use a similar
technique for solving for the movement of our dynamic shadow
casters, except that our results involve large motions and we prevent
collisions with hard constraints rather than a penalty function.

Trajectory optimization. The application of physics-based
dynamics equation to the synthesis of 3D animation sequence is a
foundational topic in computer graphics research. While a good
deal of this work focusses on solving initial value problems, our
framework solves a boundary value problem (BVP): for two scene
geometry configurations and two points in time, we search for a
trajectory that connects the two together. The prominent work by
Witkin and Kass [31] on space-time optimization falls into this
category. Popović et al. [19] also describe a method that provides
solutions for controlling rigid body simulations via interactive
manipulation of object trajectories. The method allows contacts
to occur in the trajectory, and handles each motion between contacts
separately, performing a local discrete search on parameter space
to resolve the discontinuities. Such a method could be adapted
to work with shadows. However, when the number of rigid bodies
increases and contact becomes frequent, it may become very difficult
to converge to a solution. In contrast, Twigg et al. [29] present a
method that uses backward time stepping to produce animations
involving rigid bodies and frictional contact. Given a final target
configuration of objects that produce a target shadow, their method
could produce occluder trajectories, though the method allows for
minor violations of physics. In our work we use a shooting method to
find physically correct trajectories while searching for the parameters
that produce the target image.

Finally, we note that there is a collection of other works that strive
to control physics simulations. In fluid simulation, various methods
have been explored for having the surface momentarily match a
target shape mesh or mesh animation [25–27]. Likewise, there is
related work in controlling smoke such that it interpolates keyframes
or forms target shapes [2, 13, 28].



3 OVERVIEW

Figure 2 provides a sketch of how our method generates
ballistic shadow art. The input to our framework is a binary
image Itarget defining the desired shadow shape and a set of n
occluders (O1,O2, . . . ,On) with user-specified launching positions,
orientations, geometries, and masses. The user also specifies a
duration t which is the time in seconds when the shadows cast by the
occluders should match the desired shape. Shadows are projected
onto a planar surface by a static point light source and observed from
a fixed viewpoint with a pinhole camera model. The configuration
of the light source, projection surface, and camera are part of the
scene definition.

The core of our framework is a multi-objective optimization that
determines the initial velocities of each occluder such that, at time
t, the shadows cast by the occluders closely resemble the target
image Itarget. The vectors vi ∈R3 and ωi ∈R3 store the initial linear
and angular velocities, respectively, of each occluder body i, and
collectively for all occluders this is denoted

V = (v1,v2, . . . ,vn) and Ω = (ω1,ω2, . . . ,ωn) .

The optimization finds velocities that minimize a multi-objective
cost function, or formally

argmin
V, Ω

Eimage +Ephysics +Escene, (1)

where Eimage, Ephysics and Escene are energy functions that introduce
penalties pertaining to image, physics, and scene criteria.

A forward dynamics simulation with gravity is used to update
the position and orientation of each body. This produces ballistic
trajectories that are the signature feature of our framework. Collision
detection is also enabled, and so intersecting bodies generate contact
forces to resolve penetration. Since we are optimizing for the initial
conditions of a physics simulation involving contacts, the solution
space is non-convex and highly discontinuous. The CMA-ES [8]
method is a stochastic optimization technique that is well suited
to these conditions, and so it is used to minimize the problem in
Equation 1.

In the next section, details are provided on the terms that compose
each energy function and how their values are computed.

4 ENERGY FUNCTIONS

The energy functions are categorized into three groups: image
comparison, physics simulation, and scene settings. The image
comparison functions focus on matching the simulated shadow with
the target image. The physics simulation functions are designed
to avoid unreasonable or implausible solutions. Finally, the scene
setting functions penalize unwanted scene arrangements, and also
provide opportunity for users to give guidance or specify demands
in building such dynamic scene. For instance, the user may want a
sharp feature of a specific occluder to correspond with a particular
corner in the target image.

4.1 Image comparison
Energy functions on image comparison take a simulated shadow
image, Ishadow, and a target shape image, Itarget, as input. Both
images are represented in binary format, such that

I(x,y) =

{
1, pixel at (x,y) is in shadow,
0, pixel at (x,y) is not in shadow.

The energy function on image space is defined as

Eimage =
2

∑
i=0

widi +wXOREXOR +winEin +woutEout

where w denotes the weight of the energy term with the
corresponding subscript, and di is the distance between image
moments of ith order. The simulated shadow and target image
are compared with an exclusive-OR operation in EXOR. As well
Einner and Eouter encourage that the inner and outer boundaries of
the images match, respectively.

Image moments distance
Image moments [16] are succinct descriptors of an image and
they are widely used in computer vision and computer graphics
applications [12, 22]. They are effective for carrying low-
dimensional information and we include them into our framework.

The energy functions d0,d1,d2 are the distance between moments
of the shadow image and the target shape,

di =
∥∥Mi(Ishadow)−Mi(Itarget)

∥∥ ,
where Mi is a function computing the ith order moment of an image.

The 0th order moment is the total area of the image expressed in
pixels. Thus the distance gives the difference of the shadow size.
This moment is computed as

M0(I) = ∑
x

∑
y

I(x,y).

The 1st order moment represents the 2D centroid of a binary
image in pixels and the distance is computed by the Euclidean norm.
This moment is computed by

M1(I) =
(

∑x ∑y x I(x,y) / M0(I)
∑x ∑y y I(x,y) / M0(I)

)
=

(
x̄
ȳ

)
.

Finally the 2nd order image moment is a 2×2 matrix[
µ20 µ11
µ11 µ02

]
,

where
µpq = ∑

x
∑
y
(x− x̄)p(y− ȳ)qI(x,y) / M0(I).

This matrix represents the inertia tensor of the input image in two
dimensional space. Note that the off-diagonal elements are both
µ11. To avoiding repeated calculations in the distance, the 2nd order
image moment is defined as a vector

M2(I) =
(
µ20, µ11, µ02

)
,

and the distance computed by the Euclidean norm.

Image difference
The image moments help during early stages of the optimization
to ensure that the shadow coarsely matches the target image. To
achieve more exact alignment, we design energy functions that
compare shadow images per pixel. For comparison of the full image,
a binary exclusive-OR operation is performed between the simulated
shadow image and the desired shape image:

EXOR = ∑
x

∑
y

Ishadow(x,y)Y Itarget(x,y).

To improve detail matching, we also design energy functions to
match the boundaries of the target shape. There are two types of
boundary considered: the inner boundary and the outer boundary.
For the inner boundary, Ein is defined as

Ein = ∑
x

∑
y

Ishadow(x,y)∧ Iin(x,y),



Figure 3: The results obtained with our method for various examples. From left-to-right: Mickey, “fly” Chinese character, “to be continued” in
Japanese, and THE THINKER. The target images provided as input (top row), are closely matched by the simulated results found by running the
optimization algorithm (middle row). A comparison of the target image and shadow image for each example (bottom row) clearly demonstrates
the accuracy. The target images, drawn in black, differ from the simulated shadow images, drawn in red, in only a few small regions.

with Iin as the inner boundary image. This energy function
encourages the shadow to cover the target silhouette outline by
using the AND operation. For outer boundary matching, we define
Eout as

Eout = ∑
x

∑
y

1− (Ishadow(x,y)∧ Iout(x,y)),

with Iout as the outer boundary image. Similar to the inner boundary,
the matching is calculated with a negative-AND operation. With this
design, the shadow is discouraged from intersecting the outline.

To compute the boundary images, erosion and dilation operations
are applied to the target image. For the inner boundary it is computed
as

Iin = Itarget− Itarget	K,

and for the outer boundary as

Iouter = Itarget⊕K− Itarget.

We apply K as the kernel in image dilation and erosion. In this case
K is a 5×5 matrix with all elements set to 1.

4.2 Physics simulation
The physics simulation objectives guide the optimization toward
plausible solutions and avoids unwanted ballistic trajectories. There
are two terms in this energy function

Ephysics = wcontactEcontact +wregEreg

where Econtact penalizes contact between occluder objects before
time t, and Ereg serves as a regularization term on the initial linear
and angular velocity of shadow casters.

Since contacts are difficult to predict and add noise to the solution
space, we try to avoid solutions where contact occurs before the
moment at which the target shadow shape is formed. The simulation
therefore terminates whenever (i) contact occurs or (ii) the simulation
time reaches t. This ensures a collision free trajectory before time t.

To smoothly guide the optimizer towards a collision free solution,
the contact penalty is computed as different between the actual
simulation time and the target time t. In other words, this is the time
remaining for the simulation to reach the designated shadow casting
moment, and so it will reach zero if contacts do not occur. Formally,
this penalty is computed as

Esim = (t− tsim)ncontact

where tsim is the actual duration of the simulation. A factor ncontact is
used to scale the time difference by the number of contacts detected
at termination.

A regularization term, Ereg, is also used to avoid large velocities
for the occluders, such that

Ereg = α ∑
v∈V
‖v‖+(1−α) ∑

ω∈Ω

‖ω‖.

The scalar α ∈ [0,1] is used to balance linear and angular velocities
in case their magnitudes are significantly different. A value of
α = 0.5 for our examples.



4.3 Scene settings
The scene setting function ensures that the occluder objects
contribute to the target image in a reasonable way, and we also
take advantage of human intuition to guide the final configuration of
occluders. With these objectives in mind, the scene setting energy
function is defined as

Escene = whintEhint +wbarEbar

where Ehint denotes how well the occluders in the scene make use
of user defined hints, and Ebar is a barrier function that penalizes
occluders casting shadows out of the desired region.

The energy term for hints is similar to the one used by Won
and Lee [32], which is used to align the projected 3D features of a
character model to points on the target shadow contour. In our case,
we match points on the occluder surface to pixels in the target image.
The energy term is defined as

Ehint = ∑
h∈H

wh‖P(xh)− ph‖,

where H = {h1,h2, . . . ,hk} denotes a collection of k hint points
given by the user. Each h is defined as

h = {Oi,x, p,w | i ∈ [1,n],x ∈ R3, p ∈ R2,w ∈ R}.

and denotes a single hint that matches a location p in image space
with a position x on occluder Oi; a weighting factor w is used
to prioritize hints. A projection P : R3 7→ R2 is used to map the
3D coordinate x to a position in the shadow image. Note that the
projected point can be outside the region of the shadow image. The
hints used for THE THINKER example are shown in Figure 4.

Figure 4: The diagram illustrates how hints are specified as
positions on an occluder object, and then mapped to corresponding
locations in the target shadow images (left). All hints used for THE
THINKERexample are shown in image space (right).

Another energy function Ebar is designed to avoid the “waste”
of occluders. There are cases when one or more occluders do not
contribute to the shadow image because they cast shadows outside
the image region. Previous energy functions may fail to prevent
this. For instance, if two occluder shadows move outside the region,
it’s possible that nearby solutions also move the occluders outside
shadow casting region. The energy function could plateau for these
solutions and convergence will be difficult.

The barrier function is specifically designed to avoid these
situations and encourage viable solutions. It is defined as

Ebar = ∑
i

B(P(Ci)),

with P : R3 7→ R2 the same projection as above, Ci denoting the
center of mass of occluder i in model space, and B : R2 7→ R the
barrier function on a single occluder:

B(x) =

{
0, ‖x− c‖< r,
‖x− c‖, ‖x− c‖ ≥ r.

Table 1: complexity of each examples

Mickey “to fly” TBC The Thinker

occluder number 3 6 12 16
hint number 3 6 12 32

Here, c is a point in image space, in this cases we use the center of
the whole image, and r is a user-defined radius. In our cases, we
choose half of the image height for the radius.

5 OPTIMIZATION STRATEGIES

As previously indicated, the optimization problem being minimized
by our framework is non-convex, involves discontinuities, and
may also be high-dimensional if n is large. For these reasons
we applied different kinds of strategies in building scenes to cast
desired shadows, especially ones with bigger amount of occluders
to manipulate, and we integrated these strategies in our framework.
These two types of strategies that we employed that can produce
solutions to the problem: scheduled optimization and iterative
optimization.

5.1 Scheduled optimization
At the early stages of optimization with bigger deviations, it would
be useful to start with simpler energy functions and leave others
aside for later refinement. Energy functions such as image moments
and the barrier function have generally less noise in a wide range of
samplings. The overall smooth shape helps guiding the sampling
range quickly to narrow down into a smaller area that contains
desired solution. By then users can restart the optimization, enabling
energy functions that focus on local details, such as the exclusive-
or comparison. Optionally users can adjust energy weights to
emphasize on different aspects of convergence.

5.2 Iterative optimization
As the number of projectile increases, contacts between each other
become more difficult to avoid. Especially when the shadow
occluders are launched from clustered positions, most of the early
sample evaluations will end up with penalty on contact in substantial
amount, and they change dramatically with very small deviations.
Therefore, the solution space is filled with high frequency changes,
the sampling results will appear noisy, and the convergence becomes
inefficient.

For this reason we made attempts to improve the convergence
rate by a greedy strategy with optional “back-tracing”, which
actually produces nice results and converges more efficiently in
our experiments. The strategy is actually simple: with an order of all
occluders, either generated, randomized or user-defined, it iterates
all occluders individually by sampling, simulating and optimizing
on only one pair of initial linear and angular velocities, meanwhile
keeping the rest fixed, until all of them have reached optimality.

The iterative optimization can also fit in the scheduled strategy.
After iterating on all occluders, users can set up another stage that
optimizes on all projectiles at once, but with smaller sampling
deviations. By this means we carried out an overall refinement
of previous result, and potentially can escape local minima.

6 RESULTS

The top row of Figure 3 shows the four target shapes that we use
as example problems. They are a Mickey Mouse logo, a simplified
Chinese character of “to fly” in boldface Gothic typeface, a Japanese
phrase of “to be continued” (later shortened as “TBC”) in an artistic
font, and a silhouette of THE THINKERby Auguste Rodin.

The complexity of each example’s occluders is specified inside
of Table 1. Each example is provided different set of occluders as



Figure 5: The results of the two stages of the Mickey example. The
initial stage on the left and the final stage on the right.

Figure 6: The converged scenes of the two stages of Mickey. The
initial stage on the left and the final stage on the right. For each one,
trajectories are indicated with the curved lines and the light source
with the white dot on the top.

Table 2: Weight of each energy function of the Mickey example

energy stage 1 stage 2

0th moment 2 2
1st moment 10 10

2nd moment 5 5
XOR 0 300

regularization 0.01 0.1
barrier function 100 100

contact 50 50
hints 0.1 0.1

inner boundary 0 0
outer boundary 0 0

input. For the Mickey example, they are three spheres. For the
“to fly” example we have a few brick-shaped cuboids and for the
“to be continued” we have diverse dimensions of bricks. For THE
THINKERexample, half a set of chess pieces are provided. These
chess pieces are also simulated with their reduced triangle mesh for
collision handling.

The converged scenes are presented with snapshots in the middle
row of Figure 3. Each snapshot shows the instant when the shadow
forms the target, and includes colored curved lines indicating the the
ballistic motion of the occluders. The point light source is indicated
with a white dot at the top of each snapshot. The converged shadows
in image space are also presented in the bottom row of Figure 3,
where the black shape indicates the target to reach and the semi-
transparent red highlight represents the shadow in the scene.

6.1 Convergence
We apply different optimization strategies for these four examples.
For the Mickey example, we schedule a two-stage optimization,
and for the other three examples we used the iterative strategy that
optimizes for one individual occluder at one stage.

For the Mickey example, the weights of two stages are presented
in Table 2. First we started with energies that focus on less detailed

aspects, such as moments and hints, along with penalties on wild
solutions, such as the barrier function. When the shadows converge
to a generally matched shape, we added in more energy functions
to refine the details, optionally starting from where we left off with
small sampling deviations. In this case we only use exclusive-or
comparison since the Mickey logo does not require many details to
recognize. Note that in this Mickey example, the sphere projectiles
still have angular velocities. They are included for framework
consistency concerns, but they have no effect on convergence.
Therefore we also increase the weight for regularization to reduce the
unnecessary angular velocities in the second stage. The converged
results of each stage are given by Figure 5 on the shadows and
Figure 6 on the scenes.

In Figure 7 we also present the process of convergence of two
stages. In the first stage, the total value of all energies dropped
quickly with the guidance of hints and the first moments. Besides,
at the early stages there are a few wild samples, potentially with
occluders running outside of the region for capturing, or into each
other, penalized by the barrier function and the contact penalty. After
adding the exclusive-or and increasing regularization, we started
the second stage from the previous position. Less wild sampling
occurred this time and the shadows converged to a satisfactory shape,
as the exclusive-or decreased to a small magnitude. By then all other
energy functions started to plateau except the regularization, which
led to the solution with smaller angular velocity but the same visual
effect.

The similar convergence process happens in other examples,
except that energy function weights remain the same among all
iterative stages. Note that image moments are not as useful as before
in the iterative stages, since in every stage the shadows do not need
to fit the general shape of the target, but instead matching part of
the target can be sufficient, and thus image moments will bring
unwanted side effects. Furthermore, as the problem dimension has
decreased, guiding convergence to a subspace via rough information
is marginally useful. For these concerns we drop the image moment
based energies and use local detail oriented energies directly. As an
example we present the evolution process of THE THINKERexample.
The first 16 stages are optimized for one chess piece in Figure 8.
In the last stage we increased the weight on boundaries, fixed the
initial conditions of most of the occluders and optimized only on
the pieces that form the statue’s back to have a smoother outline.
The improvement is demonstrated in Figure 9. The back of THE
THINKERis improved with a smoother outline, with a minor trade-
off over the stomach. Meanwhile the rest of THE THINKERis kept
untouched as the overall shape is satisfactory, with the constraints of
the chess piece shapes.

6.2 Performance

We also provide some performance data in Table 3 and Table 4 for
reference. Table 3 presents some data indicating how far it takes
to converge for each example. Apparently for more complicated
problems, we need more iterations and samplings to converge.
Moreover, using different optimization strategies makes a difference
on its convergence, as the latter three examples have a low average
sampling and iteration number on each stage.

In the other table, we list the time it takes for computing
each energy function in milliseconds, except for the energies
of regularization and contacts, which both take less than 0.1
milliseconds. Besides energies we also conducted profiling on
ballistic simulations and included the results together. One obvious
bottle-neck on performance is the physics simulation. Besides that
other energies have a decent rate of computation. Synchronization of
threads, optimization algorithm, hard-drive IO, and other potential
sources of significant time consumptions are not taken into account.
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Figure 7: Convergence of the two stages of the Mickey example. The left column presents convergence of the first stage and the right presents
the second stage. Each figure plots the evaluated value of every sampling instance along the convergence. The red denotes the total of all
applied energies, and the blues denote the weighted value of each energy, short named in the legends. The contact and barrier function are
plotted together for space saving purpose. Each plot has a y-axis on log10 scale and therefore the missing values indicate 0. Note the newly
added exclusive-or function’s plot at the right bottom, and the y-axis with scale may have changed.



Figure 8: The evolution of the Thinker shadows. Each image indicates the converged result of each stage. For every stage there is only one
chess piece being manipulated with initial conditions for optimization. The rest of the chess pieces are kept untouched, either remaining still at
their launching positions, casting the small pieces of shadow that line up straight, or adopting the same velocities from last stage convergence
and casting the same shadows.

Figure 9: THE THINKER shadow from the extra stage and
comparisons with the last stage and target. From left to right: the
comparison between the shadow from last stage (blue) and the target
(black); the comparison between the shadow of the extra stage (red)
and the target (black); the comparison between the shadows of
the extra stage (red) and the last stage (blue) and purple indicates
overlapping.

Table 3: Performance of optimizations. The optimization process
of each example is presented with the numbers of stages, iterations,
and samplings. The convergences are also timed and the results are
denoted in minutes and seconds.

Mickey “to fly” TBC The Thinker

stages 2 6 12 17
total iterations 283 458 987 1572

average iterations 141.5 76.3 82.25 98.25
total samplings 20376 10992 23688 54048

average samplings 10188.0 1832.0 1974.0 3378.0
total running time 29m07s 16m55s 44m57s 396m15s

6.3 Implementation

We used projected planar shadows for shadow rendering in our
framework, and we discuss the implications of this in Section 7. For
specifying the target shape and capturing shadows, we used a image
of 640×480 pixels. For simulating the ballistic motions, we used
the semi-implicit Euler method for integration and the time step is
1/60 second.

The framework is mainly written in Python 2.7.12. We used
OpenGL 4.3 for rendering, Python Image Library and OpenCV for
image processing, Vortex for physics simulation, and NumPy and
Python Computer Graphics Kit (cgKit) for matrix computation. The
operating system is Windows 10 Home. In terms of hardware, all
our results, as well as performance tests in Table 3 and Table 4 are
run on a PC with processor Intel Core i7-4710HQ @ 2.50 GHz and
GPU of NVIDIA GeForce GTX 860M.

Table 4: Performance of energy functions. All functions in different
examples are all timed in milliseconds. For those energy functions
that are not applied in some examples, the value is labeled as “N/A”;
for those not included in this table, the evaluation is trivial and lasts
less than 0.1 milliseconds. Besides energy functions, the physics
simulation is also timed and presented.

Mickey “to fly” TBC The Thinker

simulation 15.2 19.8 31.7 621.0
0th moment 1.6 N/A N/A N/A
1st moment 4.9 N/A N/A N/A

2nd moment 16.1 N/A N/A N/A
XOR 8.4 8.3 6.2 7.4

inner boundary N/A N/A N/A 18.7
outer boundary N/A N/A N/A 17.2

hints 1.2 1.4 1.4 3.9
barrier 1.0 1.6 1.6 2.3

7 DISCUSSION AND FUTURE WORK

The results in Section 6 demonstrate that our framework is capable
to synthesize compelling examples of ballistic shadow art, even
when the simulation involves more than a dozen objects and the
target shadow is complex. The user-in-the-loop aspect of our
framework allows visually pleasing solutions to be found by guiding
the optimization.

We render shadows by planar projection. Compared to shadow
maps or shadow volumes, projected shadows are easy to implement,
efficient to render, and have a perfect resolution, which is useful
for image comparison purposes. However, the technique produces
fake shadows when an occluder is located behind the plane, or
anti-shadows when it is located behind the light. We note that it
is possible to fix these issues using existing methods [9, 33], but
does not address a major shortcoming, which is the exclusion to
non-planar shadow receivers. To exploit the full potential of our
framework, we plan to use shadow mapping or shadow volume
instead.

There are some factors defining the shadow art problem other than
target or occluders that we did not enumerate in our experiments.
For instance, so far our shadow art effects are only supposed to
be captured from the same static camera, which is pointing to the
receiver plane perpendicularly. The light source generally lies above
the shadow center in all cases. To demonstrate the power, there
should be experiments on problems with more diverse configurations.
Scene construction also could further be automated by optimizing
for the light configuration and camera parameters. However, this
would introduce additional non-linearities to the optimization, not to
mention increasing the dimensionality of the problem. This deserves
further investigation so that tractability is not severely impacted.

When comparing the captured and target shadow images, the



optimization attempts to find a perfect match at the target location
that is specified by the user. As part of future work, we intend to
investigate translated, rotated or scaled matching. For example, by
accepting slightly deformed shapes [11]. Our framework also only
supports optimizing only a single target and we plan to investigate
synthesizing shadows for multiple targets. One possiblity is to use
multiple light sources for the static placement of occluders [4,15] and
apply our framework to find a set of ballistic trajectories. However,
this may require very complex arrangements of the occluders and
thus the convergence and simulation will be challenging. Another
route could be to match different target images at different instances
along the ballistic trajectory. For example, the projectiles cast a
shadow of a target shape at one instant, and at a later instant they
form another target shadow. Timing becomes critical in such cases,
as a poor selection of instants by the user may mean there is no
feasible physical solution.

Another drawback of our framework is that the resulting effect is
transient, and the desired shadow image is formed during only a few
frames of animation. However, we hypothesis that the optimization
could be coaxed to find solutions where the perceived effect lasts
for a longer duration. For example, by adding an energy function
that minimizes the spatial velocity of the occluders at time t this
would implicitly lengthen the duration of the effect. Alternatively,
an energy function that explicitly tries to increase the duration of the
effect could also be introduced by evaluating the image difference
function, EXOR, over a window of frames in the neighborhood of t.

Contacts have been one factor we try to suppress in the framework.
The friction and the bounce that contacts produce will lead to a
tremendous amount of differences in the final status of ballistic
motions, even with minor adjustments to starting conditions.
Therefore in the solution space, regions with contacts are filled
with high frequency changes. The sampling on this type of region is
not representative unless with small enough deviations. However,
because of the dramatical changes that contacts can bring, allowing
contacts to occur before matching the target may produce more
solutions. For example, we can have two projectiles deflect from
each other to change their trajectories, so that they can reach places
in a way that used to be impossible. Therefore this may be very
useful for multiple target problems, but it requires the capability
of optimization algorithms to search within the contact subspace
effectively.

Finally, successfully fabricating this ballistic shadow art in reality
will be persuasive but difficult. To build it we need more precise
physics simulation, including smaller time steps, bringing drag and
accurate measuring projectile contact properties if it applies. We also
need stable, reliable and accurate methods for launching occluders
into desired ballistic trajectories. Furthermore audience needs a
more effective expression to demonstrate the transitory art effect.
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of smoke simulations. ACM Trans. Graph., 22(3):716–723, July 2003.

[29] C. D. Twigg and D. L. James. Backward steps in rigid body simulation.
ACM Transactions on Graphics, 27(3):25, 2008.



[30] L. Williams. Casting curved shadows on curved surfaces. In ACM
Siggraph Computer Graphics, vol. 12, pp. 270–274. ACM, 1978.

[31] A. Witkin and M. Kass. Spacetime constraints. ACM Siggraph
Computer Graphics, 22(4):159–168, 1988.

[32] J. Won and J. Lee. Shadow theatre: discovering human motion from a
sequence of silhouettes. ACM Transactions on Graphics, 35(4):147,
2016.

[33] A. Woo and P. Poulin. Shadow algorithms data miner. CRC Press,
2012.

[34] H. Zhang. Forward shadow mapping. In Rendering Techniques, pp.
131–138. Springer, 1998.


