Richard Feynman

2007 Schools Wikipedia Selection. Related subjects: Astronomers and physicists

Richard P. Feynman
"What I cannot create, I do not understand" —Richard P. Feynman
"What I cannot create, I do not understand" —Richard P. Feynman
Born May 11, 1918
Queens, New York
Died February 15, 1988
Los Angeles, California
Residence USA
Nationality American
Field Physics
Institution Manhattan Project
Alma Mater MIT
Doctoral Advisor John Archibald Wheeler
Doctoral Students Al Hibbs
George Zweig
Known for Quantum electrodynamics
Particle theory
Feynman diagrams
Notable Prizes Nobel Prize in Physics (1965)
Oersted Medal (1972)
Religion Atheist

Richard Phillips Feynman ( May 11, 1918 – February 15, 1988; surname pronounced FINE-man; /ˈfaɪnmən/) was an American physicist known for expanding the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, and particle theory. For his work on quantum electrodynamics, Feynman was a joint recipient of the Nobel Prize in Physics in 1965, together with Julian Schwinger and Shin-Ichiro Tomonaga; he developed a way to understand the behaviour of subatomic particles using pictorial tools that later became known as Feynman diagrams.

He assisted in the development of the atomic bomb and was a member of the panel that investigated the Space Shuttle Challenger disaster. Despite his prolific contributions, Feynman wrote only 37 research papers during his career. In addition to his work in pure physics, Feynman is credited with the concept and early exploration of quantum computing, and publicly envisioning nanotechnology, creation of devices at the molecular scale. He held the Richard Chace Tolman professorship in theoretical physics at Caltech.

Feynman was a keen and influential popularizer of physics in both his books and lectures, notably a seminal 1959 talk on top-down nanotechnology called There's Plenty of Room at the Bottom and The Feynman Lectures on Physics, a three-volume set which has become a classic text. Known for his insatiable curiosity, wit, brilliant mind and playful temperament, he is equally famous for his many adventures, detailed in his books Surely You're Joking, Mr. Feynman!, What Do You Care What Other People Think? and Tuva or Bust!. As well as being an inspirational lecturer, bongo player, notorious practical joker, and decipherer of Maya hieroglyphs, Richard Feynman was regarded as an eccentric and a free spirit. He liked to pursue multiple independent paths, such as biology, art, percussion, and lockpicking. Freeman Dyson once wrote that Feynman was "half-genius, half-buffoon", but later revised this to "all-genius, all-buffoon".


Richard Phillips Feynman was born on 11 May 1918, in Far Rockaway, Queens, New York; his parents were Jewish and attended synagogue every Friday, although they were not ritualistic in their practice of Judaism. Feynman (in common with other famous physicists, Edward Teller and Albert Einstein) was a late talker; by his third birthday he had yet to utter a single word. The young Feynman was heavily influenced by his father, Melville, who encouraged him to ask questions to challenge orthodox thinking. From his mother he gained the sense of humor that endured throughout his life. His sister Joan also became a professional physicist. As a child, he delighted in repairing radios and had a talent for engineering.


In high school he was bright, with a measured IQ of 125: quite high, but lower than what is normally expected of a theoretical physicist. He would later scoff at psychometric testing. By 15, he had mastered differential and integral calculus. Before entering college, he was already experimenting with and re-creating mathematical topics, such as the half-derivative, utilizing his own notation. Thus, even while still in high school, he was developing the mathematical intuition behind his Taylor series of mathematical operators. His habit of direct characterization would sometimes disconcert more conventional thinkers; for example, one of his questions when learning feline anatomy was: "Do you have a map of the cat?" (referring to an anatomical chart).

In his last year at Far Rockaway High School, Feynman won the New York University Math Championship. He applied to Columbia College, but was rejected because of its Jewish quota. Instead, he attended the Massachusetts Institute of Technology, where he received a bachelor's degree in 1939, and in the same year was named Putnam Fellow. While there, Feynman had taken every physics course offered, taking a graduate course on theoretical physics while only in his second year. He obtained a perfect score on the entrance exams to Princeton University in mathematics and physics — an unprecedented feat — but did rather poorly on the history and English portions. Attendees at Feynman's first seminar included the luminaries Albert Einstein, Wolfgang Pauli, and John von Neumann. He received a Ph.D. from Princeton University in 1942; his thesis advisor was John Archibald Wheeler. Feynman's thesis applied the principle of stationary action to problems of quantum mechanics, laying the ground work for the "path integral" approach and Feynman diagrams.

This was Richard Feynman nearing the crest of his powers. At twenty-three ... there was no physicist on earth who could match his exuberant command over the native materials of theoretical science. It was not just a facility at mathematics (though it had become clear ... that the mathematical machinery emerging from the Wheeler-Feynman collaboration was beyond Wheeler's own ability). Feynman seemed to possess a frightening ease with the substance behind the equations, like Albert Einstein at the same age, like the Soviet physicist Lev Landau - but few others.

—James Gleick , Genius: The Life and Science of Richard Feynman

While researching his PhD, Feynman married his first wife, Arline Greenbaum. (Arline's name is often spelled Arlene). Arline was diagnosed with tuberculosis, a terminal illness at that time, but she and Feynman were careful, and he never contracted the disease.

The Manhattan Project

Feynman (center) with Robert Oppenheimer (right) relaxing at a Los Alamos social function during the top-secret Manhattan Project.
Feynman (centre) with Robert Oppenheimer (right) relaxing at a Los Alamos social function during the top-secret Manhattan Project.

At Princeton, the physicist Robert R. Wilson encouraged Feynman to participate in the Manhattan Project—the wartime U.S. Army project at Los Alamos attempting to develop the atomic bomb. Feynman said he was persuaded to join this effort to help make sure that Nazi Germany did not build it first. He was assigned to Hans Bethe's theoretical division, and impressed Bethe enough to be made a group leader. Together with Bethe, he developed the Bethe-Feynman formula for calculating the yield of a fission bomb, which built upon previous work by Robert Serber. Up until her death on June 16, 1945, he visited his wife in a sanatorium in Albuquerque each weekend. He immersed himself in work on the project, and was present at the Trinity bomb test. Feynman claimed to be the only person to see the explosion without the very dark glasses provided, reasoning that it was safe to ignore instructions and look through a truck windshield as it would screen out the harmful ultraviolet radiation.

As a junior physicist, he was not central to the project; the greater part of his work consisted of administering the computation group of human computers in the Theoretical division, and later, with Nicholas Metropolis, setting up the system for using IBM punch cards for computation. Feynman succeeded in solving one of the equations for the project that were posted on the blackboards. However, they did not "do the physics right" and Feynman's solution was not used in the project.

Feynman's other work at Los Alamos included calculating neutron equations for the Los Alamos "Water Boiler", a small nuclear reactor at the desert lab, to measure how close a particular assembly of fissile material was to becoming critical. On completing this work he was transferred to the Oak Ridge facility, where he aided engineers in calculating safety procedures for material storage, so that inadvertent criticality accidents, (e.g., by storing individually subcritical amounts of fissile material in proximity on opposite sides of a wall) could be avoided. He also did crucial theoretical work and calculations on the proposed uranium-hydride bomb, which was later to prove to be unfeasible.

Feynman was sought out by the famous physicist Niels Bohr for one-on-one discussions. He later discovered the reason: most physicists were too in awe of Bohr to argue with him. Feynman had no such inhibitions, vigorously pointing out anything he considered to be flawed in Bohr's thinking. Feynman said he felt just as much respect for Bohr's reputation as anyone else, but that once anyone got him talking about physics, he could not help but forget about anything else.

Feynman's ID badge photo from Los Alamos.
Feynman's ID badge photo from Los Alamos.

Due to the top secret nature of the work, Los Alamos was isolated; in his own words, "There wasn't anything to do there". Bored, Feynman indulged his curiosity by learning to pick the combination locks on cabinets and desks used to secure papers. Feynman played many jokes on colleagues; in one case he found the combination to a locked filing cabinet by trying the numbers a physicist would use (it proved to be 27-18-28 after the base of natural logarithms, e=2.71828...), and found that the three filing cabinets in which a colleague kept a comprehensive set of atomic bomb research notes all had the same combination. He left a series of notes as a prank, which initially spooked his colleague into thinking a spy or saboteur had gained access to atomic bomb secrets (coincidentally, Feynman once borrowed the car of physicist Klaus Fuchs who was later discovered to be a spy for the Soviets). On another occasion, he observed that a captain in his building at Los Alamos had a massive safe, better than anything the bomb scientists had, installed with much ado in his office. Some time after the captain left Los Alamos, Feynman discovered that the captain had firstly never bothered to change the combination from the generic factory setting, so that even an amateur safecracker could open it, and secondly there was nothing important being kept in the safe anyway, whereas all the secrets of the bomb scientists were mostly kept in relatively insecure locked cabinets.

On occasion, Feynman would find an isolated section of the mesa to drum Indian-style; "and maybe I would dance and chant, a little". These antics did not go unnoticed, and rumors spread about a mysterious Indian drummer called "Injun Joe". He also became a friend of laboratory head J. Robert Oppenheimer, who unsuccessfully tried to court him away from his other commitments to work at the University of California, Berkeley after the war.

Early career

After the project concluded, Feynman began work as a professor at Cornell University, where Hans Bethe (who proved that the sun's source of energy was nuclear fusion) worked. However, he felt uninspired there; despairing that he had burned out, he turned to less useful, but fun problems, such as analyzing the physics of a twirling, nutating dish, as it is being balanced by a juggler. (As it turned out, this work served him well in future research.) He was therefore surprised to be offered professorships from competing universities, eventually choosing to work at the California Institute of Technology at Pasadena, California, despite being offered a position near Princeton, at the Institute for Advanced Study (which included such distinguished faculty members as Albert Einstein).

Feynman rejected the Institute on the grounds that there were no teaching duties. Feynman found his students to be a source of inspiration and, during uncreative times, comfort. He felt that if he could not be creative, at least he could teach. Another major factor in his decision was a desire to live in a mild climate, a goal he chose while having to put snow chains on his car's wheels in the middle of a snowstorm in Ithaca, New York.

Feynman is sometimes called the "Great Explainer"; he took great care when explaining topics to his students, making it a moral point not to make a topic arcane, but instead accessible to others. His principle was that if a topic could not be explained in a freshman lecture, it was not yet fully understood. Feynman gained great pleasure from coming up with such a "freshman level" explanation of the connection between spin and statistics (that groups of particles with spin 1/2 "repel", whereas groups with integer spin "clump"), a question he pondered in his own lectures and to which he demonstrated the solution in the 1986 Dirac memorial lecture. He opposed rote learning and other teaching methods that emphasized form over function, everywhere from a conference on education in Brazil to a state commission on school textbook selection. Clear thinking and clear presentation were fundamental prerequisites for his attention. It could be perilous to even approach him when unprepared, and he did not forget the fools or pretenders.

During one sabbatical year, he returned to Newton's Principia to study it anew; what he learned from Newton, he passed along to his students, such as Newton's attempted explanation of diffraction.

The Caltech years

Feynman did much of his best work while at Caltech, including research in:

  • Quantum electrodynamics. The theory for which Feynman won his Nobel Prize is known for its extremely accurate predictions. He helped develop a functional integral formulation of quantum mechanics, in which every possible path from one state to the next is considered, the final path being a sum over the possibilities.
  • Physics of the superfluidity of supercooled liquid helium, where helium seems to display a lack of viscosity when flowing. Applying the Schrödinger equation to the question showed that the superfluid was displaying quantum mechanical behaviour observable on a macroscopic scale. This helped enormously with the problem of superconductivity.
  • A model of weak decay, which showed that the current coupling in the process is a combination of vector and axial (an example of weak decay is the decay of a neutron into an electron, a proton, and an anti- neutrino). Although E.C. George Sudharsan and Robert Marshak developed the theory nearly simultaneously, Feynman's collaboration with Murray Gell-Mann was seen as seminal; the theory was of massive importance, and the weak interaction was neatly described.

He also developed Feynman diagrams, a bookkeeping device which helps in conceptualizing and calculating interactions between particles in spacetime, notably the interactions between electrons and their antimatter counterparts, positrons. This device allowed him, and later others, to work with concepts that would have otherwise been less approachable, such as time reversibility and other fundamental processes. Feynman famously painted Feynman diagrams on the exterior of his van.

Feynman diagrams are now fundamental for string theory and M-theory, and have even been extended topologically. Feynman's mental picture for these diagrams started with the hard sphere approximation, and the interactions could be thought of as collisions at first. It was not until decades later that physicists thought of analyzing the nodes of the Feynman diagrams more closely. The world-lines of the diagrams have developed to become tubes to allow better modelling of more complicated objects such as strings and M-branes.

From his diagrams of a small number of particles interacting in spacetime, Feynman could then model all of physics in terms of those particles' spins and the range of coupling of the fundamental forces. Feynman attempted an explanation of the strong interactions governing nucleons scattering called the parton model. The parton model emerged as a rival to the quark model developed by his Caltech colleague Murray Gell-Mann. The relationship between the two models was murky; Gell-Mann referred to Feynman's partons derisively as "put-ons". Feynman did not dispute the quark model; for example, when the fifth quark was discovered, Feynman immediately pointed out to his students that the discovery implied the existence of a sixth quark, which was duly discovered in the decade after his death.

After the success of quantum electrodynamics, Feynman turned to quantum gravity. By analogy with the photon, which has spin 1, he investigated the consequences of a free massless spin 2 field, and was able to derive the Einstein field equation of general relativity, but little more. However, a calculational technique that Feynman developed for gravity in 1962 — "ghosts" — later proved invaluable. In 1967, Fadeev and Popov quantized the particle behaviour of the spin 1 theories of Yang-Mills -Shaw -Pauli, that are now seen to describe the weak and strong interactions, using Feynman's path integral technique. At this time he exhausted himself by working on multiple major projects at the same time, including his Lectures in Physics.

While at Caltech, Feynman was asked to "spruce up" the teaching of undergraduates. After three years devoted to the task, he produced a series of lectures that would eventually become the Feynman Lectures on Physics, one reason that Feynman is still regarded as one of the greatest teachers of physics. He wanted a picture of a drumhead sprinkled with powder to show the modes of vibration at the beginning of the book; the publishers misunderstood him, and the books instead carried a picture of him playing drums. Feynman later won the Oersted Medal for teaching, of which he seemed especially proud. His students competed keenly for his attention; he was once woken when a student solved a problem and dropped it in his mailbox; glimpsing the student sneaking across his lawn, he could not go back to sleep, and he read the student's solution. The next morning his breakfast was interrupted by another triumphant student, but Feynman informed him that he was too late.

Partly as a way to bring publicity to progress in physics, Feynman offered $1000 prizes for two of his challenges in nanotechnology. He was also one of the first scientists to conceive the possibility of quantum computers. Many of his lectures and other miscellaneous talks were turned into books, including The Character of Physical Law and QED: The Strange Theory of Light and Matter. He gave lectures which his students annotated into books, such as Statistical Mechanics and Lectures on Gravity. The Feynman Lectures on Physics required two physicists, Robert B. Leighton and Matthew Sands as full-time editors for several years. Even though they were not adopted by the universities as textbooks, the books continue to be bestsellers because they provide a deep understanding of physics. As of 2005, The Feynman Lectures on Physics have sold over 1.5 million copies in English, an estimated 1 million copies in Russian, and an estimated half million copies in other languages.

In 1974 Feynman delivered the Caltech commencement address on the topic of cargo cult science, which has the semblance of science but is only pseudoscience due to a lack of integrity on the part of the scientist. He instructed the graduating class that "The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that. After you've not fooled yourself, it's easy not to fool other scientists. You just have to be honest in a conventional way after that."

In the late 1970's, according to "Richard Feynman and the Connection Machine", Feynman played a critical role in developing the first parallel-processing computer and finding innovative uses for it in numerical computing and building neural networks, as well as physical simulation with cellular automata (such as turbulent fluid flow), working with Stephen Wolfram at Caltech.

Shortly before his death, Feynman criticized string theory in an interview: "I don't like that they're not calculating anything," he said. "I don't like that they don't check their ideas. I don't like that for anything that disagrees with an experiment, they cook up an explanation - a fix-up to say, 'Well, it still might be true.'" These words have since been much-quoted by opponents of the string-theoretic direction for particle physics.

Personal life

He was married a second time in June 1952, to Mary Louise Bell of Neodesha, Kansas; this marriage was brief and unsuccessful. He later married Gweneth Howarth from the United Kingdom, who shared his enthusiasm for life and spirited adventure. Besides their home in Altadena, California, they had a beach house in Baja California. They remained married until Feynman's death, had a son, Carl, in 1962, and adopted a daughter, Michelle, in 1968.

Feynman had a great deal of success teaching Carl using discussions about ants and Martians as a device for gaining perspective on problems and issues; he was surprised to learn that the same teaching devices did not apply for Michelle. Mathematics was a common interest for father and son; they both entered the computer field as consultants and were involved in advancing a new method of using multiple computers to solve complex problems - later known as parallel computing. The Jet Propulsion Laboratory retained Feynman as a computational consultant during critical missions. One coworker characterized Feynman as akin to Don Quixote at his desk, rather than at a computer workstation, ready to do battle with the windmills.

According to his colleague, Professor Steven Frautschi, Feynman was the only person in the Altadena region to buy flood insurance after the massive 1978 fire, predicting correctly that the fire's destruction would lead to land erosion, causing mudslides and flooding. The flood occurred in 1979 after winter rains and destroyed multiple houses in the neighbourhood.

Feynman traveled a great deal, notably to Brazil, and near the end of his life schemed to visit the Russian land of Tuva, a dream that, due to Cold War bureaucratic problems, never became reality. During this period he discovered that he had a form of cancer, but, thanks to surgery, he managed to hold it off. Out of his enthusiastic interest in reaching Tuva came the phrase " Tuva or Bust" (also the title of a book about his efforts to get there), which was tossed about frequently amongst his circle of friends in hope that they, one day, could see it firsthand. The documentary movie Genghis Blues mentions some of his attempts to communicate with Tuva and chronicles the journey when some of his friends did make it there. His attempts to write and send a letter using an English-Russian and Russian-Tuvan dictionary demonstrate his usual zest for life.

Feynman did not work only on physics, and had a large circle of friends from all walks of life, including the arts. He took up painting at one time and enjoyed some success under the pseudonym "Ofey", culminating in an exhibition dedicated to his work. He learned to play drums (frigideira) in a samba style in Brazil by dint of persistence and practice, and participated in a samba school. Feynman even translated Mayan hieroglyphics. Such actions earned him a reputation of eccentricity.

According to Genius, the James Gleick biography, Richard Feynman experimented with LSD during his professorship at Caltech. Somewhat embarrassed by his actions, Feynman sidestepped the issue when dictating his anecdotes; consequently, the "Altered States" chapter in Surely You're Joking, Mr. Feynman! describes only marijuana and ketamine experiences at John Lilly's famed sensory deprivation tanks, as a way of studying consciousness. Feynman gave up alcohol when he began to show early signs of alcoholism, as he did not want to do anything that could damage his brain.

Feynman also had very liberal views on sexuality and was not ashamed of admitting it. In Surely You're Joking, Mr. Feynman!, he gives advice on the best way to pick up a girl in a hostess bar. At Caltech, he used a nude/topless bar as an office away from his usual office, making sketches or writing physics equations on paper placemats. When the county officials tried to close the locale, all visitors except Feynman refused to testify in favour of the bar, fearing that their families would learn about their visits. Only Feynman accepted, and in court, he affirmed that the bar was a public need, stating that craftsmen, technicians, engineers, common workers "and a physics professor" frequented the establishment. The bar was allowed to remain open.

Feynman served on the presidential commission investigating the 1986 Challenger disaster. He concluded that NASA management's space shuttle reliability estimate to be fantastically unrealistic. He warned in his appendix to the commission's report: "For a successful technology, reality must take precedence over public relations, for nature cannot be fooled."
Feynman served on the presidential commission investigating the 1986 Challenger disaster. He concluded that NASA management's space shuttle reliability estimate to be fantastically unrealistic. He warned in his appendix to the commission's report: "For a successful technology, reality must take precedence over public relations, for nature cannot be fooled."

Later years

Feynman was requested to serve on the Presidential Rogers Commission which investigated the Challenger disaster of 1986. Drawing upon clues from a source with inside information, Feynman famously showed on television the crucial role in the disaster played by the booster's O-ring flexible gas seals with a simple demonstration using a glass of ice water, a clamp, and a sample of O-ring material. His opinion of the cause of the accident differed from the official findings and was considerably more critical of the role of management in sidelining the concerns of engineers. After much petitioning, Feynman's minority report was included as an appendix to the official document. Feynman's book, What Do You Care What Other People Think?, includes a copy of that appendix and stories about his work on the commission. In the appendix, Feynman concluded that NASA management greatly over-estimated space shuttle reliability, offering his own estimate of 98% reliability (one failure per 50 flights), in stark contrast to the NASA management estimate of one failure in 100,000 flights. Feynman's estimate appears justified, with two failures in 116 flights as of 2006.

The cancer returned in 1987, with Feynman entering the hospital a year later. Complications with surgery worsened his condition, whereupon he decided to not accept any more treatment and die with dignity. He died in Los Angeles, California on February 15, 1988. According to his sister, Joan, his last words were "I'd hate to die twice, it's so boring." He and his wife Gweneth, who died in 1989, are buried in Mountain View Cemetery, Altadena, California.


On May 4, 2005 the United States Postal Service issued the American Scientists commemorative set of four 37-cent self-adhesive stamps in several configurations. The scientists depicted were Richard Feynman, John von Neumann, Barbara McClintock and Josiah Willard Gibbs. Feynman's stamp, sepia-toned, features a photograph of a 30-something Feynman and eight small Feynman diagrams.

A shuttlecraft named after Feynman appeared in two episodes of the science fiction television show Star Trek: The Next Generation ("The Nth Degree," 1991; "Chain of Command, Part 1," 1992). An error in the art department, however, caused the shuttle name to be misspelled, "FEYMAN."

Feynman appears in the fiction book The Diamond Age as one of the heroes of the world where nanotechnology is ubiquitous. His relationship with his first wife Arline, who died during the Manhattan Project, is portrayed in the 1996 movie Infinity.

Apple's "Think Different" ad campaign featured photo portraits of Feynman that appeared in magazines and on posters and billboards. (Curiously, the ad shows Feynman wearing a Thinking Machines T-shirt.)

Retrieved from ""