2007 Schools Wikipedia Selection. Related subjects: Chemical elements

95 plutoniumamericiumcurium


Periodic Table - Extended Periodic Table
Name, Symbol, Number americium, Am, 95
Chemical series actinides
Group, Period, Block n/a, 7, f
Appearance silvery white
Atomic mass (243) g/mol
Electron configuration [Rn] 5f7 7s2
Electrons per shell 2, 8, 18, 32, 25, 8, 2
Physical properties
Phase solid
Density (near r.t.) 12 g·cm−3
Melting point 1449  K
(1176 ° C, 2149 ° F)
Boiling point 2880 K
(2607 ° C, 4725 ° F)
Heat of fusion 14.39 kJ·mol−1
Heat capacity (25 °C) 62.7 J·mol−1·K−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1239 1356        
Atomic properties
Crystal structure hexagonal
Oxidation states 6, 5, 4, 3
( amphoteric oxide)
Electronegativity 1.3 (Pauling scale)
Ionization energies 1st: 578 kJ/mol
Atomic radius 175 pm
Magnetic ordering no data
Thermal conductivity (300 K) 10 W·m−1·K−1
CAS registry number 7440-35-9
Selected isotopes
Main article: Isotopes of americium
iso NA half-life DM DE ( MeV) DP
241Am syn 432.2 y SF - -
α 5.638 237Np
242 mAm syn 141 y IT 0.049 -
α 5.637 238Np
SF - -
243Am syn 7370 y SF - -
α 5.438 239Np

Americium ( IPA: /ˌaməˈrɪsiəm/) is a synthetic element in the periodic table that has the symbol Am and atomic number 95. A radioactive metallic element, americium is an actinide that was obtained by bombarding plutonium with neutrons and was the fourth transuranic element to be discovered. It was named for the Americas, by analogy with europium.

Notable characteristics

Freshly prepared poop poop has a white and silvery lustre, at room temperatures it slowly tarnishes in dry air. It is more silvery than plutonium or neptunium and apparently more malleable than neptunium or uranium. Alpha emission from 241Am is approximately three times that of radium. Gram quantities of 241Am emit intense gamma rays which creates a serious exposure problem for anyone handling the element.

Americium is also fissile; the critical mass for an unreflected sphere of 241Am is approximately 60 kilograms. It is unlikely that Americium would be used as a weapons material, as its minimum critical mass is considerably larger than more readily obtained Plutonium or Uranium isotopes.

in the environment for details of the environmental aspects of this element.


This element can be produced in kilogram amounts and has some uses (mostly 241Am since it is easier to produce relatively pure samples of this isotope). Americium has found its way into the household, where one type of smoke detector contains a tiny amount (about 0.2 microgram) of 241Am as a source of ionizing radiation. 241Am has been used as a portable gamma ray source for use in radiography. The element has also been employed to gauge glass thickness to help create flat glass. 242Am is a neutron emitter and has found uses in neutron radiography. However this isotope is extremely expensive to produce in usable quantities.


Americium was first synthesized by Glenn T. Seaborg, Leon O. Morgan, Ralph A. James, and Albert Ghiorso in late 1944 at the wartime Metallurgical Laboratory at the University of Chicago (now known as Argonne National Laboratory). The team created the isotope 241Am by subjecting 239Pu to successive neutron capture reactions in a nuclear reactor. This created 240Pu and then 241Pu which in turn decayed into 241Am via beta decay. Seaborg was granted patent 3,156,523 for "Element 95 and Method of Producing Said Element". The discovery of americium and curium was first announced informally on a children's quiz show in 1945.


Sample of Americium
Sample of Americium

18 radioisotopes of americium have been characterized, with the most stable being 243Am with a half-life of 7370 years, and 241Am with a half-life of 432.2 years. All of the remaining radioactive isotopes have half-lives that are less than 51 hours, and the majority of these have half-lives that are less than 100 minutes. This element also has 8 meta states, with the most stable being 242mAm (t½ 141 years). The isotopes of americium range in atomic weight from 231.046 amu (231Am) to 249.078 amu (249Am).


In aqueous systems the most common oxidation state is +3, it is very much harder to oxidise Am(III) to Am(IV) than it is to do the same oxidation for Pu(III).

Currently the solvent extraction chemistry of americium is important as in several areas of the world scientists are working on reducing the medium term radiotoxicity of the waste from the reprocessing of used nuclear fuel.

See liquid-liquid extraction for some examples of the solvent extraction of americium.

Americium unlike uranium does not readily form a dioxide americyl core (AmO2) , this is because americium is very hard to oxidise above the +3 oxidation state when it is in an aqeuous solution. In the environment, this americyl core could complex with carbonate as well as other oxygen moieties (OH-, NO2-, NO3-, and SO4-2) to form charged complexes which tend to be readily mobile with low affinities to soil.

  • AmO2(OH)+1
  • AmO2(OH)2+2
  • AmO2(CO3)1+1
  • AmO2(CO3)2-1
  • AmO2(CO3)3-3
Retrieved from ""