
Clumsyboard—A Program for Entering Patterns

over the Keyboard

Robert West

December 11, 2006

1 The idea

Thanks ’n’ props ’n’ respect to Colosso for the idea!
The idea is to be able to enter simple patterns over the keyboard without

having to pay attention which particular keys are actually hit. What counts
shall rather be the direction and shape of the movement. Possible such patterns
are:

• ‘east’ (finger slides right, e.g., keys fghj)

• ‘west’ (analogous)

• ‘south’ (finger slides down, e.g., keys 7zhn)

• ‘north’ (analogous)

• ‘circle’ (finger draws a circle counter-clockwise, e.g., keys 7tfvbju7)

• ‘wave’ (finger draws a sine wave, e.g., keys xdrtzhbnk)

We will achieve the pattern recognition in three steps:

1. An off-line training process: The training program prompts the user to
draw a certain pattern. This kind of trial is repeated several times for
each pattern (40 times in our case), and so the program collects labeled
training data.

2. From these training samples we estimate the parameters of the probability
model (see next section).

3. When the program is run and input is entered by the user we compute
the pattern that makes this specific input most likely; i.e., we follow a
maximum-likelihood approach (see section 3).

2 The model

2.1 The Bayes net

We assumed the following model: the key pressed at time t, K(t), depends
only on the pattern P being drawn and on the key K(t − 1) that was pressed

1

Figure 1: The Bayes model we used. P : the pattern drawn, L: the length of
the input key sequence, K(t): the key pressed at time t.

immediately before, at time t − 1; i.e., we are using a simple Markov model.
Also, the length L of the input key sequence depends on which pattern is being
drawn. Figure 1 shows a graphical description of the Bayes net.

P is the hidden variable that is to be guessed given the measured data
K(1), . . . ,K(L) and L.

The model could be even simpler, by eliminating the variable L: This works
most of the time, but difficulties arise: e.g., the key sequence tfv could itself
mean ‘south’, but it also occurs in instances of the pattern ‘circle’: ztfvbnjuzt.
Our estimation algorithm could then not know which is true since, due to the
very simple Markov assumption, it considers only what has happened immedi-
ately before. In fact, the pattern ‘south’ makes the key sequence tfv less likely
than the pattern ‘circle’ does; this is because in the training phase the ‘south’
down-stroke was made at a greater number of different horizontal coordinates
on the keyboard than the circle (since the circle is broader than the ‘south’
stroke it can be made in fewer locations), which means it was done less often at
tfv than the circle.

So the length provides the kind of global information we need: In the training
the program learnt that it is very unlikely that a circle consists of only three
keys but that a ‘south’ stroke is very likely to do so. In our maximum-likelihood
estimation this will override the fact that the sub-sequence tfv is more likely
for circles than for ‘south’ strokes.

2.2 Learning the net parameters

The following probability distributions describe the whole model:

• The probability of a certain key being pressed, given the pattern being
drawn and the key pressed before: Pr(K(t)|K(t − 1), P).

• The probability of a key sequence having a certain length, given the pat-
tern being drawn: Pr(L|P).

We estimate the parameters simply by counting in the example set collected
during training:

Pr(K(t) = x|K(t − 1) = y, P = p) :=
#(K(t) = x,K(t − 1) = y, P = p)

#(K(t − 1) = y, P = p)

2

Pr(L = `|P = p) :=
#(L = `, P = p)

#(P = p)

3 Applying the model for on-line estimation

Once the model has been computed off-line from the training samples we can
run the actual ‘Clumsyboard’ program: the user enters a pattern by sliding his
fingers over the keyboard. From the data entered we must now guess which one
out of the known patterns the user intended to input: We must guess which
pattern p∗ is most likely given the key strokes recorded:

p∗ = arg max
p

Pr(P = p|K(1) = k1, . . . ,K(`) = k`, L = `)

= arg max
p

Pr(K(1) = k1, . . . ,K(`) = k`, L = `|P = p) Pr(P = p)
Pr(K(1) = k1, . . . ,K(`) = k`, L = `)

= arg max
p

Pr(K(1) = k1, . . . ,K(`) = k`, L = `|P = p)

= arg max
p

Pr(K(1) = k1, . . . ,K(`) = k`|P = p) Pr(L = `|P = p)

= arg max
p

[Pr(K(`) = k`|K(1) = k1, . . . ,K(` − 1) = k`−1, P = p) ·

Pr(K(1) = k1, . . . ,K(` − 1) = k`−1|P = p) Pr(L = `|P = p)]
= arg max

p
[Pr(K(`) = k`|K(` − 1) = k`−1, P = p) ·

Pr(K(` − 1) = k`−1|K(1) = k1, . . . ,K(` − 2) = k`−2, P = p) ·
Pr(K(1) = k1, . . . ,K(` − 2) = k`−2|P = p) Pr(L = `|P = p)]

= . . .

= arg max
p

[Pr(L = `|P = p) Pr(K(1) = k1|P = p) ·

∏̀
t=2

Pr(K(t) = kt|K(t − 1) = kt−1, P = p)]

The last formula can be computed from the model that has been previously
learned (Pr(K(1) = k1|P = p) can be computed by summing over the second
key in the model). In the transformations we first used Bayes’ rule; then the
assumption that all patterns are a-priori equally likely (this makes our approach
a maximum-likelihood one, as opposed to a maximum-a-posteriori one) and the
fact that the a-priori probability of the data measured doesn’t depend on the
pattern; then the fact that in our Bayes model L and the K(t)’s are independent
given P ; we then pulled some terms into the conditional part; we made use of
the Markov assumption; finally we iterated the last two steps.

There was another detail that had to be considered: Single entries of the
sampled probability table Pr(K(t)|K(t−1), P) could be zero (because we never
came across that specific situation in the few training examples) although the ac-
tual probability could be a small positive number. Then the product in the last
formula would be ‘flattended’ to zero just because one single factor is (falsely)
zero. We obviously don’t want this because it destroys all the information we
have. So when building the probability table we pretended that we had seen
one single transition from each key to every other key (although we actually

3

hadn’t), i.e., we assumed that for every key there is a small probability to reach
any other key from there next. We made the same assumption for the other
table Pr(L|P).

4

