
COMP322 - Introduction to C++

Lecture 10 - Exceptions

Robert D. Vincent

School of Computer Science

17 March 2010



Motivation for exceptions

I Error handling is a difficult problem in general
I Organizing error codes and messages is tricky in C
I Error handling can lead to resource leaks and ugly code
bool f() { // true->success, false->failure
int *pc = malloc(sizeof(int) * 100);
if (pc == NULL) {
return false;

}

FILE *fp = fopen(outfile, "w");

if (fp == NULL) {
free(pc); // release anything allocated

return false;
}

// ...

free(pc);

fclose(fp);

return true;
}



Motivation for exceptions, continued
I Using the “goto” statement is tempting:
bool f() {
int *pc = NULL;
FILE *fp = NULL;

pc = malloc(sizeof(int)*100);
if (pc == NULL) {
goto error;

}

fp = fopen(outfile, "w");

if (fp == NULL) {
goto error;

}

// ...

free(pc);

fclose(fp);

return true;

error:

if (pc != NULL) free(fp);
if (fp != NULL) fclose(fp);
// ...

return false;
}



What is an exception?

I A mechanism for handling exceptional conditions,
including but not limited to errors.

I Exceptions are a mechanism for passing error
information off to the runtime system, which can then
select the appropriate handler for the error.

I Stroustrup: “One way of viewing exceptions is as a way
of giving control to a caller when no meaningful action
can be taken locally”.

I Alternative to printing messages or terminating
programs within generic libraries.

I For C programmers, an exception is a safer, more
flexible replacement for setjmp()/longjmp().



Exception syntax in C++

C++ exception syntax is similar to that of Java:

I try - a “try” block associates a list of statements with
one or more exception handlers.

I catch - one or more “catch” blocks follow the try block.
These define the handler for a given type.

I throw - a “throw” statement passes the exception to the
runtime system for delivery.

I Control is immediately transferred to a handler
associated with the nearest enclosing try block.

I If no appropriate handler is found, the program exits.
I The stack is “unwound” and destructors invoked as

necessary.



A basic example

void g() {
// etc.

if (/* something goes wrong */) {
throw 2;

}

}

void f() {
try {
// ...

g();

}

catch (int code) { // Handle int exceptions
cerr "Caught exception " << code << endl;

}

catch (...) { // Default handler
cerr "Caught unknown exception" << endl;

}

}



Exceptions in C++ vs. Java

I C++ has no finally block
I C++ exceptions can throw any type
I C++ methods are never required to specify the

exceptions they may throw



Some more details

The catch block must specify the type that is to be caught, it
need not specify a parameter name.

If a parameter name is not specified, we can’t examine the
value of the exception or learn anything other than the type:
void f() {
try {
// ...

}

catch (int) { // Handle int exceptions anonymously
// deal with the exception

}

catch (...) { // Always anonymous , even the type is unknown
}

}



Specifying exceptions for functions
I A function may specify the types of exceptions it throws.
I Other types, if thrown, will force an exit.
I No checking is done at compile time.

void f() { // No restrictions
// ...

throw ’c’; // OK
throw 147; // OK
throw string("oops!"); // OK

}

void g() throw() { // No exceptions
// ...

throw 2; // Legal, but can’t be caught

}

void h() throw(int, myexcept) { // May throw an int or ‘‘myexcept’’
// ...

throw 2; // Can be caught

throw 1.0; // Can’t catch a double exception

}



Nested exceptions

Try blocks can be nested within one another. The exception
will be delivered to the innermost possible block:
void f() {
// ...

try {
// ...

}

catch (int e) {
try {
// complex recovery operation

}

catch (int e) {
// handler failed

}

}

}



Nested exceptions and function calls
Exceptions can be delivered through multiple function calls:
void g() {
// ...

throw 13;
}

void f() {
try {
g();

}

catch (int e) { // Will be caught here...
cerr << "f " << e << endl;

}

}

int main() {
try {
f()

}

catch (int e) { // ...not here.
cerr << "main " << e << endl;

}

}



Exceptions and the stack
I A thrown exception will “unwind” the call stack.
I All fully-constructed objects that go out of scope are

destroyed.
I Objects allocated with new are not destroyed.

void f() {
if (/* ... */) {
int *p = new int[100];
string s("a string");

// ...

throw 21; // s will be destroyed , p will not
}

}

void g() {
try {
f();

}

catch (int e) {
// ...

}

}



Exceptions within handlers
Exceptions thrown in a catch block must be caught in some
higher enclosing handler, not in the current handler.

This code is legal and is not an infinite loop:
void f() {
try {
// ...

}

catch (int ec) {
// ...

throw 1; // Would be handled in ’g’

}

}

void g() {
try {
f();

}

catch (int ec) {
// ...

}

}



Re-throw

If your exception handler cannot completely handle the
exception, it can “re-throw” the exception for the benefit of a
caller:
void f() {
try {
// ...

}

catch (Exception & e) {
// ...

throw; // I’ve done all I can.

}

}

The exception will be passed upwards. If you the exception
is received by non-const reference or pointer, any
modification will be passed to the next handler.



Exceptions and classes

Exceptions can use class types. These are generally
preferred over built-in types, as it is easier both to organize
exceptions and to pass useful information to handlers:
class Matherr { };
class Dividebyzero : public Matherr { };
class Overflow : public Matherr { };
class Underflow : public Matherr { };

void f() {
try {
// ...

}

catch (Dividebyzero) {
}

catch (Matherr) {
}

}



Ordering of catch blocks

The order of exception handlers matters. When an exception
occurs, C++ scans through the list of eligible exception
handlers and selects the first one that is compatible.
Therefore we often list catch blocks in order of increasing
generality:
void f() {
try {
// ...

}

catch (Dividebyzero) { // Least general
}

catch (Matherr) { // More general
}

catch (...) { // Most general
}

}



Exception hierarchies
In complex libraries or packages it may be useful to define
one or more exception class hierarchies:
class Exception { // Base class of my exceptions
public:
virtual string toString() = 0; // Convert information to string

};

class IOException: public Exception {
private:
int code;

public:
IOException(int c) { code = c; }
virtual string toString() {
ostringstream oss;

oss << "I/O Error " << code << endl;

return oss.str;
}

};

void f() {
//..

throw IOException(42);
}



Polymorphic exceptions

In a hierarchy of exceptions, the same issues apply with
assignment or passing of derived classes: data may be
“sliced away” when a derived class is assigned to a base
class.

We can avoid this by using either references (or pointers):
void f() {
try {
// ...

}

catch (Exception &e) {
cerr << e.toString();

}

}

Passing exceptions by pointers is somewhat dangerous, as it
may be unclear when and if to delete the exception.



Some exception guidelines

I A given try block is not required to catch all potential
exceptions.

I While you can use any type in an exception, for larger
programs it is probably a good idea to define a set of
exception classes.

I Generally “catch by reference” is the norm.
I Don’t throw exceptions in a destructor.
I The standard library may throw a number of possible

exceptions; these are typically defined in <stdexcept>.
I Standard hierarchy is rooted at std::exception
I New exceptions commonly inherit from
std::runtime error



Exception safety

I Ideally, C++code should go to some length to assure that
it is exception safe.

I Restore modified structures to consistent values
I Release resources

I However, strong guarantees of exception safety are hard
I A standard design pattern helps maintain exception

safety and generally results in simpler code.



Resource acquisition is initialization

I This is a basic pattern in C++, proposed by Bjarne
Stroustrup.

I When objects are allocated on the stack, their destructor
will be called when they go out of scope.

I We can use this to guarantee that resources are freed
after either an exception or function return.

I Known as “resource acquisition is initialization” (RAII).



RAII - example
class infile {
private:
FILE *m_file;

public:
infile(string name) : m_file(fopen(name, "r")) {

if (m_file == NULL) {
throw runtime_error("can’t open file");

}

}

∼infile() {

fclose(m_file);

}

};

int f() {
infile("readme.txt");

// ...

// We’re guaranteed that if the fopen() succeeded , the

// corresponding fclose() will occur!

}



RAII - definition

I Whereever possible, use local objects to manage
resource acquisition, memory allocation, etc.

I The constructors and destructors of these objects are
responsible for the actual acquisition or allocation.

I Explicitly construct contained objects in the initializer list.
I If these operations fail, the constructor should throw an

exception.
I Careful exception handling in the constructor should

allow it to restore the system to a valid state.



RAII - some details

I Once an object is fully constructed, it is guaranteed that
its destructor will be called when the stack “unwinds”,
whether because of an exception or normal return.

I Otherwise, the destructor will not be called.
I Constructors should clean up after themselves if

necessary.

class A {
B_ptr pb; // resource 1

C_ptr pc; // resource 2

A();

};

A::A() : pb(), pc() { // Use initializer list

// if either elements’ constructor throws an exception , the

// object will not be constructed , and A’s destructor will not be

// called

}



Entire constructor as a try block

Often, it is useful to catch exception in the initializer list.

You can do this if you enclose an entire constructor in a try
block:
Class::Class() try

: x(0), y()

{

// ...

}

catch(XErr &xe) {
// trouble initializing ’x’

}

catch(YErr &ye) {
// trouble initializing ’y’

}



Entire function as a try block

You can enclose an entire function body in a similar manner.
int g(int arg)
try {
f(arg);

return (0);
}

catch (Dividebyzero) {
cerr << "Divide by zero\n";

return arg+10; // Can return alternate values
}

catch (Matherr) {
cerr << "Other math error\n";

return arg+100; // Parameter is in scope
}

catch (...) {
cerr << "Other...\n";

return arg+1000;
}


