
Au, Legare, Shaikh 1

Face Recognition: Robustness of the

‘Eigenface’ Approach

Carmen Au
1
, Jean-Sebastien Legare

2
 & Reehan Shaikh

2

McGill University, Montréal, Québec, Canada

1
School of Computer Science & Center for Intelligent Machines

{au}@cim.mcgill.ca

2
School of Computer Science

{jlegar, reehan.shaikh}@cs.mcgill.ca

Abstract

While face recognition is a fairly trivial

task for humans, much of computer vision research

has been dedicated to finding an algorithm to teach

a computer how to recognize faces. This paper

discusses the robustness of the Turk and Pentland

‘Eigenface’ algorithm [1]. The algorithm consists

of two stages, the learning stage, which is done

offline, and the recognition stage, which is done

online. The learning stage consists of making a

database of the principal components of all the

images in the training set to which new images can

be compared to. This database is called the “face

space”. The recognition stage projects each new

image of a face onto the “face space”, using

principal component analysis, and compares it to

known faces from the training set to find the best

match. The algorithm has a high recognition rate

when the images of the faces were upright and had

similar lighting and feature conditions to the

training images. By feature conditions, we mean

smiling, winking, glasses, etc… However, once the

faces were tilted, the lighting was changed or the

face was obscured somehow, the algorithm

suffered from a loss of recognition.

1 Introduction

For humans, recognizing faces is a

relatively simply task. Faces can be partially

occluded or rotated in various directions without

too much loss of recognition. A major area of

computer vision research is in the automation of

video surveillance. If this automation is to be

achieved, then finding a fast and computationally

efficient face recognition algorithm is essential.

Thus, there has been a plethora of papers written

on this subject. Many of the proposed algorithms

use a feature-based approach [2] to recognition.

The feature-based algorithms look at major

features of the face and compare them to the same

features on other faces. Some of these features

include the eyes, ears, nose and mouth. The

approach uses the position, size and relationship of

these facial features to perform the comparisons.

Other algorithms use the ‘Connectionist’ approach

[3]. This approach uses a general two-dimensional

pattern of the face and neural networks for

recognition. The ‘Connectionist’ approach often

requires a large number of training faces to achieve

decent accuracy. Finally, Kirby and Sirovich

presented the ‘Eigenface’ approach [4], after

which, many papers have been written on their

basic idea. This paper will discuss the

implementation of one such algorithm and attempt

a critique on whether or not it is a viable solution

for real-time applications.

In [1], Turk and Pentland suggest an

algorithm that treats the face recognition problem

as a two-dimensional problem, which assumes that

most faces are under similar conditions. The

underlying idea in their algorithm is that images of

faces are compared to those of known faces and

whether the face matches to one of the known faces

or if it is a new face or if it is not a face at all is

Au, Legare, Shaikh 2

determined. Before these comparisons can be done,

a database of known faces is required. Rather than

storing all the image information of the entire set of

known faces, the Turk and Pentland algorithm

suggests a method which stores only the

“eigenfaces”. These are the eigenvectors of the set

of faces. All the “eigenfaces” combined make up a

“face space” and each new face is projected onto

this “face space”. A detailed explanation of the

algorithm is found in section 2 of this paper.

While under strict, uniform and artificial

conditions, many of the aforementioned algorithms

could produce effective results. Nonetheless, under

real-time conditions, these algorithms may not

produce the results that we are after. This paper

will discuss the robustness of the Turk and

Pentland algorithm and how it fares as a real-time

video surveillance system. Intuitively, the

assumption that all faces exhibit similar conditions

is a fair assumption. However, even under similar

conditions, there are many angles at which the head

could be tilted or directions in which the faces

could be turned or features that can be varied.

While humans would still be able to recognize a

face which is rotated, say 50º, to the right or left,

this is not a trivial task to teach a computer. Thus,

this paper will discuss tests which attempt to see

how much the face could be rotated or tilted before

the algorithm breaks down. Moreover, often it is

difficult to obtain clear unobstructed views of the

faces. The algorithm will be tested with images of

known faces from the database but that are

obscured at varying degrees to see how much, if

any, obscurity is allowable. Changes in

illumination, translation of images and resolution

changes are also conditions that will be tested.

2 Algorithm

 Under the assumption that human faces

are similar, it turns out that any face image can be

encoded as a combination of feature images, each

of which captures one “direction” of the variability

of faces. The idea behind the algorithm proposed

by Turk and Pentland is to extract only the relevant

information of a face image, encode it as efficiently

as possible and compare that encoding to a

database of models encoded similarly. In

mathematical terms, the algorithm finds the

principle components of the distribution of faces.

These principle components can be thought of as

the set of features which together characterize the

variation between the faces. They may not be

necessarily related directly to our intuitive notion

of features such as the eyes, lips, nose, and hair;

but rather related to the variation of intensity in

respective sample points of different face images.

Each image location contributes more or less to

each principal component, so that the latter can be

displayed as a sort of ghostly face, called an

“eigenface”.

It is possible to represent exactly each

image in the training set in terms of a linear

combination of the “eigenfaces”. The number of

possible “eigenfaces” is equal to the number of

face images in the training set. However, using

principle component analysis, it is possible to

approximate the faces using only the best

“eigenfaces”, that is, the ones that account for the

most variation. The following steps summarize the

recognition process:

1. Initialization: Acquire the training set of face

images and calculate the “eigenfaces”, which

define the “face space”.

2. Projection: When a new image is encountered,

calculate the set of weights based on the input

image and the M “eigenfaces” by projecting

the input image onto each of the “eigenfaces”.

3. Detection: Determine if the image is a face at

all (whether known or unknown) by checking

if the image is sufficiently close to the “face

space”.

4. Recognition: If it is a face, classify the weight

pattern as either a known or unknown person.

5. Learning (optional): If the same unknown face

is seen several times, calculate its

characteristic weight pattern and incorporate it

into the known faces.

Au, Legare, Shaikh 3

2.1 Calculating the ‘Eigenfaces’

Let each face image,),(yxI , be a two-

dimensional w × h = P array of intensity values.

Each image, written as a P × 1 vector, represents a

point in P-dimensional space. Therefore, the

collection of images in the training set constitutes a

collection of points in a huge space. Again, due to

the similarity of faces in their overall

configuration, these points will not be randomly

distributed in this immense space, but are likely to

be close and occupy only a small portion of the

space. Thus, the collection of points can be

described by a relatively low dimensional

subspace.

Let the training set of images be

MΓΓΓ ,...,, 21 . The average face of this set is then

defined by

∑
=

Γ=Γ
M

i

i
M 1

1

Now, let each face differ from the mean face by

Γ−Γ=Φ ii
. For each location in an image, we

have one sample for each of the M images. We can

study the intensity relations between any two

sample points by analyzing their covariance. The

covariance between points i and j, denoted ijc , can

be approximated by

() ()∑
=

ΦΦ=
M

k

kkij ji
M

c
1

1

Therefore, the covariance matrix C can be obtained

as follows

∑
=

ΦΦ==
M

i

T

ii

T

M
AAC

1

1

where []MA ΦΦΦ= K21 . By using

principle component analysis analysis on the set of

large vectors, we have obtained a set of M

orthonormal vectors nu
r

and their associated

eigenvalues nλ , which best describe the spread of

the data in the P-dimensional space. These

orthonormal vectors, i.e. the principle components,

turn out to be the eigenvectors of the covariance

matrix C.

The matrix C, however, is P × P and

determining the P eigenvectors and eigenvalues is

an intractable task for typical image sizes (usually

greater than or equal to 256 × 256). Nevertheless,

when M is very small compared to P, like the case

in our experiments, a smaller M × M problem can

be solved instead. Consider the eigenvectors iv of

AAΤ
 such that

iii vAvA µ=Τ

Multiplying each side from the right by A yields

iii AvAvAA µ=Τ

From this we see that iAv are the eigenvectors of

C . If we let []MvvvV ...21= be the

matrix formed from the eigenvectors of AAΤ
 and

[]PuuuU ...21= be the matrix formed

from the eigenvectors of
ΤAA , then AVU = .

Although M eigenvectors (“eigenfaces”)

are necessary to encode each image of the training

set without loss of information, M’ < M are

sufficient enough for recognition. Therefore, from

the M eigenvectors of V, we pick the M’

eigenvectors that account for the most variation,

i.e. the M’ eigenvectors having the highest

eigenvalues.

The number of significant “eigenfaces” to

consider can be picked arbitrarily. Several

criterions have been established in the past as

solutions to the “number-of-factors” problem. The

Kaiser criterion [5] for instance, which selects only

eigenvectors whose values are above 1, seems to be

the most widely used. Instead, for our tests, we

have determined M’ with a threshold λΘ . This is a

ratio of the summations of the eigenvalues,

computed as follows

Θ>=

∑

∑

=

=
λ

λ

λ

M

i

i

r

i

i

r
rM

1

1|min'

Au, Legare, Shaikh 4

2.2 Identifying Faces

Once the basis vectors for the “face

space” have been constructed, all that remains is to

project all the images in the training set onto the

“face space”. Any image Γ can be expressed in

terms of the M’ “eigenfaces”, using M’ weights

calculated as follows

()Γ−Γ= Τ

kk uω

These M’ weights form a vector

[]'21 ... M

T ωωω=Ω , quantifying the

contribution of each of the “eigenfaces” in

representing the input face image, treating the

“eigenfaces” as a basis set for the face images. The

weight vector is then used to determine which of

the predetermined number of faces matches best

the query image. The easiest method to identify an

image in the training set that provides the best

description of the input image is to choose the face

image that minimizes the Euclidean distance

between weight vectors, that is

() 22

kk Ω−Ω=ε

where kΩ is the vector describing the k
th

 image in

the training set. The algorithm proposed by Turk

and Pentland makes the distinction between a “face

class” and a face image. A “face class” consists of

the collection of face images belonging to an

individual, and in the case where a “face class”

contains more than one image, kΩ is calculated as

the average of the weights obtained when

projecting each image of a class k. For reasons that

we will explain soon, we chose to have only one

image per “face class”. The query image belongs to

an individual k in the training set only when the

minimum kε is below a threshold εΘ . On the

other hand, if the minimum distance is above this

fixed threshold, then the queried face is classified

as unknown to the system.

The validity of the threshold relies on the

assumption that faces from the same person map

close to each other in the “face space”. In other

words, it relies on the assumption that the “face

space” consists of a series of small clusters distant

from each other, with each cluster representing

faces from one individual, and where each cluster

approximately has the same dimensions.

However, several times in our

experiments, two sample faces from two different

people mapped closer onto the “face space” than

two faces from the same person, thus breaking the

cluster assumption. Therefore, we could not

establish the face identification threshold as

proposed originally. Images from the same

individual seemed scattered across the “face

space”, hence we chose to only put one image per

face class. We fixed the value of the threshold

“instinctively” so as to get a reasonable ratio of

correct/incorrect positive identifications.

Any image, given it has the right

dimensions, can be projected onto the “face space”.

More specifically, any input image can be more or

less approximated as a linear combination of the

“eigenfaces”. Since the M’ largest eigenvectors

were chosen to span the M’-dimensional “face

space”, they capture the most variation for the face

images. This implies that projecting any non-face

image onto this M’ subspace is likely to yield

weights for which no face would have mapped to.

Hence another distance measure is

employed to determine whether the input image is

a face or not. We can calculate the distance ε

between the projection Ω of a query image and

the average projection Ω of all images in the

training set. Mathematically,
22 Ω−Ω=ε

The projection weight vectors of the training set

can be seen as a set of points in M'-space forming

an M' “sphere”, in which Ω is the center. The

radius of that “sphere” corresponds to the largest

distance between a point and the center,

()Ω−Ω= i
i

r ¸max

where i = 1, 2, …, N. We use this radius as a

determining factor for the limits of the “face

space”. Any projection farther than r from the

center is classified as not a face. Therefore, if the

distance ε is smaller than the radius, we assume

that the input image is a face. Otherwise, we

assume that the image is something else.

Au, Legare, Shaikh 5

3 Results and discussion

Our biological vision system seamlessly

recognizes faces, whether they are partially

occluded, tilted or rotated a certain amount of

degrees or in various lighting conditions. Even if

the background is noisy or the human visual

system hasn’t encountered a specific face in a very

long time (i.e. the face has changed drastically over

time), we can still distinguish and match the “query

image”, so to speak, to the vast database of images

stored in our memory system, specifically in our

long-term memory, involving the hippocampus and

the temporal lobes of the brain. On the other hand,

not only does a computer not have enough physical

memory to compete with that of the brain, it

doesn’t even come close to the capacity and

efficiency of face recognition as the brain. Here,

we shall discuss the actual implementation of the

‘Eigenface’ approach. We show what happens if

this approach was taken and implemented into a

real-time system. Though the following query

images aren’t taken from a real-time system, the

properties of these images are comparable to those

of real-time system. Increases in brightness,

occlusions of the face and noisy backgrounds are

all part of real-time systems. We simulate these

conditions in our images and run the images as

queries. We present concrete examples to back up

our findings. We use specific test cases, as

discussed above, to break the proposed algorithm.

3.1 Brightness

Our first example focuses on brightness.

In everyday life, we encounter faces in the bright

sun or in the dark night and yet, we recognize

without effort who it is that we see. Yet, slight

changes in brightness give the computer a very

hard time to match and recognize images. The

main reason for this is that for a computer, an

image is just an array of intensity values. Once

these values are altered, the comparison is

compromised greatly. Following are four images of

varying brightness, of which the top left one is

included in the training set, thus it are in the

database of images. We try to match the other three

to the top left one.

Of these, the top left image returns the proper

answer, itself. The other three return as “not-a-

face”. The brightness is too high for the images to

be mapped to the “face space”.

3.2 Varying conditions

 The second example looks at what the

outcome is if one training image in the database is

taken under very different conditions. For example,

the size of the face is too big with respect to the

size of the image or lighting conditions aren’t the

same as every other training image. To the right are

some images of such examples. If we train the

database with these irregular images, as well as the

regular images, the “face space” becomes very

large, to the point where non-faces are mapped to

the “face space”. For example, a soft-drink can or

an animal (with proper orientation so as to

resemble a face) will be mapped and a

corresponding face returned. This results in a very

different “face space”. To mathematically show

that the distance between the average face and the

farthest face when including the irregular images is

much larger than when the irregular images aren’t

included, we calculate the Euclidean distance. This

Euclidean distance depicts the radius (and the

variation) of the “face space”. Since there is an

Au, Legare, Shaikh 6

irregular face with much more variability than the

average face, the Euclidean distance becomes

drastically large between the two. Thus, the

learning process for this algorithm must be strongly

controlled. Images taken for training must be taken

under static conditions and outliers must be

discarded or re-photographed. Otherwise, the

algorithm runs very poorly. This is a very

important concept for the Artificial Intelligence

community who are in the works of face

recognition robotics and automated machinery for

this task.

3.3 Partial Occlusion

Imagine playing hide’n’seek with many

people. You are looking for one of your friends and

you spot him/her while he/she is looking away

from you. In a split second, you know which friend

it is, even though the majority, if not all, of your

friend’s face is occluded from your vision. Better

yet, get a picture of your favourite get-together and

look at the face that is occluded the most. Again, in

a split second, you can recognize who it is that is

occluded in the picture. These, among others, are

great examples of how the human visual system

handles occlusion so well. To a certain degree of

occlusion, we recognize with ease. The following

example shows how well the algorithm handles

occlusion. Consider the following pictures. The

first picture on the top is the original picture in the

database of known faces. We added rectangles to

the images following the original one to test how

the algorithm handles occlusion. Surprisingly, the

top left, top right, and bottom right pictures

involving occlusion map to the original image.

This is a very impressive result. The fourth, bottom

left image fails to map to the right person. This is

directly related to the amount of occlusion

introduced in the image. The more occlusion, the

more information about the face is lost.

3.4 Tilting of the face

Now we shall test how orientation of the

face affects the algorithm. We take an image and

simply rotate it clockwise or counter clockwise.

We see that the algorithm also performs

remarkably well on this variation. As above with

partial occlusion, there is a certain amount of

variation that one can introduce before the

algorithm breaks down. Consider the following

images. Once again, the first picture on the top is

the original image in the database of known faces.

We rotate the image clockwise in increments of 5
0

in every successive image, clockwise from the top

left to the bottom right. Again, the top left, top

right and bottom right images which were rotated

mapped to the original image. The last, bottom left

image failed to map to the right person. This is also

directly related to the amount of rotation

introduced in the image.

The algorithm expects the face at a certain position

in the image. If the face is rotated enough, the

computer won’t be able to compare image

intensities properly.

Au, Legare, Shaikh 7

3.5 Image noise

This is a particularly important concept.

Imagine you wear glasses to see the blackboard

while in class (as I do!). You take off your glasses

to clean your eyes and notice the entire blackboard

is a blur. The white chalk has become a gray blur

blended into the black background of the board.

The world just blurred. You can barely make of

anything visually unless those glasses go back on.

Well, amazingly so, the computer’s mapping of

intensities between corresponding pixels helps it

immensely to match blurred, noisy images to their

respective originals. The following images were

blurred with a general filter, increasing the amount

of blur from the top left (the original) clockwise to

the middle left. Surprisingly, all images output the

correct recognition. But nonetheless, if we blur the

image to the point where the image and the

background become one, the algorithm will fail.

3.6 Implementation of the algorithm

Now we discuss one very important

implementation variation, the determination of M’.

We tried the algorithm with M’ = 36 and then M’ =

100. There was a drastic change in the

reconstruction of an image. The more “eigenfaces”

used, the more blurred the reconstruction gets since

more “eigenfaces” are included in the

reconstruction. Following are two reconstructions,

with M’ = 36 on the top and M’ = 100 on the

bottom. Mathematically, we also calculated the

distance between the weight representation and the

distance between intensity values of corresponding

pixels of the two farthest images. As we grow the

number of “eigenfaces” used, the distance between

the weight representations of images gets very

close to the actual distance as calculated between

intensity values, they almost become equal.

This is because the more “eigenfaces” used implies

the more variation among faces is covered, thus the

accuracy of recognizing any variant of a face

increases.

4 Conclusion

While under regular “laboratory

conditions” the algorithm fared quite well, after

testing the algorithm under various conditions that

are seen in everyday situations such as occlusion,

head position, different lighting we have concluded

that the algorithm is highly sensitive to these

changes. A possible solution would be to increase

the number of images in the database to include

these changes. Also, the algorithm could adopt the

Murase and Nayer approach [8] which uses a

universal space to identify objects and then uses an

object space to identify the object more

specifically.

While face recognition is a relatively

simple task for humans to perform, a robust

algorithm which could perform as well as human

brains has yet to be found.

Au, Legare, Shaikh 8

5 References

[1] M.Turk and A. Pentland, “Eigenfaces for Recognition” Journal of Cognitive Neuroscience, vol. 3, no.

1, pp. 71-86, 1991.

[2] B. S. Manjunath, R. Chellappa, and C. von der Malsburg. “A Feature Based Approach to Face

Recogntion.” In Proc. of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 1992.

[3] D. Valentin, H. Abdi, A. O'Toole, and G. Cotterell. “Connectionist Models of Face Processing: A

Survey.” Pattern Recognition, 27:1209-1230, 1994.

[4] Kirby, M. and L. Sirovich, Application of the Karhunen-Loève Procedure for the Characterization of

Human Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990. 12(1): p. 103-

108.

[5] Cruise Scientific. “World of Visual Statistics: Chapter 37.” 2004. 20 April 2005.

<http://www.visualstatistics.net/web%20Visual%20Statistics/Visual%20Statistics%20Multimedia/fact

or_analysis.htm>

[6] Lemieux, A. Parizeau, M., “Experiments on Eigenfaces Robustness” 16th International Conference on

Pattern Recognition, vol 1 pp 421-424, 2002.

[7] Kruger, J. “ Thresholds for Eigenface Recognition” 18 April 2005.

<http://cnx.rice.edu/content/m12533/latest/ >

[8] H. Murase and S.K. Nayer, Visual Learning and Recognition of 3-D Objects from Appearance,

International Journal of Computer Vision, 1995. Vol. 14, pp 5-24 .

