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Eukaryotic Regulatory Sequences
» Regulation of gene expression is a complex set of

biochemical pathways
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» The action of every transcription factor is regulated by
many different chemical reactions throughout the cell



Coregulation

» Many studies have grouped genes into coregulated sets

» Genes are coregulated if their expression is governed by
the same sets of transcription factors




Binding Sites
» The key to the action of transcription factors is where
they bind to the DNA
» The idea is that coregulated genes should have the same

binding sites, and through the binding sites we can find
these genes’ common transcription factors

(b) '




Difficulties — |

» Regulatory sequences may be far upstream

’l "Il"ll.,ll’ /Condens_ed
A A A A ) chromatin
A

/)

!’,h".,’.'l/.!.'l/.!.'rf.!!l'.',.'.'/.5!.".,’.';'/.!.'.""

Decondensed
chromatin

transcription polymerase

factors

» This is not as much of a problem with S. cerevisiae, since
their regulatory region begins around 800bp upstream of
the coding sequence.

» In higher eukaryotes this becomes much more difficult, as
regulatory regions are often longer than 10kb



Difficulties — Il

» The regulatory sequences are not necessarily in the same
orientation as each other nor the coding sequences

GCCGGACTGGACATATATGGAATGGCG
CGGCCTGACCTGTATATACCTTACCGC

AGTCCAGTCCAIATATATGGAATGGTT

TCAGGTCAGGTTTATATACCTTACCAA



Difficulties — Il

» Some transcription factors have several binding sites in
one regulatory region (e.g: Galdp)

basal expression complete repression
(no basal detectable)

1 site

2 sites, spaced 10 bp apart
2 sites, spaced

6 bp apart



Difficulties — IV

» One transcription factor can have high variability amongst
its binding sites

gl - CCCCATGG
g2 - TCCCATGG
g3 - CCTCATAG

g4 - CCTCATAA
g5 - CCCTGCGG

» This sort of variability caused many problems, making it
extremely difficult and time-consuming to find
transcription factor binding sites



Drawbacks of Other Methods

» Only exact matches are allowed

AGTCAACGTTA  Not Acceptable!
AGTCAACGTTA
AGTCAACGTTA
AGTCAGCGTTA

though when variability was first incorporated, a
maximum of 1 substitution was allowed

» No spacers (i.e: Gal4p consensus: CGGNNNNNNNNNNNCCG)

» All occurrences of a motif at distinct positions are
assumed to be probabilistically independent, but in reality
there are elaborate dependencies

» Rare motifs are under-represented and therefore have less
statistical significance, making them much harder to
accurately find

» No possibility of multiple sites for one TF with single
genes



Variability Amongst Motif Instances

» Can't realistically expect exact matches

» Spacers of 1-11 base pairs are quite common in the
middle of the motif due to TFs binding as dimers

» The number of conserved (non-spacer) bases ranges from
6—10 base pairs

» Variation is usually due to transitions rather than
transversions (we use the alphabet A,G,T,C,R,Y,W,S,N)

Transversion

» Due to the structure of the DNA binding domain,
insertions and deletions are rare
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Previous algorithms

General methods:

v

» Weight matrices or alignments
» EM or Gibbs sampling

» Prior enumerative methods:

» Exact matches or restricted number of spacers
» Assumes likelihood of motif s is independent of position i

v

General methods may not guarantee optimal results

v

Enumerative methods are only practical with a small
motif size.



Motif structure

In Yeast Motif Finder 3.0 (YMF), the exact number of
nonspacers k and the minimum and maximum number of
SPaCers Nmin,Nmax are input parameters. Motifs have the
following structure:

(517 ce. 5k/2)(Ni)(sk/2+1> cee 75k)7vnmin S / S Nmax
Where s; € {A,C,G,T,R,Y,S,W}.

R € {A,G}
Y € {C,T}
S € {C,G}
We{AT}

And at most ¢ of the s; are possibly chosen from {R,Y,S,W}.



Statistical approach

v

Let U be a set of m upstream sequences having uniform
length (typically 800).

Let X be a set of m random DNA sequences generated by
a 3rd-order Markov chain.

v

v

Let N, be the number of times motif s is found in U.

v

Let X, be the number of times motif s is found in X.

» Then the z-score of s is defined as:
Ns — E(X)
Zg = ————"

U(XS)

Accuracy will tend to increase as the size of U increases.



Algorithm inputs

v

Set of m upstream sequences

v

Number of nonspacer characters (6 < k < 10)

Transition matrix for order-3 Markov chain constructed
from all upstream sequences for the organism

v

v

Other parameters

» Range of spacer lengths

» Maximum number of motifs to output

» Maximum number ¢ of {R,Y,W,S} symbols in motifs
Absolute minimum count of required appearances

v



Algorithm procedure

Enumerate 4% motifs for s; € {A,C, G, T}
Set z,,i, = —1000
For i = npip t0 Npmax:

For each upstream sequence:

Calculate index for each (pre)(N')(suf)
Increment count[index]

For all possible motifs s; € {A,C,G, T,R, Y, W, S}:
Calculate closure over s; € {R,Y,W,S}
Calculate total count of occurrences
Prune motif if possible
Calculate full z-score and save in result

Print result



Details of counting

All nucleotides stored as strings of the form:

A—0
C—1
G—2
T—3

This allows indices to be calculated using radix 4 math:

index = (prefix, * 4" 4 suffix,

For example:
CTGNNTAT — (1324 * 4%) + 3034 = 19719

Counting must be performed twice for odd k



Details of closure

v

The counting proceeds only over all “true” nucleotides

v

The z-scores are calculated over all possible instances of a
motif.

For example, if we consider the motif: WCTNNGGA

The algorithm must consider the number of occurrences
of both TCTNNGGA and ACTNNGGA.

v

v



Details of pruning

The algorithm maintains a value z,,;, which is the lowest
z-score included in the results so far.

1. Occurrence count N, must exceed an absolute threshold
(typically 2)
2. Given that o(Xs) > /E(Xs) — E(X;)?, prune if

No—E)
VEX) — E(X.)?

min

3. Estimate z-score while ignoring overlaps, prune if
Zest < Zmin



Complexity

» Linear in size of upstream sequence
» z-score computation is O(k?c?) per motif

» Exponential in length of motif: O(4%)

800
600+

400+

Total seconds
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Implementation details

» stats - The main program

» statsvar - As above, but modified for variable sequence
length

» preproc - Calculates 3rd-order Markov transition model
for novel organisms given a set of upstream regions

» findDivergent - Find promoters with substantial overlap
(e.g. divergent genes) to avoid duplicates

» removeDivergent - Use results from findDivergent to
reorganize the set of input sequences



Post-processing

» Problem: YMF will return many artifacts of binding sites
» Suppose TCACGCT is a “true” binding site.
» YMF my report variations such as TCACGCW or CACGCTT.
» FindExplanators (Blanchette and Sinha, 2001):
» Given: U, M, and 7
» Find: Smallest EC M s.t. Vme M, Z(m|E) < T

Uses a greedy algorithm to add the “least explained” motif to
E on each iteration.



Web interface

AT

Computer Science & Engineering

YMF 3.0: Finds short motifs in DNA sequences  wsis vmre

EAQ

Motifsize [g_[v]
Maxduum of ﬂ spacers in middle
Maximum of [ 2 vI degenerate symbols (R,Y,W,5)

Organism. [ Saccharomyces ceravisiae =] eteonan
User-creaied organisms Nope sreated 5o far  con'i find vour oxganism ?

Paste Sequences (*) in FastA Format [L5a11
(See example) ¢4 GGTTATCAGCAACAACACAGTCATATCCATTCTCAL
>GAL10
FProcessing is faster if sequences are (cGGTTTAGCATCATEAGCGCTTATARATTTCTTAATTL'
equi-length and wnmasked. |51z
CATTARTTTTGCTTCCAAGACGACAGTAATATGTCTCC,

=i I
Or Upload a FastA file (*): Browse...

Motifs in session

none

http://wingless.cs.washington.edu/YMF/YMFWeb/YMFInput.pl
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Let U be a set of m upstream sequences having uniform
length (typically 800).

Let X be a set of m random DNA sequences generated by
a lst-order Markov chain.

Let N; be the number of times motif s is found in U.
Let X, be the number of times motif s is found in X.
Then the z-score of s is defined as:
Ns — E(XS)

U(XS)

Zs —



» Also define the set W as containing all the strings that
result from replacing R, Y, S and W by all possible
combinations of A,C,G,T in motif s and its reverse
complement.



» Also define the set W as containing all the strings that
result from replacing R, Y, S and W by all possible
combinations of A,C,G,T in motif s and its reverse
complement.

» Define X as the number of times w € W is found in
X? € X so that

Xo= > > X
XieX weW
and

E)= 3 3 E(X)

XieX weW



First Order Markov Chain

» consider a stochastic process xg, X1, X2, - - - , X, with values
in {A,C,G,T,N}

» let the stochastic vector b(t) be the distribution of x; so
bi(t) = P(x; = i)

» and define a probability transition matrix
Pj = P(xey1 = jlxe = i)




Generating A Random Sequence

» to generate a sequence of length x:
» sample a value xp from b(0)



Generating A Random Sequence

» to generate a sequence of length x:
» sample a value xp from b(0)
» sample another value x; from the appropriate row of
transition matrix P



Generating A Random Sequence

» to generate a sequence of length x:

| 2

>

sample a value xp from b(0)

sample another value x; from the appropriate row of
transition matrix P

continue sampling another n — 2 values using the
transition matrix P



Generating A Random Sequence

» to generate a sequence of length x:
» sample a value xp from b(0)
» sample another value x; from the appropriate row of
transition matrix P
» continue sampling another n — 2 values using the
transition matrix P

» for example if we take n = 5 and generate the sequence
S = AGTTC then p(S) = ba(0)PacPsrPrrPrc



Generating A Random Sequence

» to generate a sequence of length x:
» sample a value xp from b(0)
» sample another value x; from the appropriate row of
transition matrix P
» continue sampling another n — 2 values using the
transition matrix P
» for example if we take n = 5 and generate the sequence
S = AGTTC then p(S) = bA(O)PAGPGTPTTPTC
> so the probability pj(w) that a word w € W of length [
occurs at position j < n — [ in a sequence X? € X of
length # is then

pj(W) = le(.j)PW1W2PW2W3 o PW[71W1 (1)



The First Moment
» Define an indicator variable /;:

i = 1 if we W occurs at position j of X? € X

= 0 otherwise



The First Moment
> Define an indicator variable /;:

i = 1 if we W occurs at position j of X? € X

= 0 otherwise

» then the expected number of times the word w occurs in
the sequence X? is

n—I+4+1 n—I+1 n—I+1

EX:) = 3 E)= > Plh=1= > pw)

j=t



The First Moment
> Define an indicator variable /;:

i = 1 if we W occurs at position j of X? € X

= 0 otherwise

» then the expected number of times the word w occurs in
the sequence X? is

n—I+1 n—I+1 n—I+1
E(X3)= D E()= > Pli=1)= Y p(w)
j=1 j=1 j=1
n—I+1

= Z bW1(j)PW1W2PW2W3 T PW[71W{
=1



Perron-Frobenius Theory
» we know that b(t + 1) = P x b(t) = P* x b(0)



Perron-Frobenius Theory

» we know that b(t + 1) = P x b(t) = P* x b(0)

» the distribution of a regular markov chain always
converges to its unique invariant distribution regardless of
the initial distribution b(0)

lim Pt =7

t—o00



Perron-Frobenius Theory

» we know that b(t + 1) = P x b(t) = P* x b(0)
» the distribution of a regular markov chain always
converges to its unique invariant distribution regardless of

the initial distribution b(0)
tlim Pt =n
so
lim b(t) = 7b(0)

t—o0o



Perron-Frobenius Theory

» we know that b(t + 1) = P x b(t) = P* x b(0)

» the distribution of a regular markov chain always
converges to its unique invariant distribution regardless of
the initial distribution b(0)

lim Pt =7
t—o00

” lim b(t) = 7b(0)

t—o0o

» so we use an approximation and substitute the invariant
distribution 7 for b(t) and the first moment simplifies to

n—I1+1
a
E(X = p_l § , bW1 7TW1 W1W2PW2W3 o 'DW[—1W[



Perron-Frobenius Theory

» we know that b(t + 1) = P x b(t) = P* x b(0)
» the distribution of a regular markov chain always
converges to its unique invariant distribution regardless of

the initial distribution b(0)
tlim Pt =n

” lim b(t) = 7b(0)

t—o0o

» so we use an approximation and substitute the invariant
distribution 7 for b(t) and the first moment simplifies to

n—I1+1
a
E(X = p_l § , bW1 7TW1 W1W2PW2W3 o 'DW[—1W[

= (1 = 1+ 1)y, (0) 7w, Py s P * * Prsy 10



The Overlapping Phenomenon

» consider the word ATA; the string of minimal length that
contains at least 3 occurrences of this word is ATATATA
which has length 7.



The Overlapping Phenomenon

» consider the word ATA; the string of minimal length that

contains at least 3 occurrences of this word is ATATATA
which has length 7.

» but for the word ATC we need a string of at least length
12 ATCATCATCATC



The Overlapping Phenomenon

» consider the word ATA; the string of minimal length that
contains at least 3 occurrences of this word is ATATATA
which has length 7.

» but for the word ATC we need a string of at least length
12 ATCATCATCATC

» so in a randomly generated string the word ATA is more
likely to occur than ATC

» the distribution of X is affected by this



Overlaps

» define w(i) as a prefix of length i(< [ — 1) of w and a
composite word

cw(i) =w(i) +w



Overlaps

» define w(i) as a prefix of length i(< [ — 1) of w and a
composite word

cw(i) =w(i) +w

» if a prefix of cw(/) contains w then we call this an
overlap

» {cw} gives us a uniquely defined set of overlaps for w



The Second Moment



The Second Moment

>

o(Xs)* = E(X7) — E(X.)*

» let us assume that X and W are singleton sets then since
Xs=h+hb+---+1,_/41 and
X2=(h+hb+-+lp)h+h+- 4 1) we
have:



The Second Moment

>

o(Xs)* = E(X7) — E(X.)*

» let us assume that X and W are singleton sets then since
Xs=h+hb+---+1,_/41 and
X2=(h+hb+-+lp)h+h+- 4 1) we
have:

n—I4+1 n—/+1 n—I+41 n—I+1

=N N By = Y E()+2 Y E(k)

i=1 j=1 i=1 j<k



The Second Moment

>

o(Xs)* = E(X7) — E(X.)*

» let us assume that X and W are singleton sets then since
Xs=h+bhb+---+1,_/41 and
X2=(h+hb+ -4 b)h+h+ -+ 1) we

have:
n—I14+1 n—/+1 n—I+1 n—I+1
= > > E(Lh) =Y E(hh)+2 Y E(fk)
=1 j=1 i=1 j<k

» I;lc indicates when a word has occured in both positions j
and k simultaneously; suppose that j < k and kK —j </
then there is an overlap cw(j) € {cw} at the position j

» so the variance of X; is affected by the expected number
of overlaps for each cw(i) € {cw}



» we can also define composite words composed of different
strings; say cwi (1) = wi(i) + wo and cws (i) = wa(i) + wy

» the co-variances between counts of words is affected by
the expected number of overlaps E(n(cws(i))) and

E(n(cws (1))



Results — Known Regulons

» Ran the program on seventeen known S. cerevisiae
coregulated gene sets (i.e: the TF and the binding site
consensus were already known)

» The algorithm was successful in 15 of the 17 gene sets.
Of the 15,

» 9 had the known consensus amongst the top three
highest-scoring motifs
» 6 had a very similar consensus in the top three
» Example of results:
s N z

S S

TCANNNNNNACG 27 967
TCRNNNNNNACG 34 9.36
YCANNNNNNACG 34 858
TCANNNNNNWCG 37  8.39
YCANNNNNNWCG 52 8.31

Known consensus: TCANNNNNNACG
» As for the other two sets, both having very few genes, the
correct consensus was in the top twenty motifs



Results — Coexpressed Gene Clusters

» Ran the software on eight coexpressed gene clusters

» The top five motifs for four of the eight clusters matched
the binding site consensus of the regulating transcription

factor
» Example:
s I\IS z
GACGNNNNNNGGAC 27 967
CTGCNNNNNGCAG 34 936

GCANNNCTGC 34 858
CAGANTCTG 37 8.39
CAGANNCTGC 52 831



Any Questions?
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