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Eukaryotic Regulatory Sequences
I Regulation of gene expression is a complex set of

biochemical pathways

I The action of every transcription factor is regulated by
many different chemical reactions throughout the cell



Coregulation

I Many studies have grouped genes into coregulated sets

I Genes are coregulated if their expression is governed by
the same sets of transcription factors



Binding Sites
I The key to the action of transcription factors is where

they bind to the DNA
I The idea is that coregulated genes should have the same

binding sites, and through the binding sites we can find
these genes’ common transcription factors



Difficulties – I
I Regulatory sequences may be far upstream

I This is not as much of a problem with S. cerevisiae, since
their regulatory region begins around 800bp upstream of
the coding sequence.

I In higher eukaryotes this becomes much more difficult, as
regulatory regions are often longer than 10kb



Difficulties – II

I The regulatory sequences are not necessarily in the same
orientation as each other nor the coding sequences

AGTCCAGTCCAAATATATGGAATGGTT
TCAGGTCAGGTTTATATACCTTACCAA

A

GCCGGACTGGACATATATGGAATGGCG
CGGCCTGACCTGTATATACCTTACCGC

A

B



Difficulties – III

I Some transcription factors have several binding sites in
one regulatory region (e.g: Gal4p)



Difficulties – IV

I One transcription factor can have high variability amongst
its binding sites

g1 - CCCCATGG
g2 - TCCCATGG
g3 - CCTCATAG
g4 - CCTCATAA
g5 - CCCTGCGG

A

I This sort of variability caused many problems, making it
extremely difficult and time-consuming to find
transcription factor binding sites



Drawbacks of Other Methods
I Only exact matches are allowed

AGTCAACGTTA
AGTCAACGTTA
AGTCAACGTTA
AGTCAGCGTTA

Not Acceptable!

though when variability was first incorporated, a
maximum of 1 substitution was allowed

I No spacers (i.e: Gal4p consensus: CGGNNNNNNNNNNNCCG)
I All occurrences of a motif at distinct positions are

assumed to be probabilistically independent, but in reality
there are elaborate dependencies

I Rare motifs are under-represented and therefore have less
statistical significance, making them much harder to
accurately find

I No possibility of multiple sites for one TF with single
genes



Variability Amongst Motif Instances
I Can’t realistically expect exact matches

I Spacers of 1–11 base pairs are quite common in the
middle of the motif due to TFs binding as dimers

I The number of conserved (non-spacer) bases ranges from
6–10 base pairs

I Variation is usually due to transitions rather than
transversions (we use the alphabet A,G,T,C,R,Y,W,S,N)

A C

G T

Transition

Tr
an
si
tio
n

Transversion

Transversion

I Due to the structure of the DNA binding domain,
insertions and deletions are rare



Previous algorithms

I General methods:
I Weight matrices or alignments
I EM or Gibbs sampling

I Prior enumerative methods:
I Exact matches or restricted number of spacers
I Assumes likelihood of motif s is independent of position i

I General methods may not guarantee optimal results

I Enumerative methods are only practical with a small
motif size.



Motif structure

In Yeast Motif Finder 3.0 (YMF), the exact number of
nonspacers k and the minimum and maximum number of
spacers nmin,nmax are input parameters. Motifs have the
following structure:

(s1, . . . sk/2)(N
i)(sk/2+1, . . . , sk),∀nmin ≤ i ≤ nmax

Where si ∈ {A, C, G, T, R, Y, S, W}.

R ∈ {A, G}
Y ∈ {C, T}
S ∈ {C, G}
W ∈ {A, T}

And at most c of the si are possibly chosen from {R, Y, S, W}.



Statistical approach

I Let U be a set of m upstream sequences having uniform
length (typically 800).

I Let X be a set of m random DNA sequences generated by
a 3rd-order Markov chain.

I Let Ns be the number of times motif s is found in U .

I Let Xs be the number of times motif s is found in X .

I Then the z-score of s is defined as:

zs =
Ns − E (Xs)

σ(Xs)

Accuracy will tend to increase as the size of U increases.



Algorithm inputs

I Set of m upstream sequences

I Number of nonspacer characters (6 ≤ k ≤ 10)

I Transition matrix for order-3 Markov chain constructed
from all upstream sequences for the organism

I Other parameters
I Range of spacer lengths
I Maximum number of motifs to output
I Maximum number c of {R, Y, W, S} symbols in motifs
I Absolute minimum count of required appearances



Algorithm procedure

Enumerate 4k motifs for si ∈ {A, C, G, T}
Set zmin = −1000
For i = nmin to nmax :

For each upstream sequence:
Calculate index for each (pre)(N i)(suf )
Increment count[index]

For all possible motifs si ∈ {A, C, G, T, R, Y, W, S}:
Calculate closure over si ∈ {R, Y, W, S}
Calculate total count of occurrences
Prune motif if possible
Calculate full z-score and save in result

Print result



Details of counting

All nucleotides stored as strings of the form:

A→ 0

C→ 1

G→ 2

T→ 3

This allows indices to be calculated using radix 4 math:

index = (prefix4 ∗ 4ksuffix ) + suffix4

For example:

CTGNNTAT→ (1324 ∗ 43) + 3034 = 197110

Counting must be performed twice for odd k



Details of closure

I The counting proceeds only over all “true” nucleotides

I The z-scores are calculated over all possible instances of a
motif.

I For example, if we consider the motif: WCTNNGGA

I The algorithm must consider the number of occurrences
of both TCTNNGGA and ACTNNGGA.



Details of pruning

The algorithm maintains a value zmin which is the lowest
z-score included in the results so far.

1. Occurrence count Ns must exceed an absolute threshold
(typically 2)

2. Given that σ(Xs) ≥
√

E (Xs)− E (Xs)2, prune if

Ns − E (Xs)√
E (Xs)− E (Xs)2

< zmin

.

3. Estimate z-score while ignoring overlaps, prune if
zest < zmin



Complexity

I Linear in size of upstream sequence

I z-score computation is O(k2c2) per motif

I Exponential in length of motif: O(4k)



Implementation details

I stats - The main program

I statsvar - As above, but modified for variable sequence
length

I preproc - Calculates 3rd-order Markov transition model
for novel organisms given a set of upstream regions

I findDivergent - Find promoters with substantial overlap
(e.g. divergent genes) to avoid duplicates

I removeDivergent - Use results from findDivergent to
reorganize the set of input sequences



Post-processing

I Problem: YMF will return many artifacts of binding sites
I Suppose TCACGCT is a “true” binding site.
I YMF my report variations such as TCACGCW or CACGCTT.

I FindExplanators (Blanchette and Sinha, 2001):
I Given: U, M, and τ
I Find: Smallest E ⊂ M s.t. ∀m ∈ M,Z (m|E ) < τ

Uses a greedy algorithm to add the “least explained” motif to
E on each iteration.



Web interface

http://wingless.cs.washington.edu/YMF/YMFWeb/YMFInput.pl



I Let U be a set of m upstream sequences having uniform
length (typically 800).

I Let X be a set of m random DNA sequences generated by
a 1st-order Markov chain.

I Let Ns be the number of times motif s is found in U .

I Let Xs be the number of times motif s is found in X .

I Then the z-score of s is defined as:

zs =
Ns − E (Xs)

σ(Xs)



I Also define the set W as containing all the strings that
result from replacing R, Y, S and W by all possible
combinations of A,C,G,T in motif s and its reverse
complement.

I Define X a
w as the number of times w ∈ W is found in

X a ∈ X so that

Xs =
∑
X a∈X

∑
w∈W

X a
w

and

E (Xs) =
∑
X a∈X

∑
w∈W

E (X a
w)
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First Order Markov Chain
I consider a stochastic process x0, x1, x2, · · · , xl with values

in {A, C, G, T, N}
I let the stochastic vector b(t) be the distribution of xt so

bi(t) = P(xt = i)
I and define a probability transition matrix

Pij = P(xt+1 = j |xt = i)

A
C

G

T N



Generating A Random Sequence

I to generate a sequence of length n :
I sample a value x0 from b(0)

I sample another value x1 from the appropriate row of
transition matrix P

I continue sampling another n − 2 values using the
transition matrix P

I for example if we take n = 5 and generate the sequence
S = AGTTC then p(S) = bA(0)PAGPGTPTTPTC

I so the probability pj(w) that a word w ∈ W of length l
occurs at position j < n − l in a sequence X a ∈ X of
length n is then

pj(w) = bw1(j)Pw1w2Pw2w3 · · ·Pwl−1wl (1)
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The First Moment

I Define an indicator variable Ij :

Ij = 1 if w ∈ W occurs at position j of X a ∈ X

= 0 otherwise

I then the expected number of times the word w occurs in
the sequence X a is

E (X a
w ) =

n−l+1∑
j=1

E (Ij) =
n−l+1∑
j=1

P(Ij = 1) =
n−l+1∑
j=1

pj(w)

=
n−l+1∑
j=1

bw1(j)Pw1w2Pw2w3 · · ·Pwl−1wl
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Perron-Frobenius Theory
I we know that b(t + 1) = P × b(t) = P t × b(0)

I the distribution of a regular markov chain always
converges to its unique invariant distribution regardless of
the initial distribution b(0)

lim
t→∞

P t = π

so
lim

t→∞
b(t) = πb(0)

I so we use an approximation and substitute the invariant
distribution π for b(t) and the first moment simplifies to

E (X a
w) = pj(w) =

n−l+1∑
j=1

bw1(0)πw1Pw1w2Pw2w3 · · ·Pwl−1wl

= (n − l + 1)bw1(0)πw1Pw1w2Pw2w3 · · ·Pwl−1wl
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The Overlapping Phenomenon

I consider the word ATA; the string of minimal length that
contains at least 3 occurrences of this word is ATATATA
which has length 7.

I but for the word ATC we need a string of at least length
12 ATCATCATCATC

I so in a randomly generated string the word ATA is more
likely to occur than ATC

I the distribution of Xs is affected by this
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Overlaps

I define w(i) as a prefix of length i(< l − 1) of w and a
composite word

cw(i) = w(i) + w

I if a prefix of cw(i) contains w then we call this an
overlap

I {cw} gives us a uniquely defined set of overlaps for w
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The Second Moment
I

σ(Xs)
2 = E (X 2

s )− E (Xs)
2

I let us assume that X and W are singleton sets then since
Xs = I1 + I2 + · · ·+ In−l+1 and
X 2

s = (I1 + I2 + · · ·+ In−l+1)(I1 + I2 + · · ·+ In−l+1) we
have:

E (X 2
s ) =

n−l+1∑
i=1

n−l+1∑
j=1

E (Ij Ik) =
n−l+1∑
i=1

E (Ii Ii)+2
n−l+1∑
j<k

E (Ij Ik)

I Ij Ik indicates when a word has occured in both positions j
and k simultaneously; suppose that j < k and k − j < l
then there is an overlap cw(j) ∈ {cw} at the position j

I so the variance of Xs is affected by the expected number
of overlaps for each cw(i) ∈ {cw}
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I we can also define composite words composed of different
strings; say cw1(i) = w1(i) + w2 and cw2(i) = w2(i) + w1

I the co-variances between counts of words is affected by
the expected number of overlaps E (n(cw1(i))) and
E (n(cw2(i)))



Results – Known Regulons
I Ran the program on seventeen known S. cerevisiae

coregulated gene sets (i.e: the TF and the binding site
consensus were already known)

I The algorithm was successful in 15 of the 17 gene sets.
Of the 15,

I 9 had the known consensus amongst the top three
highest-scoring motifs

I 6 had a very similar consensus in the top three
I Example of results:

TCANNNNNNACG
TCRNNNNNNACG
YCANNNNNNACG
TCANNNNNNWCG
YCANNNNNNWCG

s Ns
27
34
34
37
52

zs
9.67
9.36
8.58
8.39
8.31

Known consensus: TCANNNNNNACG
I As for the other two sets, both having very few genes, the

correct consensus was in the top twenty motifs



Results – Coexpressed Gene Clusters

I Ran the software on eight coexpressed gene clusters

I The top five motifs for four of the eight clusters matched
the binding site consensus of the regulating transcription
factor

I Example:

 GACGNNNNNNGGAC
CTGCNNNNNGCAG

               GCANNNCTGC
                CAGANTCTG
               CAGANNCTGC

s Ns
27
34
34
37
52

zs
9.67
9.36
8.58
8.39
8.31



Any Questions?
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