A Statistical Method for Finding Transcription Factor Binding Sites

Saurabh Sinha and Martin Tompa

2000

Presented by Harley Cooper, Rohan Shah, and Robert Vincent March 20 2006

Eukaryotic Regulatory Sequences

 Regulation of gene expression is a complex set of biochemical pathways

The action of every transcription factor is regulated by many different chemical reactions throughout the cell

Coregulation

- Many studies have grouped genes into coregulated sets
- Genes are coregulated if their expression is governed by the same sets of transcription factors

Binding Sites

- The key to the action of transcription factors is where they bind to the DNA
- The idea is that coregulated genes should have the same binding sites, and through the binding sites we can find these genes' common transcription factors

Difficulties – I

Regulatory sequences may be far upstream

- This is not as much of a problem with S. cerevisiae, since their regulatory region begins around 800bp upstream of the coding sequence.
- In higher eukaryotes this becomes much more difficult, as regulatory regions are often longer than 10kb

Difficulties – II

The regulatory sequences are not necessarily in the same orientation as each other nor the coding sequences

Difficulties – III

 Some transcription factors have several binding sites in one regulatory region (e.g: Gal4p)

basal expression

complete repression (no basal detectable)

1 site

2 sites, spaced 1 bp apart

2 sites, spaced 10 bp apart

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Difficulties – IV

 One transcription factor can have high variability amongst its binding sites

 This sort of variability caused many problems, making it extremely difficult and time-consuming to find transcription factor binding sites

Drawbacks of Other Methods

Only exact matches are allowed

though when variability was first incorporated, a maximum of 1 substitution was allowed

- ► No spacers (i.e: Gal4p consensus: CGGNNNNNNNNNCCG)
- All occurrences of a motif at distinct positions are assumed to be probabilistically independent, but in reality there are elaborate dependencies
- Rare motifs are under-represented and therefore have less statistical significance, making them much harder to accurately find
- No possibility of multiple sites for one TF with single genes

Variability Amongst Motif Instances

- Can't realistically expect exact matches
- Spacers of 1–11 base pairs are quite common in the middle of the motif due to TFs binding as dimers
- The number of conserved (non-spacer) bases ranges from 6–10 base pairs
- Variation is usually due to transitions rather than transversions (we use the alphabet A,G,T,C,R,Y,W,S,N)

 Due to the structure of the DNA binding domain, insertions and deletions are rare

Previous algorithms

General methods:

- Weight matrices or alignments
- EM or Gibbs sampling
- Prior enumerative methods:
 - Exact matches or restricted number of spacers
 - Assumes likelihood of motif s is independent of position i

- General methods may not guarantee optimal results
- Enumerative methods are only practical with a small motif size.

Motif structure

In Yeast Motif Finder 3.0 (YMF), the exact number of nonspacers k and the minimum and maximum number of spacers n_{min} , n_{max} are input parameters. Motifs have the following structure:

$$(s_1, \ldots s_{k/2})(\mathbb{N}^i)(s_{k/2+1}, \ldots, s_k), \forall n_{min} \leq i \leq n_{max}$$

Where $s_i \in \{A, C, G, T, R, Y, S, W\}$.

$$\begin{split} R &\in \{A,G\} \\ Y &\in \{C,T\} \\ S &\in \{C,G\} \\ W &\in \{A,T\} \end{split}$$

And at most *c* of the s_i are possibly chosen from {R, Y, S, W}.

Statistical approach

- ▶ Let *U* be a set of *m* upstream sequences having uniform length (typically 800).
- ► Let X be a set of m random DNA sequences generated by a 3rd-order Markov chain.
- Let N_s be the number of times motif s is found in U.
- Let X_s be the number of times motif s is found in X.
- ▶ Then the *z*-score of s is defined as:

$$z_s = \frac{N_s - E(X_s)}{\sigma(X_s)}$$

Accuracy will tend to increase as the size of U increases.

Algorithm inputs

- Set of *m* upstream sequences
- Number of nonspacer characters ($6 \le k \le 10$)
- Transition matrix for order-3 Markov chain constructed from all upstream sequences for the organism
- Other parameters
 - Range of spacer lengths
 - Maximum number of motifs to output
 - ► Maximum number c of {R, Y, W, S} symbols in motifs

Absolute minimum count of required appearances

Algorithm procedure

```
Enumerate 4<sup>k</sup> motifs for s_i \in \{A, C, G, T\}
Set z_{min} = -1000
For i = n_{min} to n_{max}:
   For each upstream sequence:
       Calculate index for each (pre)(N')(suf)
       Increment count[index]
   For all possible motifs s_i \in \{A, C, G, T, R, Y, W, S\}:
       Calculate closure over s_i \in \{R, Y, W, S\}
       Calculate total count of occurrences
       Prune motif if possible
       Calculate full z-score and save in result
Print result
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ��や

Details of counting

All nucleotides stored as strings of the form:

$$\begin{array}{l} A \rightarrow 0 \\ C \rightarrow 1 \\ G \rightarrow 2 \\ T \rightarrow 3 \end{array}$$

This allows indices to be calculated using radix 4 math:

$$index = (prefix_4 * 4^{k_{suffix}}) + suffix_4$$

For example:

$$CTGNNTAT \rightarrow (132_4 * 4^3) + 303_4 = 1971_{10}$$

Counting must be performed twice for odd k

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

Details of closure

- The counting proceeds only over all "true" nucleotides
- The z-scores are calculated over all possible instances of a motif.
- ► For example, if we consider the motif: WCTNNGGA
- The algorithm must consider the number of occurrences of both TCTNNGGA and ACTNNGGA.

Details of pruning

.

The algorithm maintains a value z_{min} which is the lowest z-score included in the results so far.

- Occurrence count N_s must exceed an absolute threshold (typically 2)
- 2. Given that $\sigma(X_s) \ge \sqrt{E(X_s) E(X_s)^2}$, prune if

$$\frac{N_s - E(X_s)}{\sqrt{E(X_s) - E(X_s)^2}} < z_{min}$$

 Estimate z-score while ignoring overlaps, prune if *z_{est} < z_{min}*

Complexity

- Linear in size of upstream sequence
- *z*-score computation is $O(k^2c^2)$ per motif
- Exponential in length of motif: $O(4^k)$

Implementation details

- stats The main program
- statsvar As above, but modified for variable sequence length
- preproc Calculates 3rd-order Markov transition model for novel organisms given a set of upstream regions
- findDivergent Find promoters with substantial overlap (e.g. divergent genes) to avoid duplicates
- removeDivergent Use results from findDivergent to reorganize the set of input sequences

Post-processing

Problem: YMF will return many artifacts of binding sites

- Suppose TCACGCT is a "true" binding site.
- YMF my report variations such as TCACGCW or CACGCTT.

- ► FindExplanators (Blanchette and Sinha, 2001):
 - Given: U, M, and τ
 - ▶ Find: Smallest $E \subset M$ s.t. $\forall m \in M, Z(m|E) < \tau$

Uses a greedy algorithm to add the "least explained" motif to E on each iteration.

Web interface

	University of Washington Computer Science & Engineering				
YMF 3.0: Finds short motifs in DNA sequences What is YMF 2 FAN					
CSE Home	VMF Home	▷ <u>Send Mail</u>	▶ <u>Download</u>		
	Motif size 6 💌			Motifs in session	
м	laximum of 🕕 🖬 spacers i	n middle		none	
Maximum of 2 degenerate symbols (R,Y,W,S)					
	Organism Saccharomyce	s cerevisiae 💌 🚾	wn organism		
User-created organisms None created so far can't find your organism ?					
Paste Sequences (*) in Fa (Se	stA Format >GAL1 ee example) CAGGTTATCAGC	AACAACACAGTCATATCCATTCTCAA			
Processing is faster if see	Processing is faster if sequences are CGGTTTAGCATCATAAGCGCTTATAAATTTCTTAATTA'				
equi-length and	UNMASKEG. >GAL2 CATTAATTTTGC	TTCCAAGACGACAGTAATATGTCTCC			
	•	Þ	l I		
Or Upload a Fa	stA file (*):	Browse			
SUBMIT					

- ► Let U be a set of m upstream sequences having uniform length (typically 800).
- ► Let X be a set of m random DNA sequences generated by a 1st-order Markov chain.
- Let N_s be the number of times motif s is found in U.
- Let X_s be the number of times motif s is found in X.
- Then the *z*-score of *s* is defined as:

$$z_s = \frac{N_s - E(X_s)}{\sigma(X_s)}$$

Also define the set W as containing all the strings that result from replacing R, Y, S and W by all possible combinations of A,C,G,T in motif s and its reverse complement.

- Also define the set W as containing all the strings that result from replacing R, Y, S and W by all possible combinations of A,C,G,T in motif s and its reverse complement.
- ▶ Define X^a_w as the number of times w ∈ W is found in X^a ∈ X so that

$$X_s = \sum_{X^a \in X} \sum_{w \in W} X^a_w$$

and

$$E(X_s) = \sum_{X^a \in X} \sum_{w \in W} E(X^a_w)$$

First Order Markov Chain

- ► consider a stochastic process x₀, x₁, x₂, · · · , x_l with values in {A, C, G, T, N}
- let the stochastic vector b(t) be the distribution of x_t so b_i(t) = P(x_t = i)
- and define a probability transition matrix

$$P_{ij} = P(x_{t+1} = j | x_t = i)$$

▶ to generate a sequence of length *n*:

• sample a value x_0 from b(0)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ to generate a sequence of length *n*:
 - sample a value x_0 from b(0)
 - sample another value x₁ from the appropriate row of transition matrix P

- ▶ to generate a sequence of length *n*:
 - sample a value x_0 from b(0)
 - sample another value x₁ from the appropriate row of transition matrix P

► continue sampling another n - 2 values using the transition matrix P

- ▶ to generate a sequence of length *n*:
 - sample a value x_0 from b(0)
 - sample another value x₁ from the appropriate row of transition matrix P
 - ► continue sampling another n 2 values using the transition matrix P
- for example if we take n = 5 and generate the sequence

S = AGTTC then $p(S) = b_A(0)P_{AG}P_{GT}P_{TT}P_{TC}$

- ▶ to generate a sequence of length *n*:
 - sample a value x_0 from b(0)
 - sample another value x₁ from the appropriate row of transition matrix P
 - ▶ continue sampling another n − 2 values using the transition matrix P
- ► for example if we take n = 5 and generate the sequence S = AGTTC then $p(S) = b_A(0)P_{AG}P_{GT}P_{TT}P_{TC}$
- So the probability p_j(w) that a word w ∈ W of length ℓ occurs at position j < n − ℓ in a sequence X^a ∈ X of length n is then

$$p_j(w) = b_{w_1}(j) P_{w_1 w_2} P_{w_2 w_3} \cdots P_{w_{\ell-1} w_{\ell}}$$
(1)

The First Moment

► Define an indicator variable *I_j*:

$$I_j = 1$$
 if $w \in W$ occurs at position j of $X^a \in X$
= 0 otherwise

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The First Moment

► Define an indicator variable *I_j*:

$$I_j ~=~ 1$$
 if $w \in W$ occurs at position j of $X^a \in X$
 $=~ 0$ otherwise

then the expected number of times the word w occurs in the sequence X^a is

$$E(X_w^a) = \sum_{j=1}^{n-l+1} E(I_j) = \sum_{j=1}^{n-l+1} P(I_j = 1) = \sum_{j=1}^{n-l+1} p_j(w)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The First Moment

► Define an indicator variable *I_j*:

$$I_j = 1$$
 if $w \in W$ occurs at position j of $X^a \in X$
= 0 otherwise

then the expected number of times the word w occurs in the sequence X^a is

$$E(X_w^a) = \sum_{j=1}^{n-l+1} E(I_j) = \sum_{j=1}^{n-l+1} P(I_j = 1) = \sum_{j=1}^{n-l+1} p_j(w)$$
$$= \sum_{j=1}^{n-l+1} b_{w_1}(j) P_{w_1w_2} P_{w_2w_3} \cdots P_{w_{l-1}w_l}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• we know that
$$b(t+1) = P \times b(t) = P^t \times b(0)$$

- we know that $b(t+1) = P \times b(t) = P^t \times b(0)$
- the distribution of a *regular* markov chain always converges to its unique invariant distribution regardless of the initial distribution b(0)

$$\lim_{t\to\infty}P^t=\pi$$

- we know that $b(t+1) = P \times b(t) = P^t \times b(0)$
- the distribution of a *regular* markov chain always converges to its unique invariant distribution regardless of the initial distribution b(0)

$$\lim_{t\to\infty}P^t=\pi$$

SO

$$\lim_{t\to\infty}b(t)=\pi b(0)$$

- we know that $b(t+1) = P \times b(t) = P^t \times b(0)$
- the distribution of a *regular* markov chain always converges to its unique invariant distribution regardless of the initial distribution b(0)

$$\lim_{t\to\infty}P^t=\pi$$

SO

$$\lim_{t\to\infty}b(t)=\pi b(0)$$

 so we use an approximation and substitute the invariant distribution π for b(t) and the first moment simplifies to

$$E(X_w^a) = p_j(w) = \sum_{j=1}^{n-l+1} b_{w_1}(0) \pi_{w_1} P_{w_1w_2} P_{w_2w_3} \cdots P_{w_{l-1}w_l}$$

- we know that $b(t+1) = P \times b(t) = P^t \times b(0)$
- the distribution of a *regular* markov chain always converges to its unique invariant distribution regardless of the initial distribution b(0)

$$\lim_{t\to\infty}P^t=\pi$$

SO

$$\lim_{t\to\infty}b(t)=\pi b(0)$$

 so we use an approximation and substitute the invariant distribution π for b(t) and the first moment simplifies to

$$E(X_w^a) = p_j(w) = \sum_{j=1}^{n-l+1} b_{w_1}(0) \pi_{w_1} P_{w_1w_2} P_{w_2w_3} \cdots P_{w_{l-1}w_l}$$

$$= (n - l + 1)b_{w_1}(0)\pi_{w_1}P_{w_1w_2}P_{w_2w_3}\cdots P_{w_{l-1}w_l}$$

The Overlapping Phenomenon

 consider the word ATA; the string of minimal length that contains at least 3 occurrences of this word is ATATATA which has length 7.

The Overlapping Phenomenon

- consider the word ATA; the string of minimal length that contains at least 3 occurrences of this word is ATATATA which has length 7.
- but for the word ATC we need a string of at least length 12 ATCATCATCATC

The Overlapping Phenomenon

- consider the word ATA; the string of minimal length that contains at least 3 occurrences of this word is ATATATA which has length 7.
- but for the word ATC we need a string of at least length 12 ATCATCATCATC
- so in a randomly generated string the word ATA is more likely to occur than ATC

• the distribution of X_s is affected by this

Overlaps

▶ define w(i) as a prefix of length i(< l − 1) of w and a composite word</p>

$$cw(i) = w(i) + w$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overlaps

▶ define w(i) as a prefix of length i(< l − 1) of w and a composite word</p>

$$cw(i) = w(i) + w$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- if a prefix of cw(i) contains w then we call this an
 overlap
- $\{cw\}$ gives us a uniquely defined set of overlaps for w

 $\sigma(X_s)^2 = E(X_s^2) - E(X_s)^2$

$$\sigma(X_s)^2 = E(X_s^2) - E(X_s)^2$$

▶ let us assume that X and W are singleton sets then since $X_s = I_1 + I_2 + \cdots + I_{n-l+1}$ and $X_s^2 = (I_1 + I_2 + \cdots + I_{n-l+1})(I_1 + I_2 + \cdots + I_{n-l+1})$ we have:

$$\sigma(X_s)^2 = E(X_s^2) - E(X_s)^2$$

▶ let us assume that X and W are singleton sets then since $X_s = I_1 + I_2 + \cdots + I_{n-l+1}$ and $X_s^2 = (I_1 + I_2 + \cdots + I_{n-l+1})(I_1 + I_2 + \cdots + I_{n-l+1})$ we have:

$$E(X_s^2) = \sum_{i=1}^{n-l+1} \sum_{j=1}^{n-l+1} E(I_j I_k) = \sum_{i=1}^{n-l+1} E(I_i I_i) + 2 \sum_{j$$

$$\sigma(X_s)^2 = E(X_s^2) - E(X_s)^2$$

▶ let us assume that X and W are singleton sets then since $X_s = I_1 + I_2 + \cdots + I_{n-l+1}$ and $X_s^2 = (I_1 + I_2 + \cdots + I_{n-l+1})(I_1 + I_2 + \cdots + I_{n-l+1})$ we have:

$$E(X_s^2) = \sum_{i=1}^{n-l+1} \sum_{j=1}^{n-l+1} E(I_j I_k) = \sum_{i=1}^{n-l+1} E(I_i I_i) + 2 \sum_{j$$

- I_jI_k indicates when a word has occured in both positions j and k simultaneously; suppose that j < k and k − j < l then there is an overlap cw(j) ∈ {cw} at the position j
- So the variance of X_s is affected by the expected number of overlaps for each cw(i) ∈ {cw}

- ▶ we can also define composite words composed of different strings; say cw₁(i) = w₁(i) + w₂ and cw₂(i) = w₂(i) + w₁
- ► the co-variances between counts of words is affected by the expected number of overlaps E(n(cw₁(i))) and E(n(cw₂(i)))

Results – Known Regulons

- Ran the program on seventeen known S. cerevisiae coregulated gene sets (i.e: the TF and the binding site consensus were already known)
- The algorithm was successful in 15 of the 17 gene sets. Of the 15,
 - 9 had the known consensus amongst the top three highest-scoring motifs
 - 6 had a very similar consensus in the top three
- Example of results:

S	N_s	z_s
TCANNNNNACG	27	9.67
TCRNNNNNACG	34	9.36
YCANNNNNACG	34	8.58
TCANNNNNWCG	37	8.39
YCANNNNNWCG	52	8.31

Known consensus: TCANNNNNACG

As for the other two sets, both having very few genes, the correct consensus was in the top twenty motifs

Results - Coexpressed Gene Clusters

- Ran the software on eight coexpressed gene clusters
- The top five motifs for four of the eight clusters matched the binding site consensus of the regulating transcription factor
- Example:

 $\begin{array}{cccc} s & N_{s} & z_{s} \\ \mbox{GACGNNNNNNGGAC} & 27 & 9.67 \\ \mbox{CTGCNNNNGCAG} & 34 & 9.36 \\ \mbox{GCANNNCTGC} & 34 & 8.58 \\ \mbox{CAGANTCTG} & 37 & 8.39 \\ \mbox{CAGANNCTGC} & 52 & 8.31 \\ \end{array}$

Any Questions?

<□ > < @ > < E > < E > E のQ @

Bibliography

- Sinha, S. and Tompa, M. (2000) A statistical method for finding transcription factor binding sites. *Intelligent Systems for Molecular Biology* 2000.
- Kleffe, J. and Borodovsky, M. (1992) First and second moment of counts of words in random texts generated by Markov chains. *Computer Applications in the Biosciences* 8(5):433-441.
- Sinha, S. and Tompa, M. (2002) Discovery of novel transcription factor binding sites by statistical overrepresentation. *Nucleic Acids Research* 30(24):5549-5560.
- Blanchette, M. and Sinha, S. (2001) Separating real motifs from their artifacts. *Bioinformatics* 17:S30-S38.

▶ Lodish et al. (2004) Molecular Cell Biology 5th ed.