
Support Vector Machines

for Classification and Regression

Rohan Shiloh Shah

Master of Science

Computer Science

McGill University

Montreal, Quebec

2007-09-31

A thesis submitted to McGill University
in partial fulfillment of the requirements of the

Degree of Master of Science

Rohan Shah 2007

ABSTRACT

In the last decade Support Vector Machines (SVMs) have emerged as an

important learning technique for solving classification and regression problems

in various fields, most notably in computational biology, finance and text

categorization. This is due in part to built-in mechanisms to ensure good

generalization which leads to accurate prediction, the use of kernel functions

to model non-linear distributions, the ability to train relatively quickly on

large data sets using novel mathematical optimization techniques and most

significantly the possibility of theoretical analysis using computational learning

theory. In this thesis, we discuss the theoretical basis and computational

approaches to Support Vector Machines.

ii

ABRÉGÉ

Au cours des dix dernires années, Support Vector Machines (SVMs) est

apparue être une technique importante d’apprentissage pour résoudre des

problèmes de classification et de régression dans divers domaines, plus partic-

ulièrement en biologie informatique, finance et catégorisation de texte. Ceci est

du, en partie aux mécanismes de construction assurant une bonne généralisation

qui conduit à une prédiction précise, une utilisation des fonctions de kernel

afin de modèliser des distributions non-linéaires, et à la possibilité de tester

de façon relativement rapide sur des grands ensemble de données en utilisant

de nouvelles techniques d’optimisation, en particulier, la possibilité d’analyses

théoriques utilisant la théorie d’apprentissage informatique. Dans cette thèse,

nous discutons des bases théoriques et des approches informatiques des Sup-

port Vector Machines.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ABRÉGÉ . iii

LIST OF FIGURES . vii

1 Introduction . 1

2 Kernel Methods . 3

2.1 Explicit Mapping Of Observations To Features 3

2.2 Finite Kernel Induced Feature Space 4

2.3 Functional view of the Kernel induced Feature Space . . . 6

2.3.1 Hilbert Spaces . 8

2.3.2 Linear Functionals 9

2.3.3 Inner Product Dual Spaces 12

2.3.4 Square Integrable Function Spaces 15

2.3.5 Space Of Continuous Functions 17

2.3.6 Normed Sequence Spaces 17

2.3.7 Compact and Self Adjoint Operators 18

2.3.8 Integral Operators 20

iv

2.3.9 Reproducing Kernel Hilbert Spaces 23

2.4 RKHS and Function Regularity 28

2.4.1 Ivanov Regularization 31

2.4.2 Tikhonov Regularization 31

2.5 The Kernel Trick . 35

2.5.1 Kernelizing the Objective Function 36

2.5.2 Kernelizing the Solution 37

3 Statistical Learning Theory . 38

3.1 Empirical Risk Minimization (ERM) 39

3.2 Uniformly Convergent Generalization Bounds 43

3.3 Generalization and the Consistency of ERM 46

3.4 Vapnik-Chervonenkis Theory 49

3.4.1 Compact Hypothesis Spaces H 50

3.4.2 Indicator Function Hypothesis Spaces B 56

3.5 Structural Risk Minimization (SRM) 61

4 Support Vector Machines for Binary Classification 64

4.1 Geometry of the Dot Product 65

4.2 Regulating the Hypothesis Space 67

4.2.1 Discriminant Hyperplanes 68

4.2.2 Canonical Hyperplanes 69

4.2.3 Maximal Margin Hyperplanes 71

4.3 Hard Margin Classifiers . 72

4.4 Soft Margin Classifiers . 74

4.5 Quadratic Programming 76

v

5 Support Vector Machines for Regression 79

5.1 Langrangian Dual Formulation for Regression 81

5.2 Complementary Slackness 83

5.3 Sparse Support Vector Expansion 87

5.4 Non-Linear SVM Regression 87

6 Conclusion . 90

References . 91

vi

LIST OF FIGURES

Figure page

2–1 Projecting input data into a high-dimensional feature space 4

2–2 Explicit (φ) and implicit (λ) mapping of inputs to features 7

2–3 The solution of a Tikhonov optimization is a finite linear combination of

a set of basis functions under certain conditions 32

2–4 Grouping functions that have the same point-wise evaluation over the

training set into an equivalence class 34

3–1 Relating the generalization potential of a hypothesis space with the size of

the training set . 42

3–2 Uniform convergence of the empirical risk to the expected risk implies a

consistent learning method . 47

3–3 The VC-Dimension of half-spaces 59

4–1 The inner product as a perpendicular projection 66

4–2 The distance of a point ~x from the hyperplane H 67

vii

4–3 The margin boundaries H+ and H− lie on either side of the classification

boundary H and are defined by the support vectors 68

4–4 As the size of the margin decreases, the number of possible separating

hyperplanes increases implying an increase in the VC-Dimension . . . 71

4–5 Maximizing the margin leads to a restricted hypothesis space with lower

VC-Dimension . 74

4–6 Results of binary classification task 78

5–1 Linear SVM regression using an ε-insensitive loss function 80

5–2 Over-fitting the training data . 88

5–3 Results of regression task . 89

viii

MATHEMATICAL NOTATION

X× Y —— Input-Output (Observation) Space

S ∈ X× Y —— Training set of random samples

n —— Size of Training Set

Sn ∈ X —— Input vector set of size n

F —— Feature Space

Φ : X → F —— Non-linear embedding into the feature space

X —— Space of all possible input vectors

d = dim(X) —— Dimension of the input space (length of ~xi or the

number of explanatory variables)

~xi ∈ X —— Input vector or random sample

yi ∈ R —— Annotation for regression

yi ∈ {+1,−1} —— Annotation for binary classification

yt —— Annotation for test example xt

Y —— Annotation (output) Space

H —— Hypothesis (Hilbert) space

f ∈ H : X → Y —— A hypothesis (regression, prediction, decision) func-

tion

B = {+1,−1}X —— Hypothesis space of all binary valued functions

R = RX —— Hypothesis space of all compact real valued func-

tions

YX —— Hypothesis space of all functions mapping X to Y

J —— Hypothesis space of discriminant hyperplanes

ix

K : X× X → R —— Kernel function

KS —— The restriction of K to S = {~x1, ~x2, · · · , ~xn}
kij = KS(xi, xj) —— Finite kernel matrix

HK —— Reproducing Kernel Hilbert Space (RKHS)

〈·, ·〉HK
, ‖ · ‖HK

—— Inner Product and Norm in a RKHS HK

(. · .) —— Dot Product in a Euclidean Space

∀g ∈ H, Fg : H → R —— Linear Functional

E~x : H → R —— Evaluation Functional

P : H → L —— Projection operator of H onto a subspace L

L2(X) —— Space of square integrable functions

TK : L2(X) → L2(X) —— Integral operator

υi —— Eigenvalue of TK associated with eigenvector ςi

ςi —— Eigenvector of TK associated with eigenvalue υi

H ∈ J —— Decision (Hyperplane) Boundary

H+ and H− —— The margin boundaries on either side of the decision

boundary

h —— Linear function parametrized in terms of a weight

vector ~w and scalar bias b

h′ —— First derivative of the linear function h

x

Rν —— Empirical Margin Error

RX —— Expected Risk

RS —— Sample Error

R̂n —— Empirical Risk

f ∗ —— Function that minimizes the expected risk

f ∗n —— Function that minimizes the empirical risk

HT —— RKHS H that is bounded ‖H‖K ≤ T

L(H,X) —— Loss Class

`(f, {~x, y}) —— Loss Function

V —— VC-Dimension

ΠB(n) —— Growth Function

N(B, Sn) —— VC-Entropy

N(H, ε) —— Covering Number with radius ε

D(H, ε) —— Packing Number with radius ε

xi

1

Introduction

The first step in supervised learning is the observation of a phenomenon or

random process which gives rise to an annotated training data set:

S = {~xi, yi}n
i=1 ~xi ∈ X, yi ∈ Y

The output or annotation space Y can either be discrete or real valued in which

case we have either a classification or a regression task. We will assume that

the input space X is a finite dimensional real space Rd where d is the number

of explanatory variables.

The next step is to model this phenomenon by attempting to make a

causal link f : X → Y between the observed inputs {~xi}n
i=1 from the input

space X and their corresponding observed outputs {yi}n
i=1 from the annotation

space Y; in a classification task the hypothesis/prediction function f is com-

monly referred to as a decision function whereas in regression it is simply called

a regression function. In other words we seek to estimate the unknown con-

ditional probability density function that governs the random process, which

can then be used to define a suitable hypothesis: f(~xt) = maxy∈Y P (y|~xt).

The hypothesis must minimize some measure of error over the observed

training set while also maintaining a simple functional form; the first condition

ensures that a causal link is in fact extracted from the observed data while the

second condition avoids over-fitting the training set with a complex function

that is unable to generalize or accurately predict the annotation of a test

example.

The complexity of the hypothesis f can be controlled by restricting the

capacity of the hypothesis space; but what subset of the space of all possible

maps between the input and output spaces YX should we select as the hypoth-

esis space H ⊂ YX? It must be rich or large enough to include a hypothesis

function that is a good approximation of the target concept (the actual causal

1

2

link) but it must be poor enough to not include functions that are unneces-

sarily complex and are able to fit the observed data perfectly while lacking

generalization potential.

The Support Vector Machine (SVM) is one approach to supervised learn-

ing that takes as input an annotated training data set and outputs a gener-

alizable model, which can then be used to accurately predict the outcomes of

future events. The search for such a model is a balance between minimizing

the training error (or empirical risk) and regulating the capacity of the hy-

pothesis space. Since the SVM machinery is linear we consider the hypothesis

space of all d− 1 dimensional hyperplanes. The ‘kernel trick’ may be applied

to convert this or any linear machine into a non-linear one through the use of

an appropriately chosen kernel function.

In binary SVM classification (SVMC), each input point is assigned one of

two annotations Y = {+1,−1}. The training set is separable if a hyperplane

can divide Rd into two half-spaces corresponding to the positive and negative

classes. The hyperplane that maximizes the margin (minimal distance be-

tween the positive and negative examples) is then selected as the unique SVM

hypothesis. If the training set is not separable, then a further criterion is opti-

mized, namely the empirical classification error. In SVM regression (SVMR),

the margin boundaries are fixed in advance at a value ε ≥ 0 above and below

the potential regression function; those training points that are within this

ε-tube incur no loss in contrast to those outside it. Different configurations

of the potential hypothesis, which is again taken to be a hyperplane, lead to

different values for the loss which is minimized to find the solution.

The thesis is organized as follows; in Chapter 2 we consider modeling

non-linear causal links by using kernel functions that implicitly transform the

observed inputs into feature vectors ~x → φ(~x) in a high-dimensional feature

(flattening) space φ(~x) ∈ F where linear classification/regression SVM tech-

niques can then be applied. An information theoretic analysis of learning is

considered in Chapter 3 where the hypothesis space is restricted F ⊂ YX on

the basis of the amount of training data that is available. Computational con-

siderations for linear SVMC and linear SVMR are given separately in chapters

4 and 5 respectively; the solution in both instances is determined by solving

a quadratic optimization problem with linear inequality constraints.

2

Kernel Methods

All kernel methods make use of a kernel function that provides an implicit

mapping or projection of a training data set into a feature space F where

discriminative classification or regression is performed. Implicitly a kernel

function can be seen as an inner product between a pair of data points in the

feature space, explicitly however it is simply a function evaluation for the same

pair of data points in the input space X before any mapping has been applied.

We will introduce the basic mathematical properties and associated function

spaces of kernel functions in the next section and then consider an example

known as the Fisher kernel.

2.1 Explicit Mapping Of Observations To Features

The complexity of a training data set, which is sampled from the observa-

tion space, affects the performance of any learning algorithms that might make

use of it; in extreme cases certain classes of learning algorithms might not be

able to learn an appropriate prediction function for a given training data set.

In such an instance we have no choice but to manipulate the data so that

learning is possible; for example in figure 2.1 we see that if we consider empir-

ical target functions from the hypothesis class of discriminative hyperplanes

then a quadratic map must first be applied.

In other instances the training data might not be in a format that the

learning algorithm accepts and so again a manipulation or mapping of the

data is required. For example the data may be nucleotide sequences of which

a numerical representation is required and hence preprocessing steps must be

taken.

As we will see later, the most important reason for transforming the train-

ing data is that the feature space is often endowed with a structure (definition

3

4

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

0.5

1

1.5

2 0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2–1: [left] Circular decision boundary in R2: x2
1 + x2

2 = 1. [right] Data is replotted
in a R3 feature space using a quadratic map: Φ(x1, x2) = (x2

1, x
2
2,
√

2x1x2) and is then
linearly separable.

2.3.7, theorem 2.3.2) that may be exploited (section 2.5, theorem 2.3.3) by the

learning algorithm.

Now that we have established that a mapping is necessary, we must decide

how to represent the mapped data and then define a corresponding mapping

function. The simplest representation [SS01] results from defining a (often

non-linear) mapping function Φ(·) ∈ H over the inputs ~xi ∈ X in our training

set;

S = {~xi, yi}n
i=1 ~xi ∈ X, yi ∈ Y

and then representing the data as the set of mapped data

{Φ(~xi) , yi}n
i=1 Φ(xi) ∈ H, yi ∈ Y

There are several problems that arise from representing the data indi-

vidually by applying the mapping to each input example; the most common

of which is computational since Φ may map elements into a feature space of

infinite dimension.

2.2 Finite Kernel Induced Feature Space

We now consider a different approach to the issue of data representation;

instead of mapping each training example xi individually into features Φ(xi)

using the map Φ : X → F, kernel methods represent the data as a set of

pairwise computations

K : X× X → R (2.1)

5

Such a kernel function K is defined over a possibly infinite space X; we

restrict its domain to observations in the training set S and thereby define a

finite kernel :

KS : ~xi × ~xj → R ∀i : 1 ≤ i ≤ n

Finite kernels can be represented as square n × n matrices where kij =

KS(xi, xj) ∈ R



k11 k12 · · · k1n

k21 k22 · · · k2n

.

kn1 kn2 · · · knn




(2.2)

Although the kernel representation may seem unintuitive at first, it has

many benefits over the explicit use of a mapping function Φ; later in Theorem

2.3.3 we will see that both these approaches are in fact equivalent and there

exists an implicit mapping (2.53, 2.54) and an associated feature space (2.41,

2.44) for every kernel function that is positive-definite. The class of comparison

functions is clearly limited by considering only positive-definite kernels but this

restriction is applied so that we can make use of an essential ‘trick’ (section

2.5) that simplifies the objective function of the quadratic optimization that

gives rise to the final solution; this trick is possible due to Mercer’s Theorem

(2.3.3) for which positive definiteness is a necessary and sufficient condition.

Furthermore, depending on the nature of the data to be analyzed it might

be significantly more complicated [SS01] to find individual representations of

the observations than to consider pairwise comparisons between them. For

example, representing a set of protein or DNA sequences as pairwise compar-

isons between members of the set is easier and potentially more relevant than

using vectors for each attribute individually.

The most significant advantage that kernel functions have over the use

of an explicit mapping function is that it generalizes the representation of

the input data so that an absolute modularity exists between the prepro-

cessing of input data and the training algorithm. For example, given inputs

{~x1, ~x2, · · · , ~xn} ∈ X we could define two mapping functions to extract dif-

ferent features φp ∈ Rp and φq ∈ Rq; now if the dimension of the feature

spaces are not equal p 6= q then we have sets of vectors of different lengths

{φp(~x1), φp(~x2), · · · , φp(~xn)} and {φq(~x1), φq(~x2), · · · , φq(~xn)} and so the train-

ing algorithm must be modified to accept these two different types of input

6

data. However, regardless of the kernel function used but more significantly

regardless of the dimension of the feature space, the resulting kernel matrix

is square with dimensions n × n since we consider only pairwise comparisons

between the inputs; the only drawback is that there is less control over the

process of extracting features since we relinquish some control of choice of the

resulting feature space.

Provided the inputs are defined in an inner product space, we can build

a linear comparison function by taking the inner product

K(~xi, ~xj) = 〈~xi · ~xj〉X (2.3)

or dot product if X is a real vector space:

K(xi, xj) = (~xi · ~xj) (2.4)

Geometrically, the dot product calculates the angle between the vec-

tors ~xi and ~xj assuming they are normalized (section 4.1) such that ‖~xi‖ =√
〈~xi · ~xi〉 = 1 and ‖~xi‖ = 1.

If inner products are not well-defined in the input space X then we must

explicitly apply a map Φ first, projecting the inputs into an inner product

space. We can then construct the following comparison function;

K(xi, xj) ≡ 〈Φ(~xi) , Φ(~xj)〉H (2.5)

An obvious question one could ask is does the simple construction define the

entire class of positive-definite kernel functions? More specifically, can every

positive-definite kernel be decomposed into an inner product in some space?

We will prove this in the affirmative and also characterize the corresponding

inner product space in the following sections.

2.3 Functional view of the Kernel induced Feature

Space

So far we have seen a geometrical interpretation of finite kernels as im-

plicit/explicit projections into a feature space; the associated linear algebra

using finite kernel matrices over S × S, was realized in a finite dimensional

vector space. Now we consider an alternative analysis using kernel functions

7

Observation Space

Feature Space

Learning

 Algorithm
 (maximum margin

 classification,

 regression etc)

K

Figure 2–2: Explicit (φ) and implicit (λ) mapping of inputs to features.

defined over a dense space (no longer restricted to a finite, discrete space S×S)

and integral operator theory in an infinite dimensional function space which

serves as the hypothesis space; a hypothesis being a function from X → Y.

If we are to predict in a classification/regression task, then any potential

hypothesis function will need to be evaluated at a test data point and hence

we will require that they are point-wise defined so that all function evalua-

tions exist within the space of annotations Y. We will denote the space of

all real-valued, point-wise defined functions on the domain X by RX. Finally,

convergent sequences of functions in the hypothesis space should also be point-

wise convergent; this is shown to hold in Reproducing Kernel Hilbert spaces

(2.38) whereas it does not hold in general for Hilbert spaces, in particular for

L2.

‖fn − f‖H → 0 =⇒ lim
n→∞

fn(~x)− f(~x) = 0, ∀~x ∈ X (2.6)

Furthermore, we will show that point-wise convergence in H implies the con-

tinuity of evaluation functionals (2.11) on H. In fact, in the following chapter

we will see that an even stronger convergence criterion, that of uniform con-

vergence, is necessary for learning.

In this chapter we show how a certain class of kernel functions exist in all

(and in some sense generate) Hilbert spaces of real valued functions under a few

simple conditions. The material for this section was referenced from [CS02],

Chapter 2 of [BTA04], [Zho02], [Zho03], [Gir97], Chapter 3 of [Muk07], [LV07],

[Qui01], [CMR02], [HN01], [SSM98], [SHS01], [STB98], [SS05] and [Rud91].

8

2.3.1 Hilbert Spaces

A Hilbert space is a complete inner product space and so distances1 and

angles2 are well defined. Formally a Hilbert space is a function space H

along with an inner product 〈h, g〉 defined for all h, g ∈ H such that the norm

defined using the inner product ‖h‖H = 〈h, h〉1/2
H completes the space; this

is possible if and only if every sequence {hi}∞i=1 with hi ∈ H satisfying the

Cauchy criteria;

∀ε ∃N(ε) ∈ N such that ∀n,m > N(ε) : ‖hn − hm‖H < ε

converges to a limit contained within the space;

lim
i→∞

hi ∈ H

Given either an open or closed subset N of a Hilbert space H, we define its

orthogonal complement as the space:

N⊥ = {l ∈ H : 〈l, g〉 = 0, ∀g ∈ N̄}

noting that the only instance when 〈g, g〉 = 0 is if g is identically zero which

implies that N̄ ∩ N⊥ = {0}. The direct sum of these two complementary

spaces 3 equals H:

H = N̄ ⊕N⊥ = {g + l : g ∈ N̄ and l ∈ N⊥} (2.7)

although the union of these same subspaces need not cover H:

N̄ ∪N⊥ ⊆ H (2.8)

So any function h ∈ H can be represented as the sum of two other functions;

h = g + l (2.9)

1 Every inner product space is a normed space which in turn is a metric
space, d(~x, ~y) = ‖~x− ~y‖ =

√
〈~x, ~y〉

2 Orthogonality in particular; determined by the inner product

3 The closure of N and its orthogonal complement N⊥, both of which are
Hilbert spaces themselves

9

where g ∈ N⊥ and l ∈ N̄ . Therefore every Hilbert space H can be decomposed

into two distinct (except for the zero vector) closed subspaces; however this

decomposition need not be limited to only two mutually orthogonal subspaces.

Infinite-dimensional Hilbert spaces are similar to finite-dimensional spaces

in that they must have (proof using Zorn’s Lemma combined with the Gram-

Schmidt orthogonalization process) an orthonormal basis {h1, h2, · · · : hi ∈ H}
satisfying

• Normalization: ‖hi‖ = 1 ∀i

• Orthogonality: 〈hi, hj〉 = 0 if i 6= j

so that every function in H can be represented uniquely as an unconditionally

convergent, linear combination of these fixed elements

• Completeness: ∀h ∈ H, ∃{α1, α2, · · · : αi ∈ R} such that h =
∑∞

i=1 αihi

Note that an orthonormal basis is the maximal subset of H that satisfies the

above three criteria. It is of infinite cardinality for infinite-dimensional spaces.

Let Ni be the space spanned by hi then:

H = N1 ⊕N2 ⊕ · · · ⊕Ni ⊕ · · ·

although as before

N1 ∪N2 ∪ · · · ∪Ni ∪ · · · ⊆ H

Finally, when the Hilbert space is infinite dimensional, the span of the

orthonormal basis need not be equal to the entire space but instead must

be dense in it; for this reason it is not possible to express every element in

the space as a linear combination of select elements in the orthonormal basis.

We will assume henceforth that Hilbert spaces have a countable orthonor-

mal basis. Such a space is separable so it contains a countable everywhere,

dense subset whose closure is the entire space. When the Hilbert space is a

finite-dimensional function space then there exists a finite orthogonal basis so

that every function in the space and every linear operator acting upon these

functions can be represented in matrix form.

2.3.2 Linear Functionals

A functional F is a real-valued function whose arguments are also functions

(specifically the hypothesis function f : X → Y) taken from some space H:

F : H(X → Y) → R

10

An evaluation functional E~x[f] : H(X) → Y simply evaluates a hypothesis

function f ∈ H at some fixed point ~x ∈ X in the domain:

E~x[f] = f(~x) (2.10)

Point-wise convergence in the hypothesis space ensures the continuity of

the evaluation functional:

fn(~x) → f(~x), ∀~x =⇒ E~x[fn] → E~x[f], ∀~x (2.11)

Linear functionals are defined over a linear (vector) space whose elements can

be added and scaled under the functional:

F (α1h1 + α2h2) = α1F (h1) + α2F (h2), ∀h1, h2 ∈ H

The set of functionals themselves form a vector space J if they can be added

and scaled:

F1(α1h) + F2(α2h) = (α1F1 + α2F2)(h), ∀F1, F2 ∈ J , ∀h ∈ H

The null space and image (range) space of the functional F are defined as:

nullF ≡ {h ∈ H : F (h) = 0}

imgF ≡ {F (h) : h ∈ H}
and are subspaces of the domain H and co-domain R respectively. The Rank-

Nullity Theorem [Rud91] for finite-dimensional spaces states that the dimen-

sion of the domain is the sum of the dimensions of the null and image sub-

spaces:

dim(H) = dim(nullF) + dim(imgF)

A linear functional is bounded if for some constant α the following is satisfied

|F (h)| ≤ α‖h‖H ∀h ∈ H

Furthermore, boundedness implies continuity of the linear functional. To see

this, let us assume we have a sequence of functions in a Hilbert space that

converge to some fixed function hi −→ h so that ‖hi − h‖H −→ 0. Then the

continuity criteria for the linear bounded functional F is satisfied:

11

∀ε > 0, ∃N ∈ N, such that ∀i > N (2.12)

|F (hi)− F (h)| = |F (hi − h)| ≤ α‖hi − h‖H −→ 0

Let {h1, h2, · · · : hi ∈ H} be an orthonormal basis for a Hilbert space

which in a linear combination can be used to express any vector h ∈ H

h =
∞∑
i=1

αihi =
∞∑
i=1

〈h, hi〉hi

where the second equality follows from:

〈h, hj〉 =

〈 ∞∑
i=1

αihi, hj

〉
=

∞∑
i=1

αi〈hi, hj〉 = αj

where the second equality follows from the linearity and continuity (which is

necessary since we have an infinite sum) of the inner product and the third

equality follows from the orthogonality of the basis. So any linear and contin-

uous functional over an infinite-dimensional Hilbert space can be decomposed

into a linear combination of linear functionals applied to the orthonormal basis

using the same coefficients as above:

F (h) =
∞∑
i=1

〈h, hi〉F (hi) =
∞∑
i=1

〈h, hiF (hi)〉 (2.13)

Definition 2.3.1 (Projection Operator) A projection P : H → L over

a (vector) space H = G⊕L is a linear operator that maps points from H along

the subspace G onto the subspace L; these two subspaces are complementary,

the elements in the latter are mapped by P to themselves (image of P) while

those in the former are mapped by P to zero (nullity of P).

Application of the projection twice is equivalent to applying it a single

time, the operator is therefore idempotent:

P = P 2

The operator (I −P) is then the complimentary projection of H along L onto

G. A projection is called orthogonal if its associated image space and null

space are orthogonal complements in which case P is necessarily self-adjoint.

12

When the space H over which P is defined is finite-dimensional, i.e.

dim(H) = n, the projection P is a finite-dimensional n × n matrix whose

entries are a function of the basis vectors of L. In figure 4–1 we see an or-

thogonal projection of ~x onto ~w, in which case the projection matrix is given

by:

P~w =
~w

‖~w‖
~w>

‖~w‖
so that any vector orthogonal to ~w (parallel to the hyperplane H which we will

assume intersects the origin so that the bias term b = 0) is mapped to zero.

The orthogonal projection is then given by the vector:

P~w~x =

(
~w

‖~w‖
~w>

‖~w‖
)

~x

which is equivalent to the vector resolute defined in (4.7).

More generally, let us consider the subspace L ⊂ H with an orthonormal

basis {l1, l2, · · · , lt}. The projection matrix is then given by the square of the

matrix Lp whose columns are the vectors that form the orthonormal basis:

PL = LpL
>
p = [l1|l2| · · · |lt] [l1|l2| · · · |lt]>

If the vectors do not form an orthonormal basis then the projection matrix is

given by ‘normalizing’ the above projection:

PL = Lp(L
>
p Lp)

−1L>p

Note the similarity to the normal equations used in linear regression.

2.3.3 Inner Product Dual Spaces

If H is a Hilbert space then the associated inner product4 can be used to

define a linear (bounded) functional:

Fg(·) = 〈g, ·〉H ∈ H∗

4 which can be shown [HN01] to be a bounded mapping and hence by (2.12)
must be continuous

13

The functional defined in terms of a kernel (2.1) function K~x = K(~x, ·) ∈ H,

is given by:

FKx(·) = 〈K~x, ·〉H ∈ H∗

for some input vector ~x ∈ X. So essentially every element g ∈ H (or K(~x, ·) ∈
H) has a corresponding linear bounded functional in a dual space H∗:

g 7−→ Fg(·) = 〈g, ·〉H ∈ H∗

The dual space H∗ of all linear bounded functionals on a Hilbert space H is also

Hilbertian [HN01] and has a dual basis that is a function of the orthonormal

basis of the original space. The spaces H and its dual H∗ are isomorphic

so that each element (function) in the former has a corresponding element

(functional) in the latter and vice versa. The null space of the functional fixed

at a basis vector g is then given by

nullFg ≡ {h ∈ H : Fg(h) = 〈h, g〉H = 0} (2.14)

and consists of all the vectors (including the zero vector) in H that are orthog-

onal to g. The null space therefore has dimension one less than the dimension

of H since g is orthogonal to all the basis vectors except itself. Hence the

dimension of the space orthogonal to the null space is one by the Rank-Nullity

Theorem:

dim((nullF)⊥) = 1

We now state an important theorem that will help establish a subsequent

result:

Theorem 2.3.1 (Riesz Representation Theorem) Every bounded (con-

tinuous) linear functional F over a Hilbert space H can be represented as an

inner product with a fixed, unique, non-zero vector rF ∈ H called the repre-

senter for F :

∃rF ∈ H (∃GrF ∈ H∗) : F (h) = 〈rF , h〉H = GrF (h), ∀h ∈ H (2.15)

For an evaluation functional we therefore have:

∀~x ∈ X, ∃rEx ∈ H : f(~x) = E~x[f] = 〈rEx, f〉H = GrEx
(f), ∀f ∈ H (2.16)

14

Proof When H is finite dimensional the proof is trivial and follows from

(2.13) since the finite summation can be taken inside the dot product so that

the representer is a function of the finite basis of the space: rF =
∑n

i=1 F (hi)hi.

We now consider the case where H is infinite-dimensional; in subsection

(2.3.2) we saw that a bounded linear functional F must also be continuous

which in turn implies that nullF is a closed linear subspace of H. Hence

by the Projection Theorem there must exist a non-zero vector z ∈ H that is

orthogonal to the null space of F :

z⊥nullF

In fact, the basis vector that is orthogonal to the null space is unique so that

the number of linearly independent elements in the subspace orthogonal to the

null space of F is one:

dim((nullF)⊥) = 1

This implies that any vector in (nullF)⊥ can be expressed as a multiple of a

single basis vector g ∈ (nullF)⊥ ⊂ H. Using this single basis vector and a

scalar value αh we can decompose any vector h ∈ H as

h = αhg + l (2.17)

where αhg ∈ (nullF)⊥ and l ∈ nullF which after application of the functional

gives:

F (h) = F (αhg) + F (l) = αhF (g) (2.18)

from the linearity of the functional and the definition of the null space. If we

take the inner product of (2.17) with g while assuming that ‖g‖H = 1, we

have:

〈h, g〉 = 〈αhg, g〉+ 〈l, g〉
= αh〈g, g〉+ 0 (2.19)

= αh‖g‖2
H (2.20)

= αh (2.21)

= F (h)/F (g) (2.22)

where (2.19) follows from the orthogonality of l and g, (2.20) follows from the

definition of the norm, (2.21) follows from our assumption that the vectors g

be normalized and (2.22) follows from (2.18). Rearranging gives the functional

15

in terms of a dot product:

F (h) = 〈h, gF (g)〉 (2.23)

from which we see that the representer for F has the form:

rF = gF (g) (2.24)

¤

2.3.4 Square Integrable Function Spaces

As an example let us consider the infinite-dimensional space L2(Z) of all real-

valued, square integrable, Lebesgue measurable functions on the measure space

(Z, Σ, µ) where Σ is a σ-algebra (closed under complementation and countable

unions) of subsets of Z and µ is a measure on Σ so that two distinct functions

are considered equivalent if they differ only on a set of measure zero. We could

take the domain Z to be either the closed Z = [a, b] or open Z = (a, b) intervals

both of which have the same Lebesgue measure µ(Z) = b− a since the closure

of the open set has measure zero.

More generally, any closed or open subset of a finite-dimensional real

space Z = Rn is Lebesgue measurable in which case the space L2(Rn) is

infinite-dimensional (if the σ-algebra Σ has an infinite number of elements

then the resulting L2(Z) space is infinite-dimensional). When we consider an

infinite-dimensional measure space (Z, Σ) then the Lebesgue measure is not

well defined as it fails to be both locally finite and translation-invariant. An

inner product in terms of the Lebesgue integral is then given as:

〈f, g〉L2 =

∫

Z

f(~z)g(~z)dµ(~z) (2.25)

Moreover, we define the norm (that completes the space) as

‖f‖L2 =
√
〈f, f〉L2 (2.26)

The space L2(Z) contains all functions that are square-integrable on Z:

L2 (Z) =

{
f ∈ RZ : ‖f‖L2 =

√
〈f, f〉L2 =

(∫

Z

f(~z)2dµ(~z)

)1/2

< ∞
}

(2.27)

16

The function space L2(Z) is a Hilbert space since it is an inner product

space that is closed under addition:

f, g ∈ L2(Z) =⇒ f + g ∈ L2(Z)

and is Cauchy complete (Riesz-Fischer Theorem). Hence, if we take a

Cauchy sequence of square-integrable functions {h1, h2, · · · : hi ∈ H} satisfy-

ing:

lim
i,j→∞

‖hi − hj‖L2 = lim
i,j→∞

(∫

Z

(hi(~z)− hj(~z))2 dµ(~z)

)1/2

= 0

then there exists some square-integrable function h ∈ H that is the mean limit

of the above Cauchy sequence:

lim
i→∞

(∫

Z

(hi(~z)− h(~z))2 dµ(~z)

)1/2

= 0

From the Reisz representation theorem it follows that every bounded,

real-valued, linear functional on the Hilbert space L2 is of the form:

F (g) = 〈rF , g〉L2 =

∫

Z

rF (z)g(z)dµ(z) = GrF (g) (2.28)

We can generalize the L2(Z) function space as follows:

Lp (Z) =

{
f ∈ RZ : ‖f‖p =

(∫

Z

|f |pdµ(~z)

)1/p

< ∞
}

(2.29)

It is important to note that only in the case that p = 2 the resulting space is

Hilbertian. When p = 1 then the space L1(Z) contains all functions that are

absolutely integrable on Z:

L1 (Z) =

{
f ∈ RZ : ‖f‖L1 = ‖f‖ =

∫

Z

|f(~z)|dµ(~z) < ∞
}

When p = ∞ we use the uniform norm defined using the supremum

operator instead of a dot product and obtain the space of bounded functions:

L∞ (Z) =

{
f ∈ RZ : ‖f‖L∞ = sup

~z∈Z

|f(~z)| < ∞
}

(2.30)

Convergent sequences of functions in L∞ are uniformly convergent. Elements

of the Lp spaces need not be continuous; discontinuous functions over domains

of compact support are Lebesgue integrable as long as their discontinuities

17

have measure zero. In other words, when the discontinuous function is equiva-

lent to a continuous one (which is Riemann integrable) almost everywhere (i.e.

on a set of measure one) then their Lebesgue integrals are equal. These unmea-

surable irregularities imply ([CMR02]) that functions in Lp are not point-wise

well defined.

Since L2 is a Hilbert space, it must have a countable orthonormal basis and

hence is separable (has a countable everywhere dense subset) which implies

that there exist square (Lebesgue) integrable functions almost everywhere.

Furthermore, continuous functions are also dense in L2 (as long as the domain

has compact support); so any function in L2 can be approximated infinitely

accurately by a continuous function. Essentially, L2 is the Cauchy completion

of the space of continuous functions C0 with respect to the norm (2.26) and

includes those functions which although discontinuous, are almost everywhere

equal to elements in C0.

2.3.5 Space Of Continuous Functions

The space of all real-valued, continuous functions on the domain X that are

differentiable up to k times is denoted by Ck
(
RX

)
. Most frequently we will

consider: the space C0 of continuous functions, the space C1 of continuous

functions whose derivative is also continuous, the space C2 of twice differ-

entiable functions and the space of smooth functions C∞ that are infinitely

differentiable. One essential difference between L2 and C0 is that the latter

is not Cauchy complete and is therefore not a Hilbert space. In fact, as men-

tioned previously, L2 is the Cauchy completion of the function space C0 or in

other words, continuous functions on X are dense in L2(X).

2.3.6 Normed Sequence Spaces

We consider a special case of the Lp spaces where the measure µ is taken to be

the counting measure and a summation is taken instead of an integral. Essen-

tially we have a function from the natural numbers to the real line represented

as a vector ~z of countably infinite length. The norm is then given by:

‖~z‖`p =

(∞∑
i=1

|zi|p
)1/p

18

Convergence of the above series depends on the vector ~z; so the space `p is

taken as the set of all vectors ~z of infinite length that have a finite `p-norm:

`p(Z) = {~z ∈ Z : ‖~z‖`p < ∞}

It is important to note that the size of the `p space increases with p. For

example `∞ is the space of all bounded sequences and is a superset of all other

`p spaces: `1 is the space of all absolutely convergent sequences, `2 is the space

of all square convergent sequences and `0 is the space of all null sequences

(converges to zero). Of these only `2 is a Hilbert space and in fact, as we will

see later, a reproducing kernel Hilbert space (RKHS).

2.3.7 Compact and Self Adjoint Operators

The linear algebra of compact operators acting on infinite-dimensional spaces

closely resembles that of regular operators on finite-dimensional spaces.

Definition 2.3.2 (Compact Operator) A bounded (continuous) linear op-

erator T is compact if, when applied to the elements of any bounded subset of

the domain, the resulting image space is precompact (totally bounded) or equiv-

alently, if the closure of the resulting image space is compact (complete and

totally bounded).

Note however that the entire domain itself might be unbounded but an

operator acting on it may still be compact. If the domain is bounded and an

operator acting upon it is compact then the entire image space is precompact.

So a bounded (continuous) linear operator from one Hilbert space to an-

other,

T : L2(RX) → L2(RX)

is compact if for every bounded subset S of the domain L2(RX), the closure

of the image space

{(Tf) : f ∈ S} ⊂ L2(RX)

is compact.

Definition 2.3.3 (Self-Adjoint Operators) A linear operator T is said

to be self-adjoint if it is equal to its Hermitian adjoint T ∗ which satisfies the

following:

〈Th, g〉 = 〈h, T ∗g〉

19

All the eigenvalues of a self-adjoint operator are real. In the finite dimensional

case, a self-adjoint operator (matrix) T is conjugate symmetric.

By the Reisz Representation Theorem we can show the existence of the adjoint

for every operator T that defines a bounded (continuous) linear functional

F : h 7→ 〈g, Th〉, ∀h, g ∈ H:

∃rF ∈ H : F (h) = 〈g, Th〉 = 〈rF , h〉, ∀h ∈ H

so we can define the adjoint as T ∗g = rF . We will now characterize and

show the existence of the basis of the image space of a compact, self-adjoint

operator.

Theorem 2.3.2 (The Spectral Theorem) Every compact, self-adjoint op-

erator T : HD → HR when applied to a function in a Hilbert space f ∈ H has

the following decomposition:

Tf =
∞∑
i=1

αiPHi
[f] ∈ H (2.31)

where each αi is a complex number and each Hi is a closed subspace of HD

such that PHi
[f] is the orthogonal projection of f onto Hi.

The direct sum of these complementary (orthogonal) subspaces (excluding

the null space or zero eigenspace H0 of the domain) equals the image space of

the operator:

HR = H1 ⊕H2 ⊕H3 ⊕ · · ·
When the operator T induces the following decomposition:

Tςi = υiςi (2.32)

we call ςi an eigenfunction and υi an eigenvalue of the operator. The eigenfunc-

tions of T form a complete, countable orthonormal basis of the image space:

hence each Hi has a basis of eigenfunctions all with the same eigenvalue; so

we can rewrite the decomposition as follows:

Tf =
∞∑

j=1

υjPςj [f] (2.33)

where Pςj [f] is now the projection of f onto the (normalized) eigenfunction ςj.

Different subspaces have different eigenvalues whose associated eigenfunctions

20

are orthogonal:

Hi 6= Hj =⇒ υi 6= υj =⇒ 〈ςi , ςj〉H = 0

The reverse is however not true; two orthogonal eigenfunctions may have the

same eigenvalue and be basis vectors for the same subspace. When the domain

of the operator H is a finite n-dimensional space then there are n eigenfunc-

tions and associated eigenvalues. When the operator is positive then [Rud91]

the eigenvalues are positive and absolutely convergent (elements of `1 so that

they decrease to zero).

As an example let us consider a single function in the domain f ∈ L2(X)

and take a bounded subspace B around it, for example the ball of unit length:

B = {g ∈ L2(X) : ‖f − g‖L2 ≤ 1}

Then application of the compact operator T to elements in this bounded sub-

space B yields an image space whose closure is compact and hence finite-

dimensional. So applying T to any function in B yields a function which can

be decomposed into a finite linear combination of orthogonal basis vectors in

the form (2.31) or (2.33).

2.3.8 Integral Operators

Essentially, what we would like to achieve is the transformation of a function

from a space where it is difficult to manipulate to a space where it can be

represented as a sum of simple functions which are easier to manipulate. An

associated inverse transform, if it exists, can then transform the function back

into its original space. We begin by defining this transformation operator and

its associated kernel:

Definition 2.3.4 (Integral Operator) A linear operator TK : L2(X) →
L2(X) is integral if for a given kernel function K ∈ L∞(X × X) the following

transformation of one function space into another holds almost everywhere for

all f ∈ L2(X):

(TKf)(·) =

∫

X

K(·, ~x)f(~x)dµ(~x) (2.34)

where µ is the Lebesgue measure.

When the image space is finite-dimensional, the integral transformation

TK changes the representation of the input function f to an output function

21

(TKf) expressed as a linear combination of a finite set of orthogonal basis

functions:

(TKf) =
b∑

i=1

αifi such that 〈fi, fj〉 = 0 ∀i, j < b (2.35)

Definition 2.3.5 (Positive Kernel) A function K ∈ L∞(X × X) such

that any quadratic form over it is positive:

∫

X

∫

X

K(~x, ~y) ς(~x) ς(~y) dµ(~x) dµ(~y) > 0 ∀ς ∈ L2(X)

is called a positive kernel.

It is easy to see that when a finite kernel is positive-definite over all possible

finite sets of vectors in the space X×X then the kernel is positive; furthermore

if all functions in the domain are positive (f > 0) then the integral operator

is also positive Tf > 0 and vice versa.

Definition 2.3.6 (Continuous Kernel) A function K ∈ C0(X × X) is

continuous at a point (~b,~c) ∈ X× X if it satisfies:

∀ε > 0, ∃δ > 0, (2.36)

∀~x,~s ∈ X, ~b− δ < ~x <~b + δ, ~c− δ < ~s < ~c + δ

=⇒ K(~b,~c)− ε < K(~x,~s) < K(~b,~c) + ε

If the kernel K is symmetric, then the integral operator TK (2.34) must

be self-adjoint. To see this, consider two hypothesis functions f, g ∈ H:

〈(TKf), g〉L2 =

∫

X

g(~y)

(∫

X

K(~y, ~x)f(~x)dµ(~x)

)
dµ(~y)

=

∫

X

∫

X

g(~y)K(~y, ~x)f(~x)dµ(~x)dµ(~y)

=

∫

X

∫

X

g(~y)K(~y, ~x)f(~x)dµ(~y)dµ(~x)

=

∫

X

f(~x)

(∫

X

K(~x, ~y)g(~y)dµ(~y)

)
dµ(~x)

= 〈f, (TKg)〉L2

where the third equality (switching the order of integration) follows from ap-

plying Fubini’s Theorem. Assume further that the kernel K is continuous

22

K ∈ C0(X× X): ∫

X×X

K(~x, ~y)2dµ(~x)dµ(~y) < ∞

Now for any bounded subspace of the domain X × X one can show that the

image space under the operator TK is precompact in L2(X) and hence that

the integral operator TK defined in (2.34) is compact.

So when the kernel K is positive, symmetric and square integrable the

resulting integral operator TK is positive, self-adjoint and compact. It there-

fore follows from the Spectral Decomposition Theorem that TK must have

a countable set of non-negative eigenvalues; furthermore, the corresponding

eigenfunctions {ς1, ς2, · · · } must form an orthonormal basis5 for L2(X) assum-

ing they have been normalized ‖ςi‖L2 = 1.

Theorem 2.3.3 (Mercer’s Theorem) For all positive (2.3.5), symmetric

and continuous (2.37) kernel functions K ∈ L2(X×X) over a compact domain

X×X, defining a positive, self-adjoint and compact integral operator TK with

an eigen-decomposition (2.32) the following five conditions are satisfied:

1. {υ1, υ2, · · · } ∈ l1 : the sequence of eigenvalues are absolutely convergent

2. υi > 0, ∀i : the eigenvalues are strictly positive

3. ςi ∈ L∞(X) : the individual eigenfunctions ςi : X → R are bounded.

4. supi ‖ςi‖L∞ < ∞ : the set of all eigenfunctions is also bounded

5. ∀~s, ~x ∈ X : K(~s, ~x) =
∑∞

i=1 υi ςi(~s) ςi(~x) = 〈Φ(~s), Φ(~x)〉L2

where (5) converges absolutely for each (~x, ~y) ∈ X×X and therefore converges

uniformly for almost all (~x, ~y) ∈ X× X.

Proof Since TK is a compact operator we can apply the Spectral Decomposi-

tion Theorem which guarantees the existence of an orthonormal basis (eigen-

decomposition) in terms of eigenfunctions and eigenvalues:

Tςi(~s) =

∫

X

K(~t, ~s)ςi(~t)dµ(~t) = υiςi(~s)

5 Strictly speaking, the eigenfunctions span a dense subset of L2(X).

23

Since the eigenfunctions form an orthonormal basis for L2(X), it follows

that

‖ςi‖L2 =

∫

X

ςi(~x)2dµ(~x) = 1

(1) easily follows from (5) and the boundedness (which is implied by

continuity over a compact domain) of the kernel function K ∈ L∞(X × X);

integrating both sides of the kernel expansion in (5) and taking ~s = ~x gives:

∞∑
i=1

υi

∫

X

ςi(~x)2dµ(~x) =
∞∑
i=1

υi =

∫

X

K(~x, ~x)dµ(~x) < ∞

(2) follows from the positivity of the integral operator TK which is implied by

the positivity of the kernel function.

(3) and (4) follow from the continuity of the kernel and the eigenfunc-

tions over a compact domain; if υi 6= 0 then its associated eigenfunctions are

continuous on X since:

∀ε > 0, ∃δ > 0, : |~x− ~y| < δ =⇒ (2.37)

|ςi(~x)− ςi(~y)| =
1

|υi|

∣∣∣∣
∫

X

(K(~s, ~x)−K(~s, ~y)) ςi(~s)dµ(~s)

∣∣∣∣

≤ 1

|υi|
∫

X

|K(~s, ~x)−K(~s, ~y)| |ςi(~s)|dµ(~s)

≤ supi ‖ςi‖L∞

|υi|
∫

X

|K(~s, ~x)−K(~s, ~y)| dµ(~s)

≤ ε

where the last inequality follows from the continuity of K so that the difference

|K(~s, ~x)−K(~s, ~y)| can be made arbitrarily small.

We can bound the following infinite sum, a proof of which is found in

[Hoc73], which implies the absolute convergence in (5):

∞∑
i=1

υi|ςi(t)ςi(s)| =
∞∑
i=1

1

|υi|

∣∣∣∣
∫

X

K(~x,~t)ςi(~x)dµ(~x)

∫

X

K(~x,~s)ςi(~x)dµ(~x)

∣∣∣∣

¤

2.3.9 Reproducing Kernel Hilbert Spaces

A Reproducing Kernel Hilbert Space (RKHS) is the ‘working’ hypothesis

(function) space for Support Vector Machine algorithms; elements from the

observation space are mapped into a RKHS, in which the structure necessary

24

to define (and then solve) a given discriminative or regression problem already

exists. Any observations can be transformed into features in a RKHS and

hence there exists a universal representational space for any given set from

the observation space. The explicit form the features take are as a kernel-

ized distance metric between any two observations which implicitly can be

expressed as an inner product; essentially a RKHS combines a (restricted)

Hilbert Space with an associated positive kernel function (definition 2.3.5).

Definition 2.3.7 (Reproducing Kernel Hilbert Space) A Hilbert space

(H, 〈·, ·〉H) that is point-wise defined (on RX) and where every evaluation func-

tional Et[f] : H(X) → R is continuous is a Reproducing Kernel Hilbert Space

(RKHS).

Hence all point-wise evaluations are bounded and then by the Reisz Rep-

resenter Theorem (2.3.1) every function evaluation at some fixed point ~x ∈ X

has a fixed representer function rEx ∈ HK essentially satisfying (2.16).

It is easy to show that norm convergence in a RKHS always implies point-

wise convergence and vice versa:

‖fn − f‖H → 0 ⇐⇒ lim
n→∞

fn(~x) = lim
n→∞

E~x(fn) = lim
n→∞

E~x(f) = f(~x), ∀~x ∈ X

(2.38)

where the second equality on the right follows from the continuity of the

evaluation functional and the assumption that fn converges to f in norm.

Recall that point-wise convergence (2.6) was the second of two restrictions

deemed necessary for all functions in the hypothesis space.

Definition 2.3.8 (Reproducing Kernel) A kernel function K of a Hilbert

space L2(X× X) that satisfies the following for all ~x ∈ X:

1. K~x ∈ H : the kernel fixed at some point ~x ∈ X is a function over a

Hilbert space

2. ∀f ∈ H the reproducing property is satisfied

〈f, K~x〉 = f(~x)

and in particular when f = K~s :

〈K~s, K~x〉 = K~s(~x) = K~x(~s) = K(~s, ~x)

25

So by definition the reproducing kernel is such that for all vectors in the input

space ~x ∈ X, the function K~x is the unique representer for the evaluation

functional E~x(f).

∀~x ∈ X, ∃K~x ∈ HK : f(~x) = E~x[f] = 〈K~x, f〉HK
= GrE

(f), ∀f ∈ H (2.39)

The only difference between (2.16) and (2.39) is that the latter requires the

representer to have the form of a kernel function rEx = K~x = K(~x, ·) fixed in

its first argument at some point in the input space. Therefore it follows that

every function in a RKHS can be represented point-wise as an inner product

whose first argument is always taken from the same set {K~x1 , K~x2 , K~x3 , · · · }
of distinct (representer) kernel functions and whose second argument is the

function itself.

Theorem 2.3.4 (Moore-Aronszajn Theorem) Every positive-definite ker-

nel K(·, ·) on X×X is a reproducing kernel for some unique RKHS of functions

on X. Conversely, every RKHS has an associated unique positive-definite ker-

nel whose span is dense in it. In short, there exists a bijection between the

set of all reproducing kernel Hilbert spaces and the set of all positive kernel

functions.

Proof Given a RKHS HK , by the Reisz Representation Theorem there exists

a representer in HK for all evaluation functionals (which are continuous by

definition of a RKHS) over HK ; the representer is given by K~x (see 2.42 or

2.46) and the reproducing kernel (which can be shown to be positive and

unique) is therefore given by

K(~x,~s) = 〈K~x, K~s〉HK
, ∀~s ∈ X (2.40)

Conversely, given a positive kernel K we define a set of functions {K~x1 , K~x2 , · · · }
for each ~xi ∈ X and then define the elements of the RKHS as the point-wise

defined functions in (the completion of) the space spanned by this set:

HK =

{
f ∈ RX : f =

∑

~xi∈X

αiK~xi
, ‖f‖HK

< ∞, αi ∈ R
}

(2.41)

26

The reproducing property is satisfied in this space:

〈K~s, f〉HK
=

〈
K~s ,

∑
j

βjK~tj

〉

HK

(2.42)

=
∑

j

βj〈K~s, K~tj
〉HK

=
∑

j

βjK(~s,~tj)

= f(~s)

so that K~s is in fact the representer of the evaluation functional E~s(·). Evalua-

tion functionals in this space are necessarily bounded and therefore continuous:

|E~x(f)| = |f(~x)| = |〈K~x, f〉| ≤ ‖K~x‖H‖f‖H = α‖f‖H

where the second equality is due to the reproducing property of the kernel

and the third inequality is due to the Cauchy-Schwarz Inequality. Norms in

this space ‖ · ‖HK
are induced by the inner (dot) product which is defined as

follows:

〈f, g〉HK
=

〈∑
i

αiK~xi
,

∑
j

βjK~xj

〉

HK

(2.43)

≡
∑

i

∑
j

αiβjK(~xi, ~xj)

which can easily be shown to be symmetric and linear when the kernel is

positive.

We complete the space spanned by the kernel function K by adding to

it the limit functions of all Cauchy sequences of functions, if they are not

already within the space. The limit functions that must be added (and which

can therefore not be expressed as a linear combination of the kernel basis

functions, i.e. the span of the kernel is dense in the space) must be point-wise

well defined. However we have already seen that in a RKHS, norm convergence

(and in particular Cauchy convergence) implies point-wise convergence so that

the limit function is always point-wise well defined; so all Cauchy sequences

converge point-wise to limit functions whose addition to the space completes

it. ¤
So given any positive-definite kernel function we can construct its associ-

ated unique reproducing kernel Hilbert space and vice versa. As an example

27

let us consider the Hilbert space L2 that contains functions that have dis-

continuities (evaluation functionals are therefore not bounded and hence not

continuous and so it is not a RKHS) of measure zero and are therefore not

smooth, as are all the elements of C∞ which is however not a Hilbert space;

hence we seek to restrict the Hilbert space L2, removing all functions that are

not smooth as well as some that are, ensuring that the resulting space is still

Hilbertian. Define L2
K as the subspace of L2 that includes the span of the

functions K~x, ~x ∈ X as well as their point-wise limits. The resulting space is

Hilbertian. If the kernel reproduces in the space and is bounded then L2
K is a

reproducing kernel Hilbert space.

Alternatively, we can construct a RKHS by using Mercer’s Decomposition

(Condition 5 of 2.3.3); consider the space spanned by the eigenfunctions (which

have non-zero eigenvalues) of the eigendecomposition of the integral operator

defined using some kernel K:

HK =

{
f ∈ RX : f =

∞∑
i=1

αiςi, ‖f‖HK
< ∞, αi ∈ R, ςi ∈ L∞(X)

}
(2.44)

so that the dimension of the space HK is equal to the number of non-zero

eigenvalues of the integral operator. Then define the norm on this RKHS in

terms of an inner product:

〈f, g〉HK
=

〈 ∞∑
i=1

αiςi,

∞∑
i=1

βiςi

〉

HK

(2.45)

≡
∞∑
i=1

αiβi

υi

It then follows from Mercer’s Theorem that the function K~x is a representer

of the evaluation functional E~x and therefore reproduces in the RKHS HK :

〈f(·), K~x(·)〉HK
=

〈 ∞∑
i=1

αiςi(·),
∞∑
i=1

υi ςi(~x) ςi(·)
〉

HK

(2.46)

≡
∞∑
i=1

αiυiςi(~x)

υi

=
∞∑
i=1

αiςi(~x)

= f(~x)

28

So instead of minimizing the regularized risk functional over all functions in

the hypothesis space:

f ∗ = arg inf
f∈H

{
n∑

i=1

`(f, {~xi, ~yi}) + λ‖f‖2
HK

}
(2.47)

we can minimize the following functional over all sequences of expansion co-

efficients {α1, α2, · · · }:

f ∗ = arg inf
{α1,α2,··· }

{
n∑

i=1

`

(∞∑
j=1

αjςj(·), {~xi, ~yi}
)

+ λ
∑

j

α2
j

υj

}
(2.48)

which follows from (2.44) and (2.45). The number of expansion coefficients is

equal to the number of non-zero eigenvalues which is also the dimension of the

RKHS constructed in (2.44); since this number is possibly infinite the above

optimization is possibly infeasible.

More generally we can construct a RKHS by completing the span of any

basis set. The RKHS constructions (2.41) and (2.44) are equivalent (see [CS02]

for a proof). The inner products defined in (2.45) and (2.43) can also be shown

to be equivalent.

2.4 RKHS and Function Regularity

Now that we have introduced the RKHS family of hypothesis spaces we

introduce some further restrictions and discuss why they are necessary. The

hypothesis that the learning algorithm selects will need to conform to three

basic criteria:

Definition 2.4.1 (Well-Posed Optimization) An optimization Ψ is well-

posed provided the solution f ∗ : X → Y:

1. Exists: if the hypothesis space is too small then the solution may not

exist.

∃f̂ ∗ ∈ H : f ∗ = arg inf
f∈H

Ψ

2. is Unique: if the hypothesis space is too large or the training set is too

small then the solution may not be unique.

∀f̂ ∗1 , f̂ ∗2 ∈ H : f̂ ∗1 , f̂ ∗2 = arg inf
f∈H

Ψ =⇒ f̂ ∗1 = f̂ ∗2

29

3. is Stable: f ∗ depends continuously on the training set, so that slight

perturbations in the training set do not affect the resulting solution, es-

pecially as the number of training examples gets larger.

As we will see in the following chapter, the prediction function output by the

learning algorithm must be generalizable and well-posed. The third criterion

above is especially important as it relates to the generalization ability of a

hypothesis: a stable transform is less likely to overfit the training set.

The ERM principle guarantees the existence of a solution assuming H is

compact and the loss function ` (and hence the empirical risk R̂n) is continu-

ous; in general neither of these conditions are satisfied. ERM does not however

guarantee the uniqueness (all functions that achieve the minimum empirical

risk are in the same equivalence class but there is only one amongst this class

that generalizes well) or the stability (removing a single example from the

training set will give rise to a new prediction function that is fundamentally

different) of the solution; the method is therefore ill-posed.

We must resort to using prior information to determine which solution

from within the equivalence class of functions of minimal empirical risk is

best suited for prediction. This can be done for example by constraining the

capacity of the hypothesis space. We will consider two regularization methods

that attempt to do this, thereby ensuring the uniqueness and stability of the

solution. The question of how to constrain the hypothesis space is answered by

Occam’s Razor which essentially states that the simplest solution is often the

best, given that all other variables (i.e. the empirical risk) remain constant.

So in a nutshell, regularization attempts to provide well-posed solutions

to a learning task, specifically ERM, by constraining the capacity of the hy-

pothesis space through the elimination of complex functions that are unlikely

to generalize, thereby isolating a unique and stable solution.

We can explicitly constrain the capacity of the hypothesis space (Ivanov

Regularization) or implicitly optimize a parameter (Tikhonov Regularization)

30

that regulates the capacity of the hypothesis space. Both methods are equiva-

lent6 and make use of a measure of the ”smoothness”7 of a function to regulate

the hypothesis space. It is easy to show that the norm functional serves as an

appropriate measure of smoothness given that the associated kernel serves as

an appropriate measure of similarity.

Definition 2.4.2 (Lipschitz Continuity) A map f : X → Y is Lipschitz

continuous if it satisfies:

|f(~x1)− f(~x2)| ≤ M |~x1 − ~x2|

The smallest M ≥ 0 that satisfies the above inequality for all ~x1, ~x2 ∈ X is

called the Lipschitz constant of the function. Every Lipschitz continuous map

is uniformly continuous which is a stronger condition than simple continuity.

Functions in a RKHS are Lipschitz continuous; take two points in the

domain ~x1, ~x2 ∈ X then from the Reisz Representation Theorem it follows

that:

|f(~x1)− f(~x2)| = |〈f, K~x1〉HK
− 〈f, K~x2〉HK

| (2.49)

= |〈f, K~x1 −K~x2〉HK
|

≤ ‖f‖HK
(K~x1 −K~x2)

2

where the Lipschitz constant is given by the norm of the function M = ‖f‖HK

and the distance between two elements in the domain is given by the square

of the difference of their kernelized positions. As the Lipschitz constant (in

this case the norm of the function) decreases, the function varies less in the

image space for similar (as measured by the kernel) points in the domain. This

justifies the use of the norm in the regularized risk functional defined in (2.47)

and now used in the following regularization methods.

6 The Lagrange multiplier technique (5.1) reduces an Ivanov Regularization
with constraints to a Tikhonov Regularization without constraints

7 Intuitively, a function is smooth when the variance in the image space is
slow for points in the domain that are similar. The similarity of points in a
RKHS can naturally be measured by the associated kernel function (2.49).

31

2.4.1 Ivanov Regularization

Ivanov Regularization requires that all functions in the hypothesis space f ∈
HT, of which there might be an infinite number, exist in a T-bounded subset

of a RKHS HK :

f̂ ∗ = arg inf
f∈H

R̂n[f] subject to ‖H‖HK
≤ T (2.50)

Another way to see why this works is to consider functions from two

hypothesis spaces, one significantly less complex (functions are smoother) than

the other;

HTi
= {f : f ∈ HK and ‖f‖2

HK
≤ Ti}, i ∈ {1, 2}, T1 ¿ T2

Small perturbations in the training data cause prediction functions from the

more complex class HT2 to fluctuate more whereas functions from the smoother

class HT1 remain relatively stable. In [Rak06] we also see that for ERM in par-

ticular, stability and consistency (3.13) are in fact equivalent. Furthermore, a

bounded, finite-dimensional RKHS HTi
is a totally bounded space and hence

must have a finite epsilon-net (definition 3.4.1) which implies the covering num-

ber (definition 3.4.3) of HTi
may be used in deriving generalization bounds.

Yet there is no specified methodology for choosing the value of T and so we

must resort to using another related regularization technique.

2.4.2 Tikhonov Regularization

The Tikhonov Regularization differs in that it penalizes the complexity and

instability of the hypothesis space in the objective function of the optimization

instead of explicitly bounding it by some constant;

f̂ ∗ = arg inf
f∈H,λ

{
R̂n[f] + λ‖f‖2

HK

}
(2.51)

where λ is a regularization parameter that must also be optimized to ensure

optimal generalization performance as well as the stability and uniqueness of

the solution [Rak06]. In the following theorem we see that although the hy-

pothesis space is potentially an infinite dimensional Hilbert function space, the

solution of the Tikhonov optimization has the form of a finite basis expansion.

32

a

b

c

Observation

 Space

Possibly infinite dimensional RKHS (finite linear combination)

Figure 2–3: Each training data point is mapped to a basis function (in blue) which can
then be used to define the solution (in red) as a linear combination of the basis functions.

Theorem 2.4.1 (Representer Theorem) Consider the objective function

of the Tikhonov Regularization Method that optimizes the sum of a loss func-

tion and a regularization term:

f ∗ = arg inf
f∈H

{
n∑

i=1

`(f, {~xi, ~yi}) + Υ(‖f‖2
H)

}

Then if ` is a point-wise defined loss function (i.e. ∀{~xi, yi} ∈ S : `(f, {~xi, ~yi}) ∈
R) and Υ is monotonically increasing then the solution to the optimization ex-

ists and can be written as a linear combination of a finite set of functions

defined over the training data;

f ∗ =
n∑

j=1

αjK~xj

where K~xj
is the representer of the (bounded) evaluation functional E~xj

(f) =

f(~xj) for all f ∈ H.

Proof The functions K~xi
, ∀~xi ∈ S span a subspace of H:

U = span{K~xi
: 1 ≤ i ≤ n} =

{
f ∈ H : f =

n∑
i=1

αiK~xi

}

Denote by PU the projection that maps functions from HK onto U, then any

function PU[f] can be represented as a finite linear combination:

∀PU[f] ∈ U : PU[f] =
n∑

i=1

αiK~xi

33

Hence any function f ∈ H can be represented as:

f = PU[f] + (I − PU)[f] =
n∑

i=1

αiK~xi
+ (I − PU)[f]

where (I−PU) is the projection of functions in H onto U> whose elements are

orthogonal to those in U. Now applying the reproducing property of a RKHS

and noting that the function K~xj
is orthogonal to all vectors in U>:

f(~xj) = 〈f, K~xj
〉H

=

〈
n∑

i=1

αiK~xi
+ (I − PU)[f], K~xj

〉

H

=
n∑

i=1

αi

〈
K~xi

, K~xj

〉
H

+
〈
(I − PU)[f], K~xj

〉
H

=
n∑

i=1

αi

〈
K~xi

, K~xj

〉
H

=
n∑

i=1

αiK(~xi, ~xj)

so that the evaluation of functions in the hypothesis space is not dependent

on corresponding components in the subspace U> but is dependent on the

coefficients {αi, i = 1, · · · , n} which must be determined. Now since the loss

function needs only to be evaluated point-wise over the training set, we can

group all functions that have the same point-wise evaluation over S (and hence

the same risk) into an equivalence class:

f = g ⇐⇒ f(~xi) = g(~xi), ∀~xi ∈ S

⇐⇒ f(~xi) =
n∑

j=1

αjk(~xi, ~xj) =
n∑

j=1

βjk(~xi, ~xj) = g(~xi), ∀~xi ∈ S

=⇒ `(f, S) = `(g, S)

=⇒ R̂n[f] = R̂n[g]

Now for g ∈ U and l ∈ U> such that f = g + l we have:

Υ(‖f‖2
H) = Υ(‖g‖2

H + ‖l‖2
H)

it then follows that the optimal function within the equivalence class of min-

imum risk must have ‖l‖H = 0 since otherwise it increases ‖f‖2
H (and hence

34

Figure 2–4: Each function e, f, g ∈ H has a distinct set of expansion coefficients. However
f and g are equivalent in the sense that their function evaluations over the training set are
equal: g(~xi) =

∑n
j=1 βjk(~xi, ~xj) =

∑n
j=1 αjk(~xi, ~xj) = f(~xi).

increases the evaluation of the monotonically increasing function Υ) but leaves

the loss unaltered. We can therefore rewrite the objective function as:

f ∗ = argmin
f∈H,g=PU[f]

{
n∑

i=1

`(g, {~xi, ~yi}) + Υ(‖g‖2
H)

}

In this way we have linked the search for the global optima in H with a search

for the optimal coefficients {αi, i = 1, · · · , n} that define a function in the

subspace U;

f ∗ = argmin
{α1,α2,··· ,αn}

{
n∑

i=1

`

(
n∑

j=1

αjK~xj
, {~xi, ~yi}

)
+ Υ

(
n∑

i=1

n∑
j=1

αiαjK(~xi, ~xj)

)}

(2.52)

In contrast to (2.48), the optimization defined above is feasible as it is per-

formed over a finite number of basis expansion coefficients. So in summary

to arrive at a solution in a finite dimensional space U, the optimization first

identifies the equivalence class of functions in H that have minimal risk and

then within this class, it identifies the hypothesis whose component in the

complementary (orthogonal) subspace U> has a norm equal to zero. ¤

The solution can also be expressed as a linear combination of a finite num-

ber of eigenfunctions as long as they serve as representers for the evaluation

functional:

f ∗ =
m∑

j=1

βjςi

35

The solution f ∗ can then be substituted into the optimization (2.52) so that

the values of the expansion coefficients can be numerically calculated; when

the loss function is quadratic then this amount to solving a linear system and

otherwise a gradient descent algorithm is employed.

So instead of searching through the entire infinite dimensional hypothesis

space HK , as defined in (2.41), we will only consider a finite-dimensional

subspace of U that is spanned by a finite number of basis functions. Within

this finite dimensional subspace the solution may still not be unique if we

optimized over the loss function alone since there can be several functions

that linearly separate (for zero-one (4.1) or hinge loss (4.3) functions) or near-

perfectly pass through (for ε-insensitive loss (5.1) function) the entire data set

to achieve minimal risk; the addition of the regularization term guarantees

uniqueness.

2.5 The Kernel Trick

The kernel trick simplifies the quadratic optimizations used in support

vector machines by replacing a dot product of feature vectors in the feature

space with a kernel evaluation over the input space. Use of the (reproducing)

kernel trick can be justified by constructing the explicit map Φ : X 7−→ RX in

two different ways both of which map a vector ~x ∈ X in the input space to

a vector in a (feature) reproducing kernel Hilbert space; the first method is

derived from the Moore-Aronzajn construction (2.41) of a RKHS and defines

the map as:

Φ : ~x → K~x ∈ L2(X)

The reproducing property can then be used to show that the inner product

of two functions in the feature (RKHS) space is equivalent to a simple kernel

evaluation:

〈Φ(~x), Φ(~s)〉HK
= 〈K~x, K~s〉HK

= K(~x,~s) (2.53)

The second method is derived from Mercer’s Construction (2.44) of a RKHS

and defines the map as:

Φ : ~x → {√υ1ς1(~x),
√

υ2ς2(~x), · · · } ∈ `2

From condition (5) of Mercer’s Theorem it then follows that the L2 inner

product of two functions in the feature space is equivalent to a simple kernel

36

evaluation:

〈Φ(~x), Φ(~s)〉L2 =
∑

υiςi(~x)ςi(~s) = K(~x,~s) (2.54)

Mercer’s Theorem proves the converse, specifically that a positive, continu-

ous, symmetric kernel can be decomposed into an inner product of infinite-

dimensional (implicitly) mapped input vectors.

2.5.1 Kernelizing the Objective Function

As an example let us consider the dual quadratic optimization used in support

vector regression (5.16) which includes the inner product 〈φ(~xi) · φ(~xj)〉 in its

objective function;

maximise





−1

2

n∑
i=1

n∑
j=1

(αi − βi)(αj − βj) 〈φ(~xi) · φ(~xj)〉

−ε

n∑
i=1

(αi + βi) +
n∑

i=1

yi(αi − βi)





subject to




n∑
i=1

(αi − βi) = 0

αi, βi ∈ [0, ζ]

The process of applying the projection or mapping φ to each input and

then taking inner products between all pairs of inputs is computationally in-

tensive; in cases where the feature space is infinite dimensional it is infeasible;

so we substitute a kernel evaluation for this inner product in the objective

function of the quadratic program and by Theorem (2.3.3) we see that the

inner product is now performed implicitly in the feature space;

maximise





−1

2

n∑
i=1

n∑
j=1

(αi − βi)(αj − βj) K(~xi, ~xj)

−ε

n∑
i=1

(αi + βi) +
n∑

i=1

yi(αi − βi)





subject to




n∑
i=1

(αi − βi) = 0

αi, βi ∈ [0, ζ]

37

2.5.2 Kernelizing the Solution

The solution f(~xt) to a kernelized classification task (4.12) is given in terms

of the weight vector ~w (which is orthogonal to the separating hyperplane),

which in turn is computed using a constraint derived from the dual form of a

quadratic optimization (4.22) and expressed as a linear combination of support

vectors (section 4.2.2) which must be mapped (using φ) into the feature space:

~w =

#sv∑
i

αiyiφ(~xi)

The hypothesis function can be kernelized (so that prediction is possible

even in infinite dimensional spaces) by first mapping the test example ~xt in

its definition using the map φ and then substituting a kernel evaluation with

the dot-product;

f(~xt) = sgn (φ(~xt) · ~w + b) (2.55)

= sgn

(
φ(~xt) ·

∑
i

αiyiφ(~xi) + b

)

= sgn

(∑
i

αiyi 〈φ(~xt), φ(~xi)〉+ b

)
(2.56)

= sgn

(∑
i

αiyi K(~xt · ~xi) + b

)
(2.57)

We refer to equation (2.55) as the primal solution, to equation (2.56) as

the dual solution and to equation (2.57) as the kernelized dual solution. The

solution f(~xt) to a regression task (5.18) can be kernelized in a similar fashion.

It is important to note that this (2.55 and 2.57) is simply an example that

reveals how kernel functions correspond to a specific map into a specific feature

space; in general however it is not necessary to know the structure of either the

implicit map or feature space associated with a kernel function; so although

‘learning’ is performed implicitly in a complex non-linear feature space, all

computation is performed in the input space; this includes the optimization

of all learning parameters as well as the evaluation of the solution.

3

Statistical Learning Theory

In searching for an optimal prediction function the most natural approach

is to define an optimization over some measure that gauges the accuracy of

admissible prediction functions over the training set S = {~xi, yi}n
i=1 ⊂ X; by

applying such a measure or loss function `(f, {~x, y}) to each hypothesis in the

hypothesis space f ∈ H we get a resulting space of functions known as the

loss class :

L(H, ·) = {`(f, ·) : f ∈ H}
Now to test a hypothesis, its performance must be evaluated by some fixed loss

function over the entire observation space. However, since the generation of

observations is governed by the distribution P (~x, y), making some observations

more likely than others, we will need to integrate with respect to it:

Definition 3.0.1 (The expected risk) is the average loss or error that

a fixed function produces over the observation space X × Y, integrated with

respect to the distribution of data generation

RX[f] =

∫

Y

∫

X

`(f, {~x, y}) dP (~x, y) =

∫

Y

∫

X

`(f, {~x, y})P (~x, y) d~x dy

A learning method can now simply minimize the expected risk over all mea-

surable functions in the hypothesis space H for some fixed loss function `:

f ∗ = arg inf
f∈H

RX[f] (3.1)

to find the function f ∗ that, in the case of a binary classification task, separates

the n positive and negative training examples with minimal expected loss; we

38

39

refer to this quantity as the actual risk for a given function class:

RA(H) = inf
f∈H

RX[f] (3.2)

Since P (~x, y) is unknown and also since annotations are not available for the

entire input space (which would make learning quite unnecessary) finding f ∗

using (3.1) is technically impossible.

The material for this chapter was referenced from [CS02], Chapters 8 and

9 of [Muk07], [Che97], [Zho02], [LV07], [BBL03], [PMRR04], [Rak06], [CST00],

[HTH01], [EPP00], [Ama95], [Vap99], [Vap96] and [Vap00].

3.1 Empirical Risk Minimization (ERM)

Since evaluating the expected risk is not possible we can instead try to

approximate it; a Bayesian approach attempts to model P (~x, y) = P (~x)·P (y|~x)

and then estimate it from the training data so that the integration in (3.0.1) is

realizable. A frequentist approach uses the mean loss or empirical risk achieved

over the training data as an approximation of the expected risk;

R̂n[f] =
1

n

n∑
i=1

`(f, {~xi, yi}) (3.3)

The Empirical Risk Minimization (ERM) methodology then minimizes the

empirical risk R̂n in search of a hypothesis, that hopefully has minimized

expected risk as well so that it is able to accurately predict the annotations of

future test examples that are generated by the same input distribution P (~x)

that was used in generating the sample set from which the empirical risk was

initially calculated:

f ∗n = arg inf
f∈H

R̂n[f] (3.4)

The remainder of this chapter discusses conditions under which ERM’s

choice of hypothesis f ∗n is equal to the best possible hypothesis f ∗. To begin

with we would like to measure the deviation between the expected risk (or test

error) of the hypothesis f ∗n that has minimal empirical risk and the actual risk

as defined in (3.2); moreover we would like to study the asymptotic behaviour

of this deviation; this quantity is the sample error and will be considered in

detail in later sections;

40

RS = RX[f ∗n]−RX[f ∗] (3.5)

There are two subtleties that must first be considered; to begin with it

is clear that the effectiveness of ERM is highly dependent on its associated

exploration algorithm which is primarily responsible for searching through the

hypothesis space, i.e. iterating through each element of the space H so that

computing the infimum in (3.4) is possible. Minimization of the empirical risk

is only half of the ERM learning problem; it must be supplied with the argu-

ments over which it can apply the minimization. It is possible for the learning

algorithm, which is a combination of ERM and the exploration algorithm, to

find a local minima not far from its starting position and get stuck; potential

solutions to this problem will be discussed later.

Secondly, when no data is available the empirical risk (or training loss

in this case) is zero and remains as such as long as the prediction function

correctly classifies all elements in the training set. As more data becomes

available it increases as the prediction function fails to correctly classify an

increasing number of training set elements; so the empirical risk is a monoton-

ically increasing function of n. Furthermore, it never surpasses the expected

risk; in the limit the empirical risk plateaus but to be able to examine the

convergence of the empirical risk in more detail, we introduce a probabilistic

generalization bound.

Lemma 3.1.1 (Chernoff’s Inequality) For a fixed function f ∈ H and

a bounded loss function A ≤ l (f) ≤ B, the probability of at least an absolute

ε-difference between expected and empirical risks is bounded from above;

P
(
RX[f]− R̂n[f] ≥ ε

)
≤ e−nε2/(B−A)2 (3.6)

and varies only with ε and n as well as the loss function bounds A and B.

This is essentially a quantitative expression of the law of large numbers: as

n increases the bound 2e−2nε2 is reduced exponentially fast; this implies an

41

exponential convergence in probability so that the empirical risk is a proba-

bilistically unbiased estimate of the expected risk;

limn→∞ R̂n[f]
P→ RX[f] (3.7)

⇐⇒ ∀ε > 0 ∃δ = e−nε2/(B−A)2 s.t. P
(
RX[f]− R̂n[f] ≥ ε

)
≤ δ

⇐⇒ ∀ε > 0 ∃δ = e−nε2/(B−A)2 s.t. P
(
RX[f]− R̂n[f] < ε

)
> 1− δ

The ε defines a one-sided confidence interval while the δ is its correspond-

ing confidence level.

This closeness of the empirical risk to the expected risk defines the notion

of generalization; it gives us an assurance that by minimizing the empirical

risk (3.4), we are more likely to select a function that will have a small ex-

pected risk as well or in simpler terms; when test (expected) performance

and training (empirical) performance are highly correlated which allows the

learner to determine the parametrization of an accurate prediction function.

Conditions for generalization and a diminishing sample error RS are the focus

of this chapter.

The generalization error is defined as the difference between the empirical

and expected risks; (3.6) is an example of a generalization bound that attempts

to link the performance of a prediction function on some training set to its

potential performance on an unseen test set; since there exists the possibility

that the distribution of the training set is highly unrepresentative of the actual

distribution P (~x, y), generalization bounds only hold with a certain probabil-

ity. Furthermore, the generalization bound is void if the value of ε (in 3.6)

exceeds the largest possible generalization error. Finally, the generalization

potential of a learning method lies in its ability [Vap00] to regulate the rate of

convergence defined by some generalization bound.

The convergence in (3.7), as well as others we will see in the sections

that follow, define what is commonly referred to as a Probably Approximately

Correct (PAC) Generalization; suppose we would like to specify with a certain

confidence when generalization is likely to occur; then we can select a value for

δ which as we see above is a function of both n and ε; PAC Generalization then

occurs when with probability at least 1−δ, the empirical risk is ε-approximately

equivalent to the expected risk or in simpler terms; the generalization error is

almost surely very close to zero.

42

Figure 3–1: If we restrict the hypothesis space by considering only linear hypothesis; the
number of admissible classification functions (which in this case implies perfect separation of
the blue and red examples) decreases as the size of the training set (solid circles) increases;
the generalization potential of functions in this reduced set simultaneously increases as they
classify test examples (open circles) more accurately. However even amongst the set of
admissible functions there is one unique function (which is possibly equivalent to the target
function) that generalizes better than all others.

However, a learning algorithm that returns a prediction function with

low empirical risk that is un-generalizable is of no use; conversely a prediction

function that is able to generalize satisfying (3.7) but that has a large empirical

risk is impossible to identify using the ERM approach.

Prediction functions chosen by ERM alone are often unable to generalize;

this is because there can be infinitely many functions that have minimal risk,

amongst which a single unique element maintains the highest generalization

potential. As an example let us consider the hypothesis space that consists

of all possible functions so that any training set can be fitted with an (un-

necessarily complex) function whose empirical risk is zero but that has no

generalization potential whatsoever; if we do not restrict the capacity of the

hypothesis space then learning is simply not possible!

In section 2.4 we consider two regularization methods that exclude those

sections of the hypothesis space that we know a priori will not contain the

empirical target function; as more training data becomes available, we can

make stronger assumptions on the distribution of the data and hence regulate

the capacity of the hypothesis space further still.

43

3.2 Uniformly Convergent Generalization Bounds

It is obvious that for any fixed value of n, the function f ∗ defined in

(3.1) that minimizes the expected risk is not necessarily equivalent to the

function f̂ ∗ defined in (3.4) that minimizes the empirical risk. This is due

to a significant weakness of the convergence (3.7) in that it is a point-wise

limit implying that the rate of convergence may differ amongst the various

functions in the function space H so that even for very large n where we have

‘convergence’ for some subset of H there might exist functions that have not

yet even begun to approach their limits; we must consider the worst-case in

our analysis of the convergence of the empirical risk and hence need to extend

Chernoff’s Inequality to consider all functions collectively by bounding from

above the supremum of the generalization error:

sup
f∈H

(
RX[f]− R̂n[f]

)
≤ ε (3.8)

This is a stronger generalization criteria than (3.7): intuitively, since we do

not know in advance which function is optimal at future stages of the learning

process, we must consider the worst case of every function and union these

together to form a uniform (pessimistic) bound.

A generalization bound similar to Chernoff’s inequality but for all func-

tions in H may be derived by taking the union over H and then using the

sub-additivity property of probability measures where the probability of the

union is bounded from above by the sum of the individual probabilities in

(3.6):

P
(
∃f ∈ H :

(
RX[f]− R̂n[f] ≥ ε

))
= P

(
∪f∈H

(
RX[f]− R̂n[f] ≥ ε

))

≤
∑

f∈H

P
(
RX[f]− R̂n[f] ≥ ε

)

≤
∑

f∈H

e−nε2/(B−A)2

= |H|e−nε2/(B−A)2 (3.9)

We can rewrite (3.9) in a form similar to (3.8) where if the supremum of

the generalization error is bounded from above by ε then all functions in H

must also be bounded by ε:

44

P

(
sup
f∈H

(
RX[f]− R̂n[f]

)
≤ ε

)
= P

(
∀f ∈ H :

(
RX[f]− R̂n[f] ≤ ε

))

= 1− P
(
∃f ∈ H :

(
RX[f]− R̂n[f] ≥ ε

))

> 1− |H|e−nε2/(B−A)2

Now let δ = |H|e−nε2/(B−A)2 ; then solving for ε we have

ε =

√
log

(|H|
δ

)
(B − A)2

n
(3.10)

Lemma 3.2.1 (Hoeffding’s Inequality) A distribution-free bound that quan-

tifies the deviation of the empirical mean R̂n[f] from its true value RX[f] over

H

sup
f∈H

(
RX[f]− R̂n[f]

)
≤

√
log

(|H|
δ

)
(B − A)2

n
(3.11)

and which holds with probability at least 1 − δ for a finite hypothesis space

|H| < ∞.

The convergence is still exponentially fast (3.9) but the generalization bound

now depends only on the choice of function class H, the size of the training

set and a parameter δ : 0 ≤ δ ≤ 1; it is said to be distribution-free because it

holds independently of P (~x, y), the distribution of data generation. Also the

bound holds with probability at least 1−δ for the ERM prediction function f̂ ∗

defined in (3.4); moreover it holds (with the exact same probability 1−δ) for all

other hypothesis in the function space H and hence is a uniform convergence

bound. To see this let us first formally define the notion of one-sided uniform

convergence:

∀ε > 0 ∃N ∈ N such that ∀n > N and ∀f ∈ H
(
RX[f]− R̂n[f]

)
< ε

(3.12)

Now for any choice of ε > 0, we can show that (3.11) satisfies (3.12) by

taking a value of N(ε, δ) ∈ N large enough so that Hoeffding’s bound is itself

bounded by ε for all n > N(ε, δ);

√
log

(|H|
δ

)
(B − A)2

n
< ε

45

The value of N (which depends on our choice of ε and δ) is called the sample

complexity of the learning algorithm; more specifically it is a probabilistic

estimate of the number of training examples that are necessary and sufficient

for an algorithm to learn (generalize) some (unknown) target concept; instead

of solving for ε in (3.10) we solve for n to get:

n ≥
(

B − A

ε

)2

log

(|H|
δ

)
= N

so with probability (at least) 1− δ and (at least) n ≥ N samples the general-

ization error is epsilon bounded for all functions.

Now does satisfying Chernoff’s inequality imply uniform convergence of

the empirical risk to the expected risk over the entire function space H? Com-

paring the bounds in (3.9) and (3.6) we see that the former is simply a multiple

(by the size of the hypothesis space) of the latter and hence both bounds are es-

sentially equivalent. So if every function f ∈ H satisfies Chernoff’s inequality

individually then it must satisfy Hoeffding’s inequality collectively and hence

(3.12) is satisfied.

It is important to note that there are two ways in which the general-

ization bound (3.11) can be tightened; by either bounding the capacity of

the hypothesis space (whose cardinality can then be roughly measured even

if it is uncountably infinite) or by bounding the stability (definition 2.4.1) or

sensitivity of the prediction function, output by some learning algorithm, to

perturbations in the training set (definition 2.4.2).

The search for an optimal prediction function is conducted in the loss class

defined over some hypothesis space and not in the hypothesis space itself, we

have so far ignored this technicality; we can extend the notion of uniform

convergence over a hypothesis space and characterize uniformly convergent

loss classes as follows:

Definition 3.2.1 (Uniform Glivenko-Cantelli Class (uGC)) is a class

of functions L(H) = {`(f) : f ∈ H} for a fixed bounded loss function

A < ` < B such that the functions f ∈ H are integrable with respect to the

probability measure P (~x, y) and the following one-sided uniform convergence

is satisfied;

∀ε > 0 lim
n→∞

P

(
sup

`(f)∈L(H)

(
RX[f]− R̂n[f]

)
> ε

)
= 0

46

In the following subsection we will prove that a necessary and sufficient

condition for consistency of ERM is that the loss class L(H) is uGC.

3.3 Generalization and the Consistency of ERM

In this learning framework, the key quantity that is being estimated is the

actual risk; so we say the learning method is consistent [Vap00] for function

class H and the distribution P (~x, y) if the empirical risk (for the prediction

function fn output by the learning algorithm) converges in probability to the

actual risk:

lim
n→∞

R̂n[fn]
P−→ inf

f∈H
RX[f] ⇐⇒

∀ε > 0 ∃δ s.t. P

(∣∣∣∣R̂n[fn]− inf
f∈H

RX[f]

∣∣∣∣ ≥ ε

)
≤ δ (3.13)

There are two essential differences between consistency as defined above and

generalization; firstly, consistency is defined by a convergence of the empirical

risk of the prediction made by the learning algorithm (i.e. choice of the pre-

diction function is dependent on n) whereas the weaker generalization (3.7)

is a point-wise convergence over a fixed prediction (i.e. choice of the predic-

tion function is independent of n) and the stronger generalization (3.11) is a

uniform convergence over all predictions; so in this respect consistency is de-

pendent on the learning algorithm (of which the exploration of the hypothesis

space is an essential part) although generalization is not. In fact we will later

show that uniform convergence (strong generalization) and consistency of the

learning algorithm ERM are essentially equivalent.

Secondly, the limit of the consistency convergence is the minimized ex-

pected risk. Consistency is therefore stronger than the weaker generaliza-

tion but weaker than the stronger generalization criteria and requires that the

learning algorithm speculate on optimality of functions in the hypothesis space

(which involves its exploration) before precisely estimating its expected risk.

The performance of ERM is optimal if the function f ∗n that minimizes the

empirical risk is equivalent (in probability) to the function f ∗ that minimizes

the expected risk;

∃N ∈ N such that ∀n > N : f ∗n = arg inf
f∈H

R̂n[fn]
P
= arg inf

f∈H
RX[f] = f ∗

47

Figure 3–2: Uniform convergence of the empirical risk (red) to the expected risk (blue)
implies a consistent learning method.

So for ERM in particular whose choice in prediction function satisfies

(3.4), consistency is also implied [Gun98] by:

lim
n→∞

arg inf
f∈H

R̂n[fn]
P
= arg inf

f∈H
RX[f] = f ∗ (3.14)

So is the consistency of the ERM learning algorithm implied by the uni-

form convergence (3.12) in probability of the generalization error to zero and

vice versa, i.e. is a uGC loss class sufficient for consistency of ERM? Yes it is,

in fact the reasoning that led us to move from a point-wise to a uniform con-

vergence at the beginning of Section 3.2 was precisely so that the consistency

criteria (3.13) would be satisfied.

To see this more formally; let us assume that we have uniform conver-

gence (strong generalization) so that the supremum of the generalization error

is bounded by some ε > 0; looking at Figure 3–2 we see that the empirical risk

evaluated for any prediction function must then lie wholly within an ε-tube

defined around the expected risk; in particular the empirical risk of the func-

tion f ∗ that minimizes the expected risk (and the function f ∗n that minimizes

the empirical risk) must lie within this ε-tube which leads to the implications

48

(3.15) and (3.16).

sup
f∈H

(
RX[f]− R̂n[f]

)
≤ ε =⇒ inf

f∈H
RX[f]−R̂n

[
arg inf

f∈H
RX[f]

]
= RX[f ∗]−R̂n[f ∗] < ε

(3.15)

sup
f∈H

(
RX[f]− R̂n[f]

)
≤ ε =⇒ RX

[
arg inf

f∈H
R̂n[f]

]
− inf

f∈H
R̂n[f] = RX[f ∗n]−R̂n[f ∗n] < ε

(3.16)

Also, since f ∗ minimizes the expected risk (3.1) and f ∗n minimizes the empirical

risk (3.4) the following are trivially satisfied:

R̂n[f ∗n] ≤ R̂n[f ∗] (3.17)

RX[f ∗] ≤ RX[f ∗n]

Combining inequalities (3.16) and (3.17) together we have the following:

RX[f ∗] ≤ RX[f ∗n] ≤ R̂n[f ∗n] + ε ≤ R̂n[f ∗] + ε ≤ RX[f ∗] + 2ε (3.18)

So we have shown that R̂n[f ∗n] and RX[f ∗] are ε-equivalent in the limit which is

in fact the definition of consistency for which uniform convergence is therefore

a sufficient criteria;

sup
f∈H

(
RX[f]− R̂n[f]

)
< ε =⇒ inf

f∈H
RX[f]−R̂n

[
arg inf

f∈H
R̂n[f]

]
= RX[f ∗]−R̂n[f ∗n] < ε

(3.19)

The sample error RS was defined in (3.5); intuitively it gauges the true error of

the optimal prediction made by the empirical process. Generalization dictates

that R̂n[f ∗n] tends to RX[f ∗n] while a small sample error implies that RX[f ∗n]

tends to RX[f ∗]; so consistency demands generalization of the empirical process

and a sample error RS that diminishes to zero. Combining the inequalities

(3.15), (3.16) and (3.17) together we have the following:

RX[f ∗n] ≤ R̂n[f ∗n] + ε ≤ R̂n[f ∗] + ε ≤ RX[f ∗] + 2ε (3.20)

The first and last terms in the above sequence of inequalities include those in

the definition of the sample error as well as 2ε which is arbitrarily small to begin

with, so the exponentially fast rate of uniform convergence is approximately

half the rate at which the sample error is guaranteed to diminish to zero.

So we have shown that the learning process depends on the distribution

P (~x, y) but more significantly on the function space H; this is because the

49

uniform convergence of the empirical risk to the expected risk and hence the

consistency of the learning method is dependent on it. We would now like

to study properties of loss classes (and their associated function spaces) that

guarantee that it is uGC and hence that learning is in fact possible.

3.4 Vapnik-Chervonenkis Theory

One serious limitation of Hoeffding’s bound (3.11) is that it was necessary

to assume that the function space is finite |H| < ∞ since we use the finite sub-

additivity of probability measures to derive it in (3.9); it is possible to extend

Hoeffding’s bound for countably infinite hypothesis spaces [BBL03] however

we would like to examine learning in an infinite uncountable function space

for which the union bound does not hold.

Since we cannot use the cardinality of the hypothesis space in deriving

a generalization bound since it is possibly infinite, we need to find a new

measure that relates to the notion of generalization; specifically we need to

know why, for a given learning task, functions from one infinite space are able

to generalize whereas those from another infinite space are not. In previous

sections we saw that for ERM, generalization and consistency were equivalent

which in turn was necessitated and guaranteed by the uniform convergence of

the empirical risk to the expected risk; this much has not changed.

The cardinality of a function space is a count of the number of functions

in it and is essentially a measure of its complexity; since we are dealing with

infinite hypothesis spaces we will now consider various other measures through

which we can gauge the complexity of a hypothesis space and then relate it

to the uniform convergence of the generalization error to zero in order to

determine if learning is possible. We begin by defining a measure that is

essentially an ε-count of the number of functions in a function space in terms

of the supremum norm:

Definition 3.4.1 (Epsilon Net) Given a function space H and some ε >

0, we say that a subset U ⊂ H is an ε-net (or ε-cover) for H if

∀f ∈ H ∃f̆ ∈ U such that ‖f, f̆‖∞ < ε

Members of the set U are referred to as prototype functions. If for all ε > 0,

H has a finite ε-net then it is totally bounded (or precompact) which along

50

with Cauchy completeness implies compactness. The converse also holds true

so that a space which is compact must also be Cauchy complete and totally

bounded (generalization of the Heine-Borel Theorem) and hence have a finite

ε-net. Finally, a space that is bounded must also be totally bounded although

the converse is not necessarily implied. We can also define the ε-net Ct of a

single function f̆t ∈ H as the set of functions that are within its ‘reach’ as

measured by the supremum norm:

∀f ∈ Ct ‖f − f̆t‖∞ ≤ ε

So the basic intuition behind VC-Theory is that in any function (hypoth-

esis) space, if two functions are ε-close then it is reasonable to assume that

they will perform similarly on a fixed training set (or any fixed test set) and

hence any generalization bound that holds for one function will naturally hold

for the other.

Since the measure defined above groups functions together by ensuring

that each one is entirely contained in the ε-tube of at least one of a fixed set

of functions, we will also require a contrasting measure to assess the size of

the gap between functions as measured by the infimum norm:

Definition 3.4.2 (Epsilon Separation) Given a function space H and

some ε > 0, we say that a subset of l functions of H are ε-separated if

{fi}l
i=1 ⊂ H satisfies ‖fi, fj‖ > ε ∀i 6= j

3.4.1 Compact Hypothesis Spaces H

All hypothesis that produce the same classification (or the same ε-close regres-

sion) on a given training data set can be grouped together into an equivalence

class since, from the perspective of ERM, they are alike in that they have

the same empirical risk. The number of such equivalence classes is called the

VC-Entropy of H when the outputs are binary y ∈ {+1,−1} and analogously

in the case of regression estimation is called the covering number of H. We

now define the latter as well as a related measure:

51

Definition 3.4.3 (Epsilon Covering Number) Given an infinite cardi-

nality function space H, the covering (or entropy) number N(H, ε) is the min-

imal c ∈ N such that

∃
{

f̆i

}c

i=1
where ∀f ∈ H ∃t : 1 ≤ t ≤ c such that ‖f − f̆t‖∞ ≤ ε

Essentially, it is smallest number of functions in H that can serve as an ε-

net for H. Geometrically, N(H, ε) is the minimal number of disks in H with

radius ε needed to cover H. The empirical covering number is restricted to the

training data set Sn = {~x1, ~x2, · · · , ~xn}; denoted by N̂(H, ε, Sn) it is then the

minimal c ∈ N such that

∃
{

f̆i

}c

i=1
where ∀f ∈ H ∃t : 1 ≤ t ≤ c such that max

j=1,··· ,n

∣∣∣f(~xj)− f̆t(~xj)
∣∣∣ ≤ ε

Since the empirical covering number is dependent on the data we must work

with its expected value, which is taken with respect to the input distribution

and denoted as ESnN̂(H, ε, Sn).

Use of the expected empirical covering number in a generalization bound

results in its dependence on the input distribution P (~x, y); since in practice the

true covering number for most compact real spaces of interest is not calculable,

finding distribution independent bounds is generally quite difficult or not even

possible.

Definition 3.4.4 (Epsilon Packing Number) Given a function space H,

the packing number D(H, ε) is the maximal l ∈ N such that:

{fi}l
i=1 ⊂ H satisfies ‖fi, fj‖p > ε ∀i 6= j

Essentially, it is the maximal number of functions in H that can be ε-separated.

The following inequalities upper and lower bound the covering number in

terms of the packing number;

D(H, 2ε) ≤ N(H, ε) ≤ D(H, ε) (3.21)

therefore we can use the latter in computing an approximation to the former.

In [Muk07] we see derivations for such approximations.

52

In section 2.4 the RKHS HT was bounded which implies it is totally

bounded (precompact) and therefore must have a finite, minimal (not neces-

sarily unique) ε-net U = {f̆1, f̆2, · · · f̆c} ⊂ HT where c is the covering number

N(HT, rε(`)); the radius rε(`) of the covering is dependent on both the loss

function ` and the value of ε we use to bound the supremum of the generaliza-

tion error. Let us denote the ε-net of the prototype function f̆t by Ct which

satisfies the following:

c∪
t=1
Ct = HT (3.22)

Let us now consider two distinct functions; a prototype function f̆t of the

space H and any other function f ∈ Ct. Our goal is to bound the difference

between the generalization errors of f̆t and f ; this will lead us to a new gen-

eralization bound involving the covering number instead of the cardinality of

the hypothesis space.

|RX(f)− R̂n(f)−RX(f̆t) + R̂n(f̆t)| ≤ |RX(f)−RX(f̆t)|+ |R̂n(f)− R̂n(f̆t)|
=

∣∣∣∣
∫

`(f, {~x, y})− `(f̆t, {~x, y}) dP (~x, y)

∣∣∣∣

+

∣∣∣∣
1

n

∑
`(f, {~x, y})− `(f̆t, {~x, y})

∣∣∣∣(3.23)

Definition 3.4.5 (Lipschitz Loss Functions) are a class of functions

that satisfy the following inequality

‖`(f1, ·)− `(f2, ·)‖∞ ≤ L‖f1 − f2‖∞

for a given Lipschitz constant L. Examples of Lipschitz loss functions include

the ε-insensitive function, the square loss function (only when the annotations

can be bounded) and the hinge loss function.

So for any Lipschitz loss function, the integral in (3.23) can then be bounded:

∫
`(f, {~x, y})− `(f̆t, {~x, y}) dP (~x, y) ≤

∫ ∥∥∥`(f, {~x, y})− `(f̆t, {~x, y})
∥∥∥
∞

dP (~x, y)

=
∥∥∥`(f, {~x, y})− `(f̆t, {~x, y})

∥∥∥
∞

∫
dP (~x, y)

=
∥∥∥`(f, {~x, y})− `(f̆t, {~x, y})

∥∥∥
∞

≤ L‖f − f̆t‖∞ (3.24)

53

Similarly for the sum in (3.23)

1

n

∑
`(f, {~x, y})− `(f̆t, {~x, y}) ≤ 1

n

∑∥∥∥`(f, {~x, y})− `(f̆t, {~x, y})
∥∥∥
∞

=
∥∥∥`(f, {~x, y})− `(f̆t, {~x, y})

∥∥∥
∞

≤ L‖f − f̆t‖∞

From which it then follows that:

|RX(f)− R̂n(f)−RX(f̆t) + R̂n(f̆t)| ≤ L
∣∣∣‖f − f̆t‖∞

∣∣∣ + L
∣∣∣‖f − f̆t‖∞

∣∣∣
≤ 2L

∣∣∣‖f − f̆t‖∞
∣∣∣ (3.25)

If we consider a square loss function `(f, {~x, y}) = (f(~x) − y)2 that is obvi-

ously positive but also bounded from above `(f, ·) ≤ B then we can derive

([PMRR04],[Muk07]) a value for the Lipschitz constant; following from (3.23)

we have:
∣∣∣∣
∫

(f(~x)− y)2 − (f̆t(~x)− y)2 dP (~x, y)

∣∣∣∣ +

∣∣∣∣
1

n

∑
(f(~x)− y)2 − (f̆t(~x)− y)2

∣∣∣∣

=

∣∣∣∣
∫ (

f(~x)− f̆t(~x)
)(

f(~x) + f̆t(~x)− 2y
)

dP (~x, y)

∣∣∣∣

+

∣∣∣∣
1

n

∑(
f(~x)− f̆t(~x)

)(
f(~x) + f̆t(~x)− 2y

)∣∣∣∣

≤ ‖f − f̆t‖∞
∫ ∣∣∣

(
f(~x)− y + f̆t(~x)− y

)∣∣∣ dP (~x, y)

+‖f − f̆t‖∞ 1

n

∣∣∣
∑(

f(~x)− y + f̆t(~x)− y
)∣∣∣

≤ ‖f − f̆t‖∞
∫ ∣∣∣`(f, {~x, y}) + `(f̆t, {~x, y})

∣∣∣ dP (~x, y)

+‖f − f̆t‖∞ 1

n

∣∣∣
∑

`(f, {~x, y}) + `(f̆t, {~x, y})
∣∣∣

≤ 2B‖f − f̆t‖∞ + 2B‖f − f̆t‖∞
≤ 4B‖f − f̆t‖∞

Let us return to the general case of Lipschitz loss functions and arbitrarily set

the radius of the covering to be a function of ε and the Lipschitz constant:

∀f ∈ Ct ‖f − f̆t‖∞ ≤ rε(`) = ε/4L

54

from which it follows that the difference between the generalization errors of

f̆t and f is bounded by ε/2:

sup
f∈Ct

|RX(f)− R̂n(f)−RX(f̆t) + R̂n(f̆t)| ≤ 2L ‖f − f̆‖∞ (3.26)

≤ 2L rε(`)

= ε/2

So if the largest generalization error of functions in Ct is at least ε then

the generalization error of the prototype function f̆t must be at least ε/2;

sup
f∈Ct

|RX(f)− R̂n(f)| ≥ ε =⇒ |(≥ ε)−RX(f̆t) + R̂n(f̆t)| ≤ ε/2

=⇒ |RX(f̆t)− R̂n(f̆)| ≥ ε/2 (3.27)

When one event implies another as above, then the formers probability

of incidence is always less than or equal to the latter’s:

P (sup
f∈Ct

|RX(f)− R̂n(f)| ≥ ε) ≤ P
(
|RX(f̆)− R̂n(f̆)| ≥ ε/2

)
(3.28)

We can apply Chernoff’s Inequality (Definition 3.1.1) to the fixed proto-

type function f̆t:

P
(
|RX(f̆t)− R̂n(f̆t)| ≥ ε/2

)
≤ 2 exp

{
−n

(ε/2)2

(B − A)2

}
(3.29)

which holds for all prototype functions of which there are a finite number;

hence we can apply the union bound since (3.22) holds and then use (3.28)

and (3.29) to get the following PAC bound that converges exponentially fast:

P

(
sup

f∈HT

|RX(f)− R̂n(f)| ≥ ε

)
≤

|U|∑
t=1

P

(
sup
f∈Ct

|RX(f)− R̂n(f)| ≥ ε

)
(3.30)

≤
|U|∑
t=1

P
(
|RX(f̆t)− R̂n(f̆t)| ≥ ε/2

)

≤ 2 N(HT, rε(`)) exp

{
−n

(ε/2)2

(B − A)2

}

≈ 2 ESnN̂(H, rε(`), Sn) exp

{
−n

(ε/2)2

(B − A)2

}

55

Note that the supremum is now taken over the space HT instead of over

the cover Ct. Finally applying the logic of (3.9) we have our result:

P

(
sup

f∈HT

∣∣∣RX[f]− R̂n[f]
∣∣∣ ≤ ε

)
≥ 1−2 ESnN̂(H, rε(`), Sn) exp

{
−n

(ε/2)2

(B − A)2

}

(3.31)

Upon careful inspection we see that it is almost identical to Hoeffding’s Bound

(3.10) with the exception of the substitution of |H| for the expected empirical

covering number ESnN̂(H, rε(`), Sn). Let δ = 2ESnN̂(H, rε(`), Sn) e−n(ε/2)2/(B−A)2 ,

then solving for ε we have:

sup
f∈HT

∣∣∣RX[f]− R̂n[f]
∣∣∣ ≤ 2(B − A)

√
log 2ESnN̂(H, rε(`), Sn) + log(1/δ)

n
(3.32)

Examining the above inequality we can rewrite the sufficiency condition for

uniform convergence in terms of the covering number alone since all other

terms diminish to zero;

lim
n→∞

logEN̂(HT, rε(`))

n
= 0, ∀ε (3.33)

in [Vap00] this is referred to as the ‘second milestone’ in learning theory be-

cause it is sufficient and necessary for consistency (as well exponentially fast

uniform convergence [SS01]); note that (3.33) is satisfied as long as the capac-

ity of the hypothesis space, as measured by the empirical covering number,

increases at most polynomially in n; if it were to increase exponentially in n

then the limit above does not converge to zero. So given a compact hypothesis

space (which always has a finite cover) as well as a Lipschitz loss function, uni-

form convergence and therefore consistency are then implied; so compactness

and Lipschitz loss are sufficient criteria for uGC classes.

Unfortunately, the notion of covering numbers and ε-nets does not trans-

late well to binary classification; and so the generalization bound (3.32) above

cannot be applied either. This is because binary thresholding is scale insensi-

tive , i.e. the zero-one loss function does not satisfy the Lipschitz criteria; two

classification functions that are only slightly different can have a difference in

loss of one.

56

3.4.2 Indicator Function Hypothesis Spaces B

In [SS01] we see distribution dependent generalization bounds that are derived

in terms of another measure of the complexity of a function class known as

the VC-Entropy (or the related measure VC-Annealed-Entropy); distribution

independent bounds are also derived in terms of the growth function. We begin

by defining these measures for binary classification:

Definition 3.4.6 (VC-Entropy) is the finite number of permutations of

annotations assigned, by all hypothesis in the potentially infinite (fixed) space

B, to an entire (fixed) observation vector set Sn; it varies with the space B

as well as the set Sn and so is denoted by N(B, Sn); since there are only two

possible annotations, it can attain a maximum value of 2n. Each equivalence

class (whose members impose the same classification on the training set) will

be denoted by Ct and satisfies (3.22) as before; furthermore we will select a

single representative f̆t from each class; this prototype function can be any

member of Ct; the set of prototype functions is denoted by U. Since the VC-

Entropy depends on the training data we must integrate it with respect to the

input distribution over all observation sets of size n so that it can be used in a

generalization bound that is applicable to any given data set; hence we define

the Annealed VC-Entropy which is simply the logarithm of the expected value

of the VC-Entropy and is denoted by logESnN(B, Sn).

Definition 3.4.7 (Symmetrization) Given a second independent ‘ghost’

sample set S̆ also of size n, the generalization error can be bounded as follows:

P

(
sup
f∈B

RX(f)− R̂n(f, S) ≥ ε

)
≤ 2P

(
sup
f∈B

R̂n(f, S̆)− R̂n(f, S) ≥ ε/2

)

(3.34)

Intuitively, if the difference in empirical risk between two independent samples

tends (uniformly) to zero then they should both tend (uniformly) to the expected

risk as well. For a proof refer to [BBL03].

Now we can derive a generalization bound in terms of the Annealed VC-

Entropy; let us denote the VC-Entropy of the set S ∪ S̆ by k = N(B, S ∪ S̆)

then the supremum of the loss between the training S and ghost S̆ samples

over the space B is equivalent to the supremum of the same loss over each

representative f̆t from each equivalence class Ct which collectively form the

set U = {f̆1, f̆2, · · · f̆k} of size k; we can then apply the union bound since

57

there are a finite number of equivalence classes:

2P

(
sup
f∈B

(
R̂n(f, S̆)− R̂n(f, S)

)
≥ ε/2

)

= 2P

(
sup
f̆t∈U

(
R̂n(f, S̆)− R̂n(f, S)

)
≥ ε/2

)

≤ 2
k∑

i=1

P
(
R̂n(f̆i, S̆)− R̂n(f̆i, S) ≥ ε/2

)
(3.35)

= 2N(B, S ∪ S̆) P
(
R̂n(f̆i, S̆)− R̂n(f̆i, S) ≥ ε/2

)

≤ 2N(B, S ∪ S̆) exp{−(ε/2)2n} (3.36)

≤ 2ESnN(B, Sn) exp{−(ε/2)2n} (3.37)

where (3.36) follows from an application of Chernoff’s Inequality while (3.37)

results from taking the expected value over the training set; if (3.36) holds for

all possible training sets then it must naturally hold for the expected value

as well. Note that although we have derived the above generalization bound

using a ghost sample set, in practice this set need not be generated and is used

only when theoretically applying the symmetrization principle.

Combining (3.34) and (3.35) we have the following distribution dependent,

exponentially fast PAC generalization bound:

P

(
sup
f∈B

RX(f)− R̂n(f) ≥ ε

)
≤ 2 exp{logESnN(B, Sn)− ε2n} (3.38)

A condition similar to (3.33) can be procured from the above generalization

bound; it too serves as a criteria for testing if learning is in fact possible when

the zero-one loss function is employed:

lim
n→∞

logESnN(B, Sn)

n
= 0, ∀ε (3.39)

Definition 3.4.8 (Growth Function) or shattering coefficient is defined

as the maximal (worst-case) VC-Entropy over all observation vector sets of

size n:

ΠB(n) = sup{N(B, Sn) | ∀Sn ∈ X}
Note that ΠB(n) depends only on the class of functions B under consideration

as well as the size of the training data set n; therefore only one set of patterns

in X might attain the maximal value ΠB(n).

58

The growth function serves as an upper bound for both the VC-Entropy

and the Annealed VC-Entropy:

N(B, Sn) ≤ logESnN(B, Sn) ≤ ΠB(n) ≤ ΠB(n)

(
1 + log

n

ΠB(n)

)

To derive a generalization bound in terms of the growth function, we

can make use of the above inequalities and replace the Annealed VC-Entropy

in (3.38) with the growth function which gives us the following distribution

independent, exponentially fast PAC bound:

P

(
sup
f∈B

RX(f)− R̂n(f) ≥ ε

)
≤ exp{log ΠB(n)− ε2n} (3.40)

Let δ = exp{log ΠB(n) − ε2n} then after solving for ε we have the most

significant PAC generalization bound:

Theorem 3.4.1 (Vapnik and Chervonenkis) For all hypothesis f ∈ B

and some δ : 0 ≤ δ ≤ 1 the following generalization bound, given in terms of

the growth function of B, holds with probability 1− δ independent of the input

distribution;

sup
f∈B

(
RX(f)− R̂n(f)

)
≤

√
log ΠB(n) + log(1/δ)

n
(3.41)

A limit can be procured from the above generalization bound which serves

as a criteria for testing if learning is possible when the zero-one loss function

is employed;

lim
n→∞

log ΠB(n)

n
= 0, ∀ε (3.42)

in [Vap00] this is referred to as the ‘third milestone’ in learning theory because

it is sufficient and necessary for consistency and exponentially fast uniform

convergence for all underlying input distributions ; it is therefore more general

than either (3.33) or (3.39).

We can now try to illustrate why restricting the capacity of the hypothesis

space (as was the case with Ivanov and Tikhinov Regularization, Section 2.4)

is absolutely necessary for learning to occur; if for some training set of size

n, the functions in B can shatter it so that ΠB(n) = 2n then (3.42) does not

converge to zero which implies there exists input distribution(s) for which the

generalization error does not converge uniformly to zero. So we see that it is

important that choice of the hypothesis space must be made with reference to

59

Figure 3–3: Consider the hypothesis space comprising of all discriminant hyperplanes in
the feature space R2; [row 1] any configuration and labeling of 2 points can be separated by
a hyperplane and hence V ≥ log 2. [rows 2 & 3] there exists a non-collinear configuration
of 3 points that can be shattered and hence V ≥ log 3. The VC-Entropy of a collinear
configuration [row 4, left] of 3 points is less than that of the previous configuration; the
former cannot be shattered by a hyperplane. Finally, no configuration of 4 points can be
shattered by a hyperplane and hence V = log 3. More generally, the VC-Dimension of
half-spaces in Rd is d + 1.

60

the current size of the training set; in particular the hypothesis space is too

rich if it can shatter the training set.

Definition 3.4.9 (VC-Dimension) Intuitively, it is the maximum number

of observation vectors for which the hypothesis space B is unbiased; a rough

measure of the capacity of B. Technically, it is the logarithm of the maxi-

mum number of observation vectors that can be shattered or separated into

two classes in all possible ways by functions in a particular hypothesis space

B:

V(B) = log sup{n : ΠB(n) = 2n}
The VC-Dimension has value log n if there exists even a single (maximal) set

of n patterns in X that can be shattered. The VC-Dimension is infinite if for

any n it is possible to shatter n observation vectors with functions taken from

B.

It is also possible to define VC-Dimensions for hypothesis spaces of real-

valued functions, see [EP99] for details. Let us assume that the VC-Dimension

for a particular class B is finite; if the VC-Dimension is greater than the size

of the training set then it can obviously be shattered by functions in the

hypothesis space so that the growth function has value log 2n. Sauer’s Lemma

provides a bound for the growth function when n exceeds the VC-Dimension:

ΠB(n) =

{
= log 2n when n ≤ V

≤ ∑V
i=0

(
n
i

) ≤ (
en
V

)V
when n > V

We have already seen that when the growth function attains its maximum

value (log 2n) then learning is not always possible; it is now interesting to note

that this is always the case when the VC-Dimension is greater or equal to

the number of training examples available; intuitively we must have enough

training examples to represent all sections of the space shattered by a hypoth-

esis. Hence the algorithm is unable to learn properly until it has more than V

training examples for which reason we ignore the first case of the above bound.

Using the above bound for the case when n > V along with (3.41) we can

now bound the generalization error in terms of the VC-Dimension; following

from (3.42) we have a PAC (VC-Confidence Interval) bound that holds with

61

probability (VC-Confidence Level) 1− δ:

sup
f∈B

(
RX(f)− R̂n(f)

)
≤

√
V log en

V
+ log 1

δ

n
(3.43)

In contrast to (3.33), (3.39) and (3.42), the following constructive (can

actually be computed) criteria for learning can be derived from the above

generalization bound:

lim
n→∞

V log en
V

n
= lim

n→∞
V

(
1 + log n

V

)

n
= 0, ∀ε (3.44)

Necessary and sufficient conditions [DGZ91] for the consistency of the

ERM method and the fast (uniform) convergence of the generalization error

to zero (the loss class is uGC) over all underlying input distributions can now

be succinctly given as a single criteria; the finiteness of the VC-Dimension.

Moreover, the number of training examples required (sample complexity), to

approximate (learn) the target concept well, must exceed the VC-Dimension

V since this forces the term n−1 log n
V

(and hence the entire limit (3.44) as long

as V is finite) to tend to zero.

The next section explores how we can choose an appropriate learning

space (model selection), for a particular data set, using the concept of VC-

Dimension.

3.5 Structural Risk Minimization (SRM)

We must redesign the machine for each different size of training data, and

we must have some clever way of picking the right complexity a priori to avoid

the above trade off.

So far we have considered PAC bounds for single fixed hypothesis classes;

we can apply these PAC bounds individually to a whole collection of hypothesis

classes and in this way select a space (or model) that best suits the current

training data set.

The first step in SRM is defining a nested sequence of spaces S1 ⊂ S2 · · · ⊂
Sk such that they have increasing capacity, as measured by the VC-dimension,:

V(S1) ≤ V(S2) ≤ · · · ≤ V(Sk). For instance in a classification task, we could

62

take the following sequence of linear functions:

S1 = {f : f(~x) = sgn[b + w1x1]}
S2 = {f : f(~x) = sgn[b + w1x1 + w2x2]}

...

St = {f : f(~x) = sgn[b + (~w · ~x)]}

where t is the size of an observation vector and the VC-Dimension increases

linearly and is equal to the number of free parameters; V(S1) = 2,V(S2) =

3, · · · ,V(St) = t + 1. Alternatively, we could define the following sequence of

families of non-linear classification functions:

S1 = {f : f(~x) = sgn[b + (~w · ~x)]}
S2 = {f : f(~x) = sgn[b + (~w · ~x) + (~w · ~x)2]}

...

We could also consider a sequence of linear classification functions with

bounded weight vectors:

S1 = {f : f(~x) = sgn[b + (~w · ~x)] such that 2/‖~w‖ ≤ R1} (3.45)

S2 = {f : f(~x) = sgn[b + (~w · ~x)] such that R1 < 2/‖~w‖ ≤ R2}
...

or we can reformulate it in terms of the geometric margin:

S1 = {f : f(~x) = sgn[b + (~w · ~x)] such that γ∗ ≥ g1} (3.46)

S2 = {f : f(~x) = sgn[b + (~w · ~x)] such that γ∗ ≥ g2 ≥ g1}
...

The choice of nested models to use can be made by considering a priori in-

formation about the classification/regression task, for instance if the data is

assumed to be non-linearly distributed then we can consider polynomial clas-

sification/regression functions of increasing degree; however this decision must

be made before the training set is generated so as to satisfy the VC condi-

tion of distribution-independence. However, choice of the geometric margin

63

depends on the training set; so technically, SRM cannot be applied to SV clas-

sification where maximizing the geometric margin is essential. See [STB98] for

alternatives.

If a particular family is too simple (where the VC-Dimension is low) then

the empirical risk will likely be high since it becomes difficult to correctly

classify the entire training set; on the other hand if the family is too complex

then the VC-Confidence Interval will be large. So the next step in the SRM

procedure is to find an optimal parametrization for each space using the em-

pirical risk minimization methodology and then finally to add this minimized

empirical risk to the value of the PAC bound (3.43) on the generalization error

for the space in question:

Rsrm(Si) = min
f∈Si

(
R̂n(f)

)
+

√
V(Si) log en

V(Si)
+ log 1

δ

n
(3.47)

The family that minimizes the above expression has optimal generaliza-

tion potential since we have an optimal balance between the capacity of the

family in question (measured before generation of the training set) and the

empirical risk (within each Si and hence is dependent on the training set); it

is optimal because moving to the next space in the sequence Si+1 does not

reduce the empirical risk sufficiently to accommodate the increase in capac-

ity (V(Si+1) − V(Si)) and moving to the previous space in the sequence Si−1

increases the empirical risk beyond the decrease in the capacity of the hypoth-

esis space. As we have seen in section 2.4 this is essentially a regularization

method.

4

Support Vector Machines for Binary

Classification

Provided with n input vectors in the Hilbert space H = Rd and their corre-

sponding binary annotations:

S = {(~x1, y1), (~x2, y2), · · · , (~xn, yn)} ⊆ Rd × {+1,−1} = H × Y

all of which are identically and independently distributed (iid) according to

some probability distribution P (~x, y) = P (~x) · P (y|~x), we seek a prediction

function f(~x) that will predict the correct annotation in the presence of noise:

yt = max
y∈{+1,−1}

P (y|~xt)

for a test example ~xt. The search for an optimal prediction function f(~x)

is usually performed in a restricted functional space using the principle of

empirical risk minimization (ERM) as outlined in the previous chapter.

For binary classification the zero-one loss function

`[f, {~x, y}] = |f(~x)− y| (4.1)

may be used in which case the expected risk is then just the probability of

misclassification; to see this note that the loss function |f(~x) − y| can be

64

65

written as (1− If(x),y) and then the expected risk

RX[f] =

∫

X×Y

1− If(x),y dP (~x, y) (4.2)

=

∫

X×Y

1 dP (~x, y)−
∫

X×Y

If(x),y dP (~x, y)

= 1−
∫

X×Y

If(x),y dP (~x, y)

is simply 1 minus the total probability of generating training examples which

have been correctly classified: If(x),y = 1.

The zero-one loss function is not a Lipschitz function (definition 3.4.5);

it is discontinuous and scale insensitive; it is also impossible to provide a

confidence in the classifiers predictions. The hinge loss is υ-insensitive to scale

and is given by:

`υ[f, {~x, y}] = max[0, υ − yf(~x)] (4.3)

so that only those points whose classification we have a high confidence in

(are at least υ away from the decision boundary) do not contribute to the loss,

even if they are correctly classified. In the rest of this chapter we consider

optimality conditions for (and justify our choice of) prediction functions of

the form f(~x|~w, b) = sgn [(~w · ~x) + b] so that the empirical risk is given by:

R̂n[f] =
1

n

n∑
i=1

`(f(~x|~w, b), {~x, y}) (4.4)

4.1 Geometry of the Dot Product

We begin by defining a linear function in a real-valued, pre-Hilbert (inner

product) space H = Rd, parameterized in terms of a weight vector ~w ∈ Rd

and a threshold or bias b ∈ R (a total of d + 1 free parameters):

h(~x) = (~w · ~x) + b

The scalar resolute is the length of the perpendicular projection of ~x onto

~w and is given by the dot product

(ŵ · ~x) = ‖~x‖ cos θ (4.5)

66

Figure 4–1: The inner product as a perpendicular projection

where ŵ = ~w/‖~w‖ is a unit (normalized) vector and θ is the angle between ~w

and ~x. We can now rewrite the dot product in the definition of h(~x) as

(~w · ~x) = ‖~w‖ ‖~x‖ cos(θ)

We can use the dot product as a similarity measure between two input

vectors (~x1 and ~x2) by comparing their corresponding dot products with some

fixed weight vector ~w; it is important to note that the dot product can dis-

tinguish between two vectors that lie in the same direction but have differing

magnitudes:

‖~x1‖ = ‖~x2‖ and θ1 = θ2 =⇒ (~w · ~x1) = (~w · ~x2) =⇒ ~x1 = ~x2

‖~x1‖ 6= ‖~x2‖ and θ1 = θ2 =⇒ (~w · ~x1) 6= (~w · ~x2) =⇒ ~x1 6= ~x2

where θ1 (and θ2) is the angle between ~x1 (and ~x2) and ~w. Similarly

the dot product can also distinguish between two vectors that have the same

magnitude but lie in different directions:

θ1 = θ2 and ‖~x1‖ = ‖~x2‖ =⇒ (~w · ~x1) = (~w · ~x2) =⇒ ~x1 = ~x2

θ1 6= θ2 and ‖~x1‖ = ‖~x2‖ =⇒ (~w · ~x1) 6= (~w · ~x2) =⇒ ~x1 6= ~x2

But if neither the magnitude or direction of two input vectors is equal then it

is impossible to make any general inferences about the equality of the vectors

since we can decrease cos(θ1) (increase θ1) and then increase the magnitude of

a vector ~x1 by an equal amount to produce a new vector ~x2 that has the same

67

Figure 4–2: The distance of a point ~x from the hyperplane H is the difference between the
length of the perpendicular projection of ~x on ~w and the distance of the hyperplane from
the origin:

(
~x · ~w

‖~w‖
)
− −b
‖~w‖ .

dot product;

(~w · ~x1) = (~w · ~x2) ; ~x1 = ~x2 (4.6)

This is an inherent weakness of the dot product.

Since (4.5) is a scalar it does not have direction; the vector resolute com-

bines the scalar value (ŵ ·~x) with the direction of ~w and is given by multiplying

the scalar resolute by ŵ:
~w

‖~w‖
(

~w

‖~w‖ · ~x
)>

(4.7)

4.2 Regulating the Hypothesis Space

The primary concern in binary classification is dividing the input space

into two half-spaces, one each corresponding to the positive and negative

classes; a hyperplane in an affine subspace of dimension d− 1 achieves this:

H = {~x ∈ Rd : h(~x) = 0} (4.8)

so that the positive and negative classes are defined as the disjoint sub-

spaces {~x | h(~x) > 0} and {~x | h(~x) < 0} respectively. From this def-

inition of the hyperplane we see that the weight vector ~w is perpendicu-

lar to H since for any two points ~x1 and ~x2 satisfying 4.8 we have that

(~x1 − ~x2) · ~w = 0 ⇒ (~x1 − ~x2) ⊥ ~w, while the scalar bias b translates H

68

Figure 4–3: The margin boundaries H+ and H− lie on either side of the classification
boundary H and are defined by the support vectors. The geometrical margin for the canon-
ical hyperplane H is 1/‖~w‖; the distance of a point ~x from H is h(~x)/‖h′(~x)‖; changes to the
bias term b cause the hyperplane H to shift in a perpendicular direction.

in a parallel direction so that the perpendicular distance of H from the origin

is −b/‖~w‖. The distance of a point ~x from the hyperplane H can then be

calculated as follows; take any point ~x0 (see Figure 4–2) on the hyperplane H,

then calculate the euclidean distance between the perpendicular projections

of ~x and ~x0 on ~w:

(
~w

‖~w‖ · ~x
)
−

(
~w

‖~w‖ · ~x0

)
=

1

‖~w‖ [(~w · ~x)− (~w · ~x0)]

=
1

‖~w‖ [(~w · ~x) + b]

=
1

‖h′(~x)‖h(~x)

where the second equality follows from (4.8).

4.2.1 Discriminant Hyperplanes

In the previous chapter we saw that regularization methods (section 2.4) bound

the capacity of hypothesis spaces to ensure well-posedness (uniqueness, exis-

tence and stability) of the ERM solution, which as a result is able to generalize

well to unannotated test examples since it does not over-fit the training data.

In the following sections the search for a suitable prediction function is re-

stricted to the hypothesis space of discriminant hyperplanes:

69

J =
{

H : ∀ ~w, b ∈ Rn+1
}

(4.9)

This is the first of three restrictions that are placed on the hypothesis

space; of these three restrictions only the first and third will affect the ca-

pacity (VC-Dimension) of the hypothesis space. An extension to non-linear

discriminant surfaces, through kernelizing the algorithm, is detailed in section

2.5; in this case the restriction 4.9, as well as restrictions 4.10 and 4.14, are

removed from the input space and applied instead to an expanded space or

feature space F.

The training data is said to be linearly separable when there exists some

hyperplane that can divide the input space X such that each half-space con-

tains examples with identical annotations; in this case the empirical risk is

zero since no training example is miss-classified.

4.2.2 Canonical Hyperplanes

Multiplying both ~w and b by the same scalar constant doesn’t change the

orientation or position of a hyperplane although its parametric representation

does change since the function h(~x) changes; the VC-Dimension of each of

these parameterizations are the same since they define the same hyperplane.

We arbitrarily select a unique representation from amongst this infinite class

of parameterizations by isolating the so called canonical hyperplane that is

parametrized such that the points closest to it are a distance of 1 away:

min
~xi∈S

|(~w · ~xi) + b| = 1 (4.10)

This is the second restriction on the hypothesis space. It is important

to note that any separating hyperplane can be transformed into a canoni-

cal hyperplane by multiplying the parameters ~w and b by the inverse of the

perpendicular distance from the hyperplane to the nearest training example.

Training data points that satisfy |(~w, ~xi)+b| = 1 are called support vectors ;

these vectors shoulder the hyperplanes H+ = {~x : (~w · ~xi) + b = +1} and

H− = {~x : (~w · ~xi) + b = −1} on either side of H and in doing so define the

margin or space between H+ and H−.

Although we have already fixed the distance between two support vectors

~xsv
+ and ~xsv

− , one each on the hyperplanes H+ and H−, by removing the scaling

freedom of the parameters; it is useful to view this distance in geometric terms

70

by taking the difference between their normalized perpendicular projections

onto ~w
(

~w

‖~w‖ · ~x
sv
+

)
−

(
~w

‖~w‖ · ~x
sv
−

)
=

1− b

‖~w‖ −
−1− b

‖~w‖
=

2

‖~w‖
(4.11)

Since two points (~w
‖~w‖ · ~xsv

+) and (~w
‖~w‖ · ~xsv

−) on opposite sides of H (both of

which lie on the vector ~w) are 2
‖~w‖ apart, they must each be 1

‖~w‖ away from H;

the size of the margin is now an expression of n of the (n+1) parameters that

define the classification boundary H (excluding the bias b) - this is convenient

since it is now possible to define an optimization in terms of ~w to regulate

both the orientation of H as well as the size of the margin.

Definition 4.2.1 The functional (perpendicular, signed) distance between a

training example (~xi, yi) and a hyperplane H is:

γi ≡ yi h(~xi)

The functional margin γ between a set of training examples S and a hyperplane

H is then simply the minimum over all functional distances between H and each

example in S:

γ ≡ min
(xi,yi)∈S

γi = min
(xi,yi)∈S

yi h(~xi)

Definition 4.2.2 The geometric (normalized, euclidean) distance between

the hyperplane H and ~xi is:

γ∗i ≡ yi

[(
~w

‖~w‖ · ~xi

)
+

b

‖~w‖
]

The geometric margin γ∗ is the minimum over all geometric distances γ∗i be-

tween H and each example in S.

The classification of a test example (~xt, yt) can be verified through the

condition γt > 0 since h(~xt) > 0 is the subspace associated with yt > 0 and

h(~xt) < 0 is the subspace associated with yt < 0; the resulting classification

rule or decision/prediction function is defined as:

yt = f(~xt) = sgn [h(~xt)] = sgn [(~w · ~xt) + b] (4.12)

71

Figure 4–4: As the size of the margin (as indicated by the margin boundaries H+ and H−)
decreases, the number of possible separating hyperplanes increases implying an increase in
the VC-Dimension.

If the positive and negative training examples can be separated using a

hyperplane then it must also be the case that the geometric margin is positive;

the converse also holds so that if the geometric margin is negative then the

training data has not been linearly separated by the current hyperplane. In

the remainder of this section as well as the next, it is assumed that the training

examples are linearly separable.

4.2.3 Maximal Margin Hyperplanes

The final restriction is the toughest to deal with and will eventually require us

to solve a quadratic optimization whose unique solution is the separating hy-

perplane that has the highest generalization potential. Now assume the train-

ing set is sparse and real-valued; it is then possible to apply an infinitesimally

small transformation (rotation or translation) to any canonical separating hy-

perplane to generate a new canonical separating hyperplane whose geometric

margin is different. So the existence of a single separating hyperplane implies

the existence of an infinite class of distinct canonical separating hyperplanes

all with varying geometric margins. From amongst this infinite set we must

select a single generalizable hyperplane using insight provided by the training

data. The following theorem links the generalization potential of a hyperplane

with its margin;

Theorem 4.2.1 (Vapnik, 1995) Let the hypersphere enclosing the entire

training data set S have radius r so that ‖~x‖ ≤ r. Then the VC-Dimension of

the space Jρ of canonical hyperplanes with bounded weight vectors ‖~w‖ ≤ ρ is

72

given by:

V(Jρ) ≤ min
{
4r2ρ2, n

}
+ 1

Since the VC-Dimension is finite, consistency of the classifier is guaranteed.

Maximizing the margin (4.11) reduces the value of the norm of the weight

vector ‖~w‖; hence we can lower the value of the upper bound ρ on the weight

vector. From the above theorem we see that the VC-Dimension is reduced

once we enlarge the margin so that V(J) ≥ V(Jρ) is satisfied, where J is

the space of canonical hyperplanes with unbounded weight vectors. Now if

we consider the PAC bound (3.43) we see that for a training set of size n

there is a particular hypothesis space (with a particular VC-Dimension) that

minimizes the generalization bound; since we can control the VC-Dimension

(by adjusting the margin) we can perform structural risk minimization (SRM)

for the sequence of spaces given in (3.45) to find the optimal capacity V(Jρ)

for a given training data set. Intuitively, the further away from the margin

boundaries (beyond which the classification changes) a test example is, the

more confident we are in its predicted classification and so we would like all

training examples to be as far away from the separating hyperplane which

basically amounts to maximizing the margin.

Finally, it is important to note that the maximum margin hyperplane is

constructed on the basis of the positions of the support vectors alone in whose

predicted classification we are not entirely confident since they are closest

to the decision boundary; whilst making predictions the rest of the training

examples may be ignored and this leads to significant generalization.

4.3 Hard Margin Classifiers

Based on our choice of parameters for the canonical hyperplane, for which

γ = 1, we have already shown that γ∗ = 1
‖~w‖ . To summarize, the following

inequalities defined in terms of the functional

γi = yi [(~xi · ~w) + b] ≥ 1

and geometric margins:

γ∗i = yi

[(
~xi · ~w

‖~w‖
)

+
b

‖~w‖
]
≥ 1

‖~w‖ (4.13)

73

are satisfied for all training data examples. The maximal margin hyperplane

{~x : h(~x) = (~w∗ ·~x)+b∗ = 0} is then given [SS01] by the following optimization

for the parameters ~w∗ and b∗:

~w∗, b∗ = argmax
~w,b

{γ∗}

= argmax
~w,b

{
n

min
i=1

γ∗i

}

= argmax
~w,b

{
n

min
i=1

yi

[(
~w

‖~w‖ · ~xi

)
+

b

‖~w‖
]}

= argmax
~w,b

{
n

min
i=1

yi

[
sgn

((
~w

‖~w‖ · ~xi

)
+

b

‖~w‖
) ∥∥∥∥

(
~w

‖~w‖ · ~xi

)
+

b

‖~w‖

∥∥∥∥
]}

= argmax
~w,b

{
n

min
i=1

yi f(~x)

∥∥∥∥
(

~w

‖~w‖ · ~xi

)
+

b

‖~w‖

∥∥∥∥
}

= argmax
~w,b

{
n

min
i=1

yi f(~x)

∥∥∥∥
(

~w · ~xi

‖~w‖2
~w

)
+

b

‖~w‖2
~w

∥∥∥∥
}

(4.14)

where the fourth equality follows from splitting a vector into its sign and

size components. The last equality includes a norm taken over the sum of two

vectors; the first is the vector resolute defined in (4.7) and the second b~w/‖~w‖2

has the same direction as ~w and ends right on the boundary of the hyperplane

H since the perpendicular projection of this vector onto ~w is also a distance of

−b/‖~w‖ from the origin;

(
b

‖~w‖2
~w

)
· ~w

‖~w‖ =
−b

‖~w‖ (4.15)

Geometrically, the optimization attempts to maximise the difference in

lengths of (4.7) and b~w/‖~w‖2 and thereby maximizes the margin. Finally the

constraints defined in (4.13) are included as part of the optimization;

~w∗, b∗ = argmax
~w,b

{γ∗} subject to yi [(~xi · ~w) + b] ≥ 1 ∀i (4.16)

Using (4.13) we can rewrite this as a minimization in terms of the weight

vector;

~w∗, b∗ = argmin
~w,b

{
1

2
‖~w‖

}
subject to yi [(~xi · ~w) + b] ≥ 1 ∀i (4.17)

74

Figure 4–5: The minimum distance between a canonical separating hyperplane and a
data point is r = 1/‖~w‖ so we can enclose each training point in a hyper-sphere of radius r,
so that the hyperplane does not bisect any hyper-sphere. [left] many hyperplane classifiers
are admissible [right] as the radius of the hyper-sphere increases, the number of admissible
hyperplanes decreases. So maximizing the margin leads to a restricted hypothesis space
with lower VC-Dimension. Intuitively we expect that when a training example ~x is far away
from the margin boundary, then small perturbations in the training space ~xt = (~x + ε)
should leave the classification unchanged: f(~x) = f(~xt). Additionally, small perturbations
to the parameters (~w + ε) are also more likely to leave the classification unchanged.

4.4 Soft Margin Classifiers

So far we have assumed that the geometric margin is positive; in such

cases the training data is said to be linearly separable; when this is not the

case we make use of margin slack variables ξi (that allow the training data to

cross either the margin boundaries H+ and H− or the classification boundary

H) which are then used to define relaxed inequality constraints;

yi [(~xi · ~w) + b] ≥ 1− ξi, ξi ≥ 0 (4.18)

There are three possible values for ξi:

i ξi = 0: xi is correctly classified; it lies on or beyond the margin boundary

for its class

ii 0 < ξi ≤ 1: xi is correctly classified; it lies between the margin boundary

and the classification boundary for its class

iii ξi > 1: xi has been misclassified: it lies on the wrong side of the classi-

fication boundary

So we see that the classification of a training example (using 4.12) is

correct only when its geometric margin is positive in which case its associated

slack variable is less than or equal to 1. An upper bound on the training

75

classification error (or empirical risk under the zero-one loss function) is given

by the norm of the margin slack vector ‖~ξ‖ since satisfying condition (ii) does

not constitute a miss-classification.

Even in cases where the data is linearly separable it might not be optimal

to restrict the search to only those hyperplanes that satisfy (4.13); for example

training data may include a single noisy outlier which should be ignored (in

the sense that we modify its functional margin so that it becomes a support

vector and affects choice of the hyperplane as such), which is essentially what

(4.18) achieves with non-zero margin slack variables. However by making all

ξi large enough it is possible to satisfy all the constraints defined in (4.18) for

any choice of hyperplane and so it is therefore crucial to restrict the size of

the margin slack variables by constraining ‖~ξ‖.
We consider optimizing two quantities; maximizing the size of the mar-

gin while minimizing the size of the margin slack variables subject to the

constraints defined in (4.18). We can define an optimization based on these

criteria by modifying (4.17) so that we have the following which is said to be

in its primal form:

~w∗, b∗, ξ∗ = argmin
~w,b,~ξ

{
1

2
‖~w‖+ C‖~ξ‖

}
(4.19)

subject to yi [(~xi · ~w) + b] ≥ 1− ξi, ξi ≥ 0 ∀i

We must now reexamine how the maximum margin is constructed; lets

assume we have the hyperplane from the optimization above parametrized in

terms of ~w∗, b∗, ξ∗ - it is clear that only a fraction of those examples satisfying

ξ∗i = 0 serve as support vectors, specifically those which lie on the margin

boundary. This is in contrast to those points satisfying ξ∗i 6= 0 which are all

support vectors since they are forced onto the margin boundary of their class.

So the choice of parameters in (4.19) are affected by all vectors satisfying (ii)

and (iii) and a subset of those satisfying (i).

We must also scrutinize the affects of the parameter C on the results of

the primal optimization; as its value decreases it gradually switches from con-

straining the training classification error to showing a preference for maximal

margin hyperplanes instead; so as C decreases the size of hypothesis space di-

minishes which in turn reduces the computational complexity and run-time of

the optimization. When the value of C is high enough so that non-zero margin

76

slack variables are highly penalized, the resulting hyperplane is equivalent to

the hard margin hyperplane.

So we have shown that the optimal hyperplane in a binary classification

task has maximal geometric margin and can be found by optimizing the primal

form given in (4.19), in the following section we will see that finding such a

hyperplane is in its dual form, a quadratic programming problem.

4.5 Quadratic Programming

Using the method of Lagrange multipliers for nonlinear constrained opti-

mizations, we define the Lagrangian Λ as the objective function plus a linear

combination of the constraints:

Λ(~w, b, ~ξ | ~α) =
1

2
‖w‖+ C‖~ξ‖ −

n∑
i=1

αi (yi〈~xi · ~w〉+ yib− 1 + ξi) (4.20)

where αi ≥ 0, βi ≥ 0 are dual variables or Lagrange multipliers which must be

non-negative since this is implied by the non-negativity of their corresponding

constraints:

yi(~xi · ~w) + yib− 1 + ξi ≥ 0 =⇒ αi ≥ 0

Now we can rewrite (4.19) in its dual form as an unconstrained maximiza-

tion over the dual (Lagrange) variables:

~α∗ = argmax
~α

{
argmin

~w,b,~ξ

Λ(~w, b, ~ξ | ~α)

}
(4.21)

To find the minimum we differentiate the Lagrangian with respect to the

parameters ~w, b and ~ξ and set it equal to zero:

∂Λ

∂ ~w
= 0 =⇒

n∑
i=1

αiyi~xi = ~w (4.22)

∂Λ

∂b
= 0 =⇒

n∑
i=1

αiyi = 0

∂Λ

∂~ξ
= 0 =⇒ ~α = 2C~ξ

77

Incorporating the first and third of the above into the dual form gives:

Λ(~w, b, ~ξ | ~α) =
1

2

∥∥∥∥∥
n∑

i=1

αiyi~xi

∥∥∥∥∥ + C

∥∥∥∥
~α

2C

∥∥∥∥

−
n∑

i=1

(αiyi〈~xi · ~w〉+ αiyib− αi + αiξi)

=
1

2

n∑
i=1

n∑
j=1

αiαj〈yi · yj〉〈~xi · ~xj〉+
〈~α · ~α〉

4C

−
n∑

i=1

αiyi

〈
~xi ·

n∑
i=1

αiyi~xi

〉
+

n∑
i=1

αi − 〈~α · ~ξ〉

= −1

2

n∑
i=1

n∑
j=1

αiαj〈yi · yj〉〈~xi · ~xj〉+
〈~α · ~α〉

4C
+

n∑
i=1

αi −
〈

~α · ~α

2C

〉

= −1

2

n∑
i=1

n∑
j=1

αiαj〈yi · yj〉〈~xi · ~xj〉 − 〈~α · ~α〉
4C

+
n∑

i=1

αi

So our final dual quadratic optimization is given by:

~α∗ = argmax
~α

{
−1

2

n∑
i=1

n∑
j=1

αiαj〈yi · yj〉〈~xi · ~xj〉 − 〈~α · ~α〉
4C

+
n∑

i=1

αi

}
(4.23)

subject to the constraints; αi ≥ 0,∀i and
∑n

i=1 αiyi = 0. Typical quadratic

optimizers solve the following minimization:

~α∗ = argmin
~α

(
~s>~α +

1

2
~α>H~α

)
(4.24)

subject to: A~α = ~b and ~l ≤ ~α ≤ ~u

We can rewrite (4.23) as a quadratic minimization in the matrix form

given above as:

~α∗ = argmin
~α

{
1

2
~α>

(
(~y~y>)¯ (XX>) +

1

2C

)
~α− I>~α

}

subject to: ~y>~α = 0 and αi ≥ 0∀i (4.25)

There are several methods for solving this optimization, some more efficient

than others; refer to [Pla98], [CBM02], [MM01] and [Joa99].

78

Figure 4–6: Results of binary classification task; 17 support vectors (green) define the
decision boundary which separates the positive (blue) from the negative (red) examples.
Notice that all the training examples that are misclassified by the learnt decision boundary
serve as support vectors.

5

Support Vector Machines for Regression

Support Vector Machine Regression (SVMR) is similar to SVM Classification

(SVMC) in that the regression function that it learns is linear in some higher

dimensional feature space and non-linear in the input space. The learnt func-

tion deviates the least from the training data amongst all such linear surfaces

in the expanded space, according to some loss function. As an example con-

sider the ε-tube loss function:

`ε(f, {xi, yi}) =

{
0 when |yi − f(~xi)| ≤ ε

|yi − f(~xi)| − ε otherwise
(5.1)

We have already seen how to build optimal, linear decision boundaries in

the feature space in the previous chapter on SVMC for a binary classification

task. Now given a training set where the annotation space is real-valued Y = R,

we will still consider linear surfaces of the form:

f(~x) = 〈~w · ~x〉+ b

where ~w : X → Y is a linear operator and b ∈ Y is a bias vector [SSTPH05].

However instead of attempting to separate and then maximise the region be-

tween the two classes, we will require that the input vectors are positioned

within an ε-tube around any hyperplane under consideration; the inputs fail-

ing to satisfy this will contribute positively to the loss. Ideally as the ε-tube

is reduced in size, we would like to find the linear regression surface that has

minimal loss. Following from the optimization defined in (4.17) we define the

following quadratic optimization:

79

80

Figure 5–1: Training examples within the ε-tube (in black) do not incur a loss although
those examples outside it (in gray) do with the loss increasing linearly as a function of the
distance from the ε-tube.

min~w Γ(~w) = 1
2
~w~wT

subject to: yi − 〈~w · ~xi〉 − b ≤ ε

〈~w · ~xi〉+ b− yi ≤ ε (5.2)

It is possible that for a given value of ε no function satisfying the constraint

|f(~xi) − yi| ≤ ε exists. So we define slack variables ψi > 0 and φi > 0 and

re-write the (primal) optimization as:

min
~w,~ψ,~φ

Γ(~w, ~ψ, ~φ) =
1

2
~w~wT + ζ

n∑
i

(ψi + φi)

subject to: yi − 〈~w · ~xi〉 − b ≤ ε + ψi

〈~w · ~xi〉+ b− yi ≤ ε + φi

ψi ≥ 0, φi ≥ 0,∀n (5.3)

This is a soft version of the previous (5.2) optimization similar to (4.19); the

constant ζ ∈ R maintains the trade-off between how much deviation outside

the ε-tube is permitted versus the generalization or in this case the flatness of

the regression function.

81

5.1 Langrangian Dual Formulation for Regression

Instead of solving the primal optimization, we will work with its dual form

which often has a structure thats easier to work with and in many instances

also has a more intuitive interpretation. We begin by defining the Lagrangian

Λ as a linear combination of the objective function and the various equal-

ity/inequality constraints of the optimization (5.3):

Λ(~w, b, ~φ, ~ψ|~α, ~β) =
1

2
‖w‖2 + ζ

n∑
i=1

(ψi + φi)

−
n∑

i=1

αi(ε + ψi − yi + 〈~w, ~xi〉+ b)

−
n∑

i=1

βi(ε + φi + yi − 〈~w, ~xi〉 − b) (5.4)

where αi and βi are non-negative dual variables or Lagrange multipliers. The

dual objective function Ω of the original optimization is defined as:

Ω(~α, ~β) = min
w,b,φ,ψ

Λ(~w, b, ~φ, ~ψ|~α, ~β) (5.5)

and has a value of −∞ when the Lagrangian is unbounded from below. The

Lagrangian Dual, which in this particular case is still a quadratic optimization,

is then given by:

max
~α,~β

Ω(~α, ~β)

subject to: ~α ≥ 0 and ~β ≥ 0 (5.6)

More generally, it is easy to see that the dual of all linear or quadratic programs

remain as such.

Weak duality is said [Wel07] to hold when any feasible dual solution lower

bounds any feasible primal solution; in the case that they are equal it implies

the optimality of both feasible solutions as we will see in the following theorem.

Under certain conditions on the dual optimization, this lower bound is in

fact always optimal and hence equal to the optimal primal solution; in such

instances, Strong Duality is said [Boy07] to hold.

Theorem 5.1.1 (Weak Duality Theorem) Let (~wf , bf , ~ψf , ~φf) be any fea-

sible point for the primal and (~αf , ~βf , ~ηf , ~η∗f) any feasible point for the dual; it

82

follows that the primal objective function Γ and its dual Ω satisfy the following

inequality:

Ω(~αf , ~βf) ≤ Γ(~wf , bf , ~ψf , ~φf) (5.7)

Proof All feasible solutions of the dual must satisfy (5.5) and hence are min-

ima of the Lagrangian function Λ:

Ω(~αf , ~βf) = min
w,b,φ,ψ

Λ(~w, b, ~φ, ~ψ|~αf , ~βf)

≤ Λ(~wf , bf , ~φf , ~ψf |~αf , ~βf)

≤ Γ(~wf , bf , ~φf , ~ψf)

where the last inequality follows from the definition of the Lagrangian (5.4),

the positivity of the Lagrange multipliers and the constraints that define the

primal optimization. ¤

Hence it follows that if the primal has a feasible solution then the dual ob-

jective function is bounded from above; alternatively if the dual is feasible then

the primal is bounded from below. Furthermore, if the dual is unbounded from

above (Ω = ∞) then the primal is infeasible and if the primal is unbounded

from below (Γ = −∞) then the dual is infeasible.

The duality gap is the difference between the values of the primal Γ and

dual Ω objective functions evaluated at some feasible primal and dual points

respectively. The optimal duality gap is given by the difference between the

optimal solutions of the primal and dual problems which still clearly satisfy

(5.7):

max
~α,~β

Ω(~α, ~β) ≤ min
~w,b, ~ψ,~φ

Γ(~w, b, ~ψ, ~φ) (5.8)

Note that when the primal is a maximization and the dual is a minimiza-

tion then the weak duality theorem gives us the opposite result, specifically

that the primal objective function is bounded from above by the dual objective

function. Finally, if the duality gap is zero for some feasible primal and dual

points:

Ω(~αf , ~βf) = Γ(~wf , bf , ~ψf , ~φf) (5.9)

83

it follows from the Weak Duality Theorem that (~wf , bf , ~ψf , ~φf) is an op-

timal primal solution while (~αf , ~βf) is an optimal dual solution.1 To see this

note that if (5.9) holds then the dual objective function has attained its max-

imum (optimal) value (since it is bounded from above by the primal objective

function) while the primal objective function has attained its minimum (opti-

mal) value (since it is bounded from below by the dual objective function).

Definition 5.1.1 (Strong Duality) When the existence of an optimal so-

lution to the primal implies the existence of an optimal solution to the dual and

vice versa, the optimal duality gap must be zero. In other words, the existence

of an optimal primal solution (~wo, ~ψo, ~φo, ζo) implies the existence of Lagrange

multipliers (~αo, ~βo) satisfying

Ω(~αo, ~βo) = Γ(~wo, bo, ~ψo, ~φo)

Definition 5.1.2 (Convex Optimization) A convex optimization has a

convex objective function, convex inequality constraints and linear equality con-

straints. Every strictly convex optimization has a unique solution.

The objective function of the dual Ω is a concave (downward) function

of the dual variables even when the primal objective function Γ is not convex

(concave upward). This is because [Hin06] the dual is a point-wise minimum

of a set of affine functions. Furthermore, when the primal problem is convex,

then strong duality holds. Hence, in the case of quadratic programs which are

always convex, the duality gap is always zero.

5.2 Complementary Slackness

Let (~αo, ~βo) and (~wo, bo, ~ψo, ~φo) be optimal solutions of the dual and primal

respectively. Then Strong Duality implies that Ω(~αo, ~βo) = Γ(~wo, bo, ~ψo, ~φo).

1 It is important to note that the converse is not necessarily implied: primal
and dual objective functions evaluated at optimal primal and dual solutions
need not be equal but must satisfy (5.8).

84

From (5.4) and (5.7) we then derive the KKT conditions:

αi(ε + ψi − yi + 〈~w, ~xi〉+ b) = 0

βi(ε + φi + yi − 〈~w, ~xi〉 − b) = 0

i = 1, · · · , n (5.10)

Proof

Γ(~wo, bo, ~ψo, ~φo) = Ω(~αo, ~βo)

= min
w,b,φ,ψ

Λ(~w, b, ~φ, ~ψ|~αo, ~βo)

≤ Λ(~wo, bo, ~φo, ~ψo|~αo, ~βo)

= Γ(~wo, bo, ~φo, ~ψo)−
n∑

i=1

αi(ε + ψi − yi + 〈~w, ~xi〉+ b)

−
n∑

i=1

βi(ε + φi + yi − 〈~w, ~xi〉 − b)

≤ Γ(~wo, bo, ~φo, ~ψo)

where the last inequality follows from the positivity of both the Lagrange

multipliers and the constraints so that the following is implied:

Γ(~wo, bo, ~φo, ~ψo) = Λ(~wo, b, ~φo, ~ψo|~αo, ~βo)

A constraint is said to be active or tight if for an optimal primal solution

(wo, bo, φo, ψo) its corresponding Lagrange multiplier is strictly positive which

implies that the constraint evaluated at the optimal solution is zero:

ε + φi − yi + f(~xi) = 0 implies αi > 0 (5.11)

ε + ψi + yi − f(~xi) = 0 implies βi > 0

Constraints are otherwise said to be inactive:

ε + φi − yi + f(~xi) > 0 implies αi = 0 (5.12)

ε + ψi + yi − f(~xi) > 0 implies βi = 0

The ~xi with non-zero αi or βi are called support vectors ; if we were to train the

SVM on only these ~xi, ignoring all the examples for which αi = 0 and βi = 0,

we would still induce the same regression surface.

85

Theorem 5.2.1 (Lagrangian Saddlepoint Equivalence Theorem) If

the conditions for strong duality are satisfied (i.e. the optimal duality gap is

zero and hence the complementary slackness conditions are satisfied) then the

optimal primal and dual solutions must be saddle-points of the Lagrangian Λ;

modifying the optimal primal solution will not decrease the Lagrangian and

similarly modifying the optimal value of the Lagrange multipliers will not in-

crease the Lagrangian. The converse also holds so that if the Lagrangian has

a saddle-point then there is no optimal duality gap (Strong Duality) which in

turn implies that the complementary slackness conditions are satisfied.

Proof By definition the dual optimization is given by:

(αo, βo) = max
~α≥0,~β≥0

min
w,b,φ,ψ

Λ(~w, b, ~φ, ~ψ|~α, ~β) (5.13)

It is easy to see that maximizing the Lagrangian over the dual variables, which

can be set to zero in the case that either (ε + ψi − yi + 〈~w, ~xi〉 + b) > 0 or

(ε + φi + yi − 〈~w, ~xi〉 − b) > 0, for any feasible primal solution (~wf , bf , ~φf , ~ψf)

is equal to the primal objective function evaluated at the same feasible primal

solution:

max
~α≥0,~β≥0

Λ(~wf , bf , ~φf , ~ψf |~α, ~β) = Γ(~wf , bf , ~φf , ~ψf)

As a result the primal optimization can be rewritten in terms of the Lagrangian

as follows:

(~wo, bo, ~φo, ~ψo) = min
w,b,φ,ψ

max
~α≥0,~β≥0

Λ(~w, b, ~φ, ~ψ|~α, ~β) (5.14)

Since there is no optimal duality gap when strong duality holds we therefore

have:

min
w,b,φ,ψ

max
~α≥0,~β≥0

Λ(~w, b, ~φ, ~ψ|~α, ~β) = max
~α≥0,~β≥0

min
w,b,φ,ψ

Λ(~w, b, ~φ, ~ψ|~α, ~β)

So we can change the order of minimization and maximization and still arrive

at the same optimal solution which must therefore be a saddle-point. ¤

86

We can identify the saddle-points of the Lagrangian by differentiating it

with respect to the primal variables and setting the result equal to zero:

∂Λ

∂b
= 0 =⇒

n∑
i=1

(βi − αi) = 0 (5.15)

∂Λ

∂ ~w
= 0 =⇒ ~w −

n∑
i=1

(αi − βi)~xi = 0

∂Λ

∂φi

= 0 =⇒ ζ − βi = 0

∂Λ

∂ψi

= 0 =⇒ ζ − αi = 0

To remove the dependence on the primal variables we substitute (5.15) into

the Lagrangian (5.4):

Λ(~w, b, ~φ, ~ψ|~α, ~β) =
1

2

n∑
i=1

n∑
j=1

(αi − βi)(αj − βj)〈~xi · ~xj〉

+
n∑

i=1

ψi(ζ − αi) +
n∑

i=1

φi(ζ − αi)

− ε

n∑
i=1

(αi + βi)

+
n∑

i=1

yi(αi − βi) +
n∑

i=1

(βi − αi)b

+
n∑

i=1

(βi − αi)

〈
n∑

j=1

(αj − βj)~xj · ~xi

〉

So the dual optimization can be given entirely in terms of the dual vari-

ables as:

max
~α,~β

−1

2

n∑
i=1

n∑
j=1

(αi − βi)(αj − βj)〈~xi · ~xj〉

−ε

n∑
i=1

(αi + βi) +
n∑

i=1

yi(αi − βi)

subject to:
n∑

i=1

(αi − βi) = 0

αi, βi ∈ [0, ζ] (5.16)

87

We can rewrite (5.16) as a quadratic minimization in matrix form (4.24):

(~α∗, ~β∗) = argmin
~α,~β





1

2

[
~α
~β

]> [
(XX>) −(XX>)

−(XX>) (XX>)

][
~α
~β

]
+

[
εI− ~y

εI+ ~y

]> [
~α
~β

]



subject to:

[
I
−I

]> [
~α
~β

]
= 0 and αi, βi ∈ [0, ζ]

(5.17)

The primal solution can be given in terms of the dual solution (5.15)

when strong duality holds which is convenient since the dual optimization is

typically easier to solve that the primal.

5.3 Sparse Support Vector Expansion

The regression surface can also given entirely in terms of the dual variables

as:

f(~x) = 〈~w · ~x〉+ b =
n∑

i=1

(αi − βi)〈~xi · ~x〉+ b

Let Ψ ⊆ {1, 2, · · · , n} such that ∀i ∈ Ψ we have both αi > 0 and βi > 0.

Then we can rewrite our regression function using a sparse expansion as:

f(~x) =
∑
i∈Ψ

(αi − βi)〈~xi · ~x〉+ b (5.18)

Prediction functions that are defined using a sparse expansion are able

to generalize far better since they consider only the most ‘important’ training

points or support vectors; in the case of binary classification the support vec-

tors were those points that lie along the margin boundaries and are therefore

closest to the separating hyperplane. For regression, the support vectors are

those points that lie on or beyond the boundary of the epsilon tube and are

hence furthest away from the regression surface.

5.4 Non-Linear SVM Regression

The machine we have described so far is linear but the data itself might

be distributed non-linearly. As previously described in section (2.5), we first

implicitly apply a mapping function φ to our input data, essentially projecting

88

Figure 5–2: Over-fitting the training data; both functions pass through all five training
points however the linear hypothesis is more likely to accurately predict the annotation of
a test example.

it into a higher dimensional feature space H and then apply our linear machin-

ery to find a linear regression in this new feature space. The corresponding

regression surface in the input space will be non-linear. Explicitly, we make

use of kernel functions that replace all dot products between feature vectors

and in this way perform all computation in the input space while learning a

linear regression surface in a higher dimensional feature space.

89

Figure 5–3: Training samples were randomly (normally) generated in the region around
the target function (red line). The learnt regression function (blue line) approximates the
target function better as the number of training samples increases, i.e. its slope and bias
approach that of the target function. The support vectors (red stars) lie outside the ε-tube
(green lines) while the other data points (red points) lie within it.

6

Conclusion

A linear methodology for performing classification and regression has been

described in detail starting with a discussion on kernel methods which when

used in conjunction with SVMs are able to extend it making non-linear clas-

sification and regression possible. The kernel trick is also described, which

replaces inner-products in the feature space with a kernel evaluation in the

input space so that the SVM operates in a reproducing kernel Hilbert space.

Subsequent discussions have focused on statistical learning theory which de-

scribe the circumstances under which learning is possible and on the actual

mechanics of Support Vector classification and regression.

The theoretical basis of Support Vector Machines has been researched

intensively in the last few years. Advances include the use of new task spe-

cific kernel functions, quicker evaluation of the decision/prediction function

and calibrating the SVM solution as a posterior probability. Advances in op-

timization theory have led to faster training methods such as the Sequential

Minimal Optimization decomposition method [Pla98]. Many new applications

of Support Vector Machines have also emerged including detecting remote pro-

tein homologies, forecasting weather, speaker verification, face detection and

chaotic time series prediction, in particular estimating the price of derivative

securities.

90

References

[Ama95] S. Amari. Learning and statistical inference. In Michael A. Arbib,

editor, The Handbook of Brain Theory and Neural Networks, pages

522–526. MIT Press, Cambridge, Massachusetts, 1995.

[BBL03] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Intro-

duction to statistical learning theory. In Olivier Bousquet, Ulrike

von Luxburg, and Gunnar Rätsch, editors, Advanced Lectures on

Machine Learning, volume 3176 of Lecture Notes in Computer

Science, pages 169–207. Springer, 2003.

[Boy07] Stephen Boyd. Ee364a: Convex optimization 1, 2007. Notes,

Stanford University, www.stanford.edu/class/ee364.

[BTA04] Alain Berlinet and Christine Thomas-Agnan. Reproducing Ker-

nel Hilbert Spaces in Probability and Statistics. Kluwer Academic

Publishers, 2004.

[Bur98] Christopher J. C. Burges. A tutorial on support vector machines

for pattern recognition. In Knowledge Discovery and Data Mining,

volume 2, pages 121–167. 1998.

[CBM02] R. Collobert, S. Bengio, and J. Mariethoz. Torch: a modular

machine learning software library, 2002.

[CGGR05] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy. Svm

and kernel methods matlab toolbox. Perception Systemes et In-

formation, INSA de Rouen, Rouen, France, 2005.

91

92

[Che97] V. Cherkassky. The nature of statistical learning theory. IEEE

Transactions on Neural Networks, 8(6):1564–1564, November

1997.

[CMR02] Stephane Canu, Xavier Mary, and Alain Rakotomamonjy. Func-

tional learning through kernel, October 25 2002.

[CS02] Cucker and Smale. On the mathematical foundations of learning.

BAMS: Bulletin of the American Mathematical Society, 39, 2002.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support

Vector Machines (and Other Kernel-Based Learning Methods).

Cambridge University Press, March 2000.

[CST04] N. Cristianini and J. Shawe-Taylor. Kernel Methods for Pattern

Analysis. Cambridge University Press, June 2004.

[CSTS98] N. Cristianini, J. Shawe-Taylor, and P. Sykacek. Bayesian classi-

fiers are large margin hyperplanes in a Hilbert space. In Proc. 15th

International Conf. on Machine Learning, pages 109–117. Morgan

Kaufmann, San Francisco, CA, 1998.

[CT01] Lijuan Cao and Francis Eng Hock Tay. Finan-

cial forecasting using support vector machines. Neu-

ral Computing and Applications, 10(2):184–192, 2001.

www.springerlink.com/index/10.1007/s005210170010.

[DGZ91] Dudley, Gin, and Zinn. Uniform and universal glivenko-cantelli

classes. Journal of Theoretical Probability, 4(3):485–510, 1991.

[DM05] Tevian Dray and Corinne A. Manogue. The geometry of the dot

and cross product. 2005.

[EP99] Evgeniou and Pontil. On the vγ dimension for regression in repro-

ducing kernel hilbert spaces. In ALT: International Workshop on

Algorithmic Learning Theory, 1999.

93

[EPP00] Evgeniou, Pontil, and Poggio. Statistical learning theory: A

primer. IJCV: International Journal of Computer Vision, 38,

2000.

[Fel68] William Feller. An introduction to probability theory and its ap-

plications. - Vol. 1. Wiley, 1968. Feller.

[Fuk72] K. Fukunaga. Introduction to Statistical Pattern Recognition. Aca-

demic Press, 1972.

[Gir97] Federico Girosi. An equivalence between sparse approximation

and support vector machines. Technical Report AIM-1606, Mas-

sachusetts Institute of Technology, 1997.

[Gun98] Steve Gunn. Support vector machines for classification and re-

gression. Technical report, University of Southampton, April 07

1998.

[Hin06] Haitham Hindi. A tutorial on convex optimization ii: duality and

interior point methods. American Control Conference, pages 11

–, 2006.

[HN01] John Hunter and Bruno Nachtergaele. Applied Anal-

ysis. World Scientific Publishing Company, 2001.

www.math.ucdavis.edu/~hunter/book/.

[Hoc73] Harry Hochstadt. Integral Equations. John Wiley and Sons, New

York, NY, USA, 1973.

[HTH01] Trevor Hastie, Robert Tibshirani, and J. H.Friedman. The Ele-

ments of Statistical Learning. Springer, 2001.

[Ihl03] Alexander Ihler. Kernel density estimation toolbox for matlab,

2003. ssg.mit.edu/~ihler/code/kde.shtml.

[Joa99] T. Joachims. Making large-scale SVM learning practical. In

B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Ker-

nel Methods - Support Vector Learning, chapter 11, pages 169–184.

MIT Press, Cambridge, MA, 1999.

94

[LV07] Marcel Luthi and Thomas Vetter. Machine learning

(cs331) class notes, 2007. Notes, Universitat Basel,

informatik.unibas.ch/lehre/ss07/cs331/resources/.

[MM01] O. L. Mangasarian and David R. Musicant. Lagrangian support

vector machines. Journal of Machine Learning Research, 1:161–

177, 2001.

[Muk07] Sayan Mukherjee. Statistical learning: Algorithms and theory,

2007. Notes, Duke University,

www.stat.duke.edu/~sayan/statlearn.pdf.

[MZ00] C. Molina and J. Zerubia. Regularisation by convolution in prob-

ability density estimation is equivalent to jittering. In Proc. IEEE

International Workshop on Neural Networks for Signal Processing

(NNSP), Sydney, Australie, December 2000.

[Nea96] Radford M. Neal. Bayesian Learning for Neural Networks. Num-

ber 118 in Lecture Notes in Statistics. Springer, New York, USA,

1996.

[Pla98] J. Platt. Sequential minimal optimization: A fast algorithm for

training support vector machines, 1998.

[PMRR04] Tomaso Poggio, Sayan Mukherjee, Ryan Rifkin, and Alexander

Rakhlin. Statistical learning theory and applications, 2004. Notes,

MIT, www.mit.edu/~9.520/spring04/.

[Qui01] Gene Quinn. Reisz representation theorem, 2001. Notes, Univer-

sity of Rhode Island,

www.math.uri.edu/~quinn/web/mth629 Reisz.pdf.

[Rak06] Alexander Rakhlin. Applications of Empirical Processes in Learn-

ing Theory: Algorithmic Stability and Generalization Bounds.

PhD thesis, MIT, 2006.

[Rud91] Walter Rudin. Functional Analysis. McGraw-Hill, New York, NY,

USA, 1991.

95

[SBSC99] Alex J. Smola, Peter Bartlett, Bernhard Schölkopf, and

C.Schuurmans. Advances in Large Margin Classifiers. MIT Press,

Cambridge, MA, 1999.

[Seb77] G. A. F. Seber. Linear Regression Analysis. John Wiley, New

York, 1977.

[SHS01] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A general-

ized representer theorem. In COLT: Proceedings of the Workshop

on Computational Learning Theory, Morgan Kaufmann Publish-

ers, 2001.

[SS01] Bernhard Scholköpf and Alex J. Smola. Learning with Kernels:

Support Vector Machines, Regularization, Optimization, and Be-

yond. MIT Press, Cambridge, MA, USA, 2001.

[SS04] Alex J. Smola and Bernhard Schölkopf. A tutorial on support

vector regression. Statistics and Computing, 14(3):199–222, 2004.

[SS05] Bernhard Schölkopf and Alex Smola. Support Vector Machines

and Kernel Algorithms. John Wiley & Sons, 2005.

[SSM98] Alex J. Smola, Bernhard Schölkopf, and Klaus-Robert Müller.

The connection between regularization operators and support vec-

tor kernels. Neural Networks, 11(4):637–649, 1998.

[SSTPH05] Sandor Szedmak, John Shawe-Taylor, and Emilio Parado-

Hernandez. Learning via linear operators: Maxi-

mum margin regression. PASCAL, October 04 2005.

eprints.pascal-network.org/archive/00001765/.

[STB98] J. Shawe-Taylor and P. L. Bartlett. Structural risk minimization

over data-dependent hierarchies. IEEE Trans. on Information

Theory, 44(5):1926–1940, 1998.

[Vap96] Vapnik. Statistical theory of generalization (abstract only). In

ICML: Machine Learning: Proceedings of the Seventh Interna-

tional Conference, 1990, 1996.

96

[Vap99] V. N. Vapnik. An overview of statistical learning theory. IEEE-

NN, 10(5):988, September 1999.

[Vap00] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag, 2nd edition, 2000.

[Wai04] Martin Wainwright. Stat 260: Nonlinear and convex optimization,

2004. Notes, University of Berkeley,

www.eecs.berkeley.edu/~wainwrig/ee227a/.

[Wan05] Lipo Wang, editor. Support Vector Machines: Theory and Appli-

cations, volume 177 of Studies in Fuzziness and Soft Computing.

Springer-Verlag, 2005.

[Wel07] Max Welling. Essentials of convex optimization, 2007. Notes,

University of California - Irvine,

www.ics.uci.edu/~welling/classnotes.

[WGS+99] J. Weston, A. Gammerman, M. O. Stitson, V.Vapnik, V. Vovk,

and C. Watkins. Support vector density estimation, 1999.

www.cs.rhbnc.ac.uk/~jasonw/density.ps.

[Zho02] Ding-Xuan Zhou. The covering number in learning theory. Journal

of Complexity, 18, 2002.

[Zho03] Ding-Xuan Zhou. Capacity of reproducing kernel spaces in

learning theory. IEEE Transactions on Information Theory,

49(7):1743–1752, 2003.

