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1 Introduction

Markov Chains are often so complex that an exact solution for the steady-
state probabilities (or other ‘features’ of the Markov Chain) are not com-
putable. It is therefore necessary to use variance reducing approximations.
There are many techniques currently in use; importance sampling, smooth-
ing, and ”control variates and regression” [1]. All these methods make use of
simulations of the complex process or simulations of a simpler, related pro-
cess that is used as an external control in simulating the complex process.
The problem with this approach is that both the complex and simple pro-
cess need to be simulated simultaneously. The approach we consider differs in
that it constructs a Martingale from the simpler related process which is then
used as an internal control in the simulation of the more complicated process.
The construction of the martingale is entirely dependent on the ‘feature’ we
choose to measure.1 The benefit of such an approach is that the simple and
complex markov processes do not need to be simulated simultaneously.

1.1 Approximating Martingale Process Method

We construct a system of linear equations that give us the exact solution
for some feature of a simpler Markov Chain that approximates our com-
plex Markov Chain. A martingale is then constructed from this ‘exact-
approximate’ solution. This martingale will then be used to define an unbi-
ased, variance reducing estimate (using linear combinations of more standard
estimates) of a measure of the feature we choose. This new estimate can
then be used to construct another newer estimate, again using an appropri-
ate martingale and in this way we can get unlimited variance reduction. I
will illustrate this mechanism using several examples.

2 Two State Continuous-Time Markov

Chain

Let us define a continuous-time markov chain {Yt : t ≥ 0} on the state space
S = {y0, y1}, where the time spent in state yi is exponentially distributed
with mean 1

λi

. By the Markov property, the time spent in each state is
memoryless - the remaining time spent in any state, before a transition to

1More specifically, the construction of the martingale is dependent on a system of linear

equations which depend on the ‘feature’ we choose to measure.
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another state occurs, is dependent only on the state and not on the amount
of time already spent in that state. The Markov process is determined in
this case by a generator or rate matrix of the form

pi,j = lim
δt→0

P (Yt+δt = j|Yt = i)

δt
(1)

where each i, j entry is the probability per time unit that a transition between
states i and j result. The rate matrix for the continuous-time Markov chain
Yt is then

A =

[

−λ0 λ0

λ1 −λ1

]

(2)

Now define a reward function f such that f(y0) = 1 and f(y1) = 0. We can
approximate α(t), the fraction of time spent in state y0 in the interval [0, t]
by

α(t) u
1

t

∫ t

0

f(Ys)ds −→
λ1

λ0 + λ1

as t → ∞ (3)

Define Ft to be the σ-algebra generated by {Ys : 0 ≤ s ≤ t} and construct
the history or filtration {Ft : t ≥ 0} such that Ft ⊂ Fs whenever s < t. Now
let Py0

(y) = P (Yt = y|Y0 = y0) and then Pµ(y) =
∫

S
Py0

(Yt = y)µ(dy0).

Definition 1. M = {Mt : t ≥ 0} is a martingale under probability measure
Pµ with respect to filtration {Ft : t ≥ 0} iff (1) Mt is Ft-measurable for all
t > 0 (2) Mt is integrable for all t > 0 (i.e. E{Mt|Y0 = y0} < ∞) and (3) if
s ≤ t then E(Mt|Fs) = Ms a.s. where the expectation is taken with respect
to probability measure Pµ

We now construct a Pµ martingale with mean zero as follows (see Theorem
1)

M(t) = u(Yt) − u(Y0) −

∫ t

0

Au(Ys)ds (4)

where u is any function u : S → R. If we now simply construct a new unbiased
estimator of the fraction of time spent in state y0 as follows α̂t = αt−

M(t)
t

then

we have reduced the variance since var{α̂t} = var{αt −
M(t)

t
} ≤ var{αt},

without adding any bias so the estimators have the same expected value.
This holds for any choice of function u.

There is however an optimal choice for u that will change the martingale
and estimator such that unlimited variance reduction will be possible. Let
us take u as follows; u(0) = 0 and u(1) = −(λ0 + λ1)

−1. Then

Au(x) = −f(x) +
λ1

λ0 + λ1
(5)
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and so we have

α̂t = αt −
M(t)

t

=
1

t

∫ t

0

f(Ys)ds −
u(Yt) − u(Y0)

t
+

1

t

∫ t

0

Au(Ys)ds

=
λ1

λ0 + λ1
+

u(Y0) − u(Yt)

t
(6)

where var{α(t)} ∝ 1
t

and var{ ˆα(t)} ∝ 1
t2

so we can continue the above
process by setting α(t) = α̂(t) and using the martingale M to derive a new
estimator and in this way unlimited variance reduction is possible. We now
apply the above ideas to the approximation of several other relevant ‘fea-
tures’.

3 Expected total reward prior to

absorption

3.1 In a Discrete-Time Markov Chain

Let us define a discrete-time markov chain {Xt : t ≥ 0} on the state space
Σ = {x0, x1, · · · } which is countably infinite. Also define a reward function
f on Σ. If C is a subset of Σ such that each xi ∈ C is an absorbing state
then we define T = inf{n ≥ 1 : Xn ∈ C} to be the time to absorption. We
can also define the expected total cumulative reward before absorption given
that the state starts in x ∈ Cc by

u∗(x) = E{
T−1
∑

i=0

f(Xi)|X0 = x} (7)

Let us make two assumptions that will be useful at a later stage; first assume
that E{T |X0 = x} is finite [A1] and that the reward function f is also
bounded for all x ∈ Cc [A2] . Combining these assumptions we have that u∗

is also bounded since

u∗(x) = E{

T−1
∑

i=0

f(Xi)|X0 = x}

≤ ‖f‖E{T |X0 = x}

= sup
x∈Cc

|f(x)|E{T |X0 = x} < ∞ (8)
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Now given a total of N sample trajectories {Xi : 1 ≤ i ≤ T |X0 = x}N
k=1,

let us define Uk to be the observed cumulative reward for the kth tra-
jectory {

∑T−1
i=0 f(Xi)|X0 = x}k. Then α = u∗(x) can be estimated by

αN = 1
N

∑N

k=1 Uk. By the markov property we can show that u∗ satisfies
the linear system

u(xt) = f(xt) + Bu(xt+1) (9)

where B is the restriction of P to Cc (i.e. P (x, y) = B(x, y)∀x, y ∈ Cc) and
Bu(xt+1) =

∫

Cc u(y)B(xt+1, dy) for xt+1 ∈ Cc. For x ∈ C we will assume
that u∗(x) = f(x) = 0 and hence

u∗ = f + Pu∗ for x ∈ Σ (10)

Theorem 1. As in the previous section, define Ft to be the σ-algebra gener-
ated by {Xs : 0 ≤ s ≤ t} and construct the history or filtration {Ft : t ≥ 0}
such that Ft ⊂ Fs whenever s < t. Now let Px0

(x) = P (Xt = x|X0 = x0)
and then let the two assumptions [A1] and [A2] hold so that we have for a
function u : Σ → R such that u(x) = 0 for x ∈ C and 0 ≤ u(x) ≤ ∞ for
x ∈ Cc the following

Mn = u(Xn) − u(X0) −
n−1
∑

k=0

(P − I)u(Xk) (11)

where for a fixed and bounded constant b we have |(P − I)u(x)| ≤ b for
x ∈ Cc. It follows that M = (Mn : n ≥ 0) is a Px martingale for all x ∈ Σ.

If we have the additional condition E{
∑T−1

i=0 u(Xk)|X0 = x} < ∞, then
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E(MT |X0 = x) = 0 for all x ∈ Cc. To see this observe that

Ex(
T
∑

k=1

|Mk+1 − Mk| |Fk) = Ex(
T
∑

k=1

|u(Xk+1) − u(X0) −
k
∑

i=0

(P − I)u(Xi)

− u(Xk) + u(X0) +

k−1
∑

i=0

(P − I)u(Xi)||Fk)

= Ex(

T
∑

k=1

|u(Xk+1) − Pu(Xk)||Xk)

≤

T
∑

k=1

Ex(u(Xk+1)|Xk) +

T
∑

k=1

Pu(Xk)

=
T
∑

k=1

2Pu(Xk)

≤

T
∑

k=1

2(u(Xk) + b) < ∞ (12)

Now applying the dominated convergence theorem we have that E{MT |X0 =
x} = 0 since the following hold

E{Mmin(T,m)|X0 = x} = 0 for all m

lim
m→∞

Mmin(T,m) = MT a.s.

sup
m

∣

∣

∣

∣

∣

Mmin(T,m)|
T
∑

k=1

|Mk+1 − Mk|

∣

∣

∣

∣

∣

(13)

We now define the martingale estimator as

α̂n =
1

n

n
∑

k=1

(Uk − MT (k)) = αn −
1

n

n
∑

k=1

MT (k) (14)

where MT (k) is MT (as defined in Theorem 1) for the kth trajectory {Xi :
0 ≤ i ≤ T}k. If we take u in 11 to be equal to u∗ (from Equation 7) then
under the probability law Px defined in section 2 we have

MT = −u∗(x) + U (15)

which implies that var{α̂n} = 1
n2 var{

∑n
k=1 Uk−MT (k)} = 1

n2 var{
∑n

k=1 u∗(x)} =
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var{u∗(x)} = 0. This follows from the following

ExMT = Ex{u
∗(XT ) − u∗(X0) −

T−1
∑

k=0

(Px − I)u∗(Xk)}

= Ex{−u∗(X0) +

T−1
∑

k=0

f}

= −u∗(X0 = x) + Ex{
T−1
∑

k=0

f}

= −u∗(X0 = x) + u∗(X0 = x) = 0 (16)

where Equation 10 gives us that (Px − I)u∗ = −f and u∗(XT ) = 0 since
XT ∈ C and since X0 = x under Px.

3.2 In a Continous-Time Markov Chain

Use the definitions in Section 2 for a CTMC (and let the state space S be
countably infinite) and redefine the following from Section 3

T = inf{n ≥ 1 : Yn ∈ C} (17)

u∗(y) = E{

∫ T

0

f(Yi)|Y0 = y} (18)

αN =
1

N

N
∑

k=1

Uk (19)

Uk =

T−1
∑

i=0

f(Yi(k)) (20)

Note that (18) implies u∗(x) = 0∀x ∈ C.

Theorem 2. Again, define Ft to be the σ-algebra generated by {Xs : 0 ≤
s ≤ t} and construct the history or filtration {Ft : t ≥ 0} such that Ft ⊂
Fs whenever s < t. Now let Py0

(y) = P (Yt = y|Y0 = y0) and Pµ(y) =
∫

S
Py0

(Yt = y)µ(dy0) so that we have for a function u : S → R the following

Mn = u(Yn) − u(Y0) −

∫ t

0

Au(Yn)ds (21)

It follows that M = (Mn : n ≥ 0) is a Pµ martingale for any choice of µ.
Also setting u = u? makes α̂ have zero variance.
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4 Infinite Horizon Expected Discounted

Rewards

Let us define a discrete-time markov chain {Xt : t ≥ 0} on the state space
Σ = {x0, x1, · · · } which is countably infinite. Also define a reward function
f on Σ and further assume that f is bounded. We now define a discounting
function h such that 0 ≤ h(x) ≤ δ < 1 for all x ∈ Σ. We can now discount
rewards in the infinite horizon as follows:

U =
∞
∑

i=0

f(Xi) ×

[

i−1
∏

k=0

h(Xk)

]

(22)

since
[

∏i−1
k=0 h(Xk)

]

< 1. The ‘measure’ we are interested in is the following

u∗(x) = E(U |X0 = x) ≤
‖f‖

1 − δ
(23)

and is bounded. We cannot directly simulate the process to estimate U or u∗

because of the infinite horizon. We could use an unbiased estimate that runs
the process for a random number of time steps and then uses a finite sum in
22 to estimate U . We know that u∗ satisfies the following linear system of
equations

u(x) = f(x) + h(x)Pu(x) ∀x ∈ Σ (24)

Theorem 3. For a function h such that 0 ≤ h(x) ≤ δ < 1 for all x ∈ Σ and
a bounded function u : Σ → R (|u(x)| ≤ b), we define

Mn =
n
∑

k=1

[u(Xk) − Pu(Xk−1)]
k−1
∏

j=0

h(Xj) (25)

then M = {Mt : t ≥ 0} is a Px martingale for all x ∈ Σ so that Mn → M∞

a.s. such that ExM∞.

If we generate n different finite trajectories under Px then we can estimate
α = u∗(x) by the average αn = 1

n

∑n
i=1 Ui. We now define the martingale

estimator

α̂n =
1

n

n
∑

i=1

Ui − M∞(i) (26)

which is an unbiased estimator. If we take u in 25 to be equal to u∗ then
M∞ = U − u∗(X0), so that under Px, α̂n is an estimator for u∗(x) such that
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var(α̂n) = 0. To see this observe that

M∞ =
∞
∑

k=1

[

k−1
∏

j=0

h(Xj)

]

u(Xk) − Pu(Xk−1)

= −h(X0)Pu(X0) +
∞
∑

k=1

[

k−1
∏

j=0

h(Xj)

]

u(Xk) − h(Xk)Pu(Xk−1)

= f(X0) − u(X0) +

∞
∑

k=1

f(Xk)

[

k−1
∏

j=0

h(Xj)

]

= U − u∗(X0) (27)

since u(X0) = f(X0)+h(X0)Pu(X0) and u(Xn) = f(Xn)+h(Xn)Pu(Xn−1).

5 Finite Horizon Cumulative Rewards

As in the previous section, we define a discrete-time markov chain {Xt : t ≥
0} on the state space Σ = {x0, x1, · · · } which is countably infinite. Also
assume that the chain terminates with probability one. Also define a reward
function f on Σ and further assume that f is bounded ‖f‖ < ∞. We now
define

u∗

n(x) = E

(

n
∑

k=0

f(Xk)|X0 = x

)

(28)

Next we define αm and the martingale estimator as follows

αm =

m
∑

i=0

(

{

n
∑

k=0

f(Xk(i))}

)

α̂m =

m
∑

i=0

(

{

n
∑

k=0

f(Xk(i))} − Mn(i)

)

Mn(i) =
n
∑

k=1

[u(Xk(i)) − Pu(Xk−1(i))]
k−1
∏

j=0

h(Xj(i)) (29)

where {Xk(i) : k ≥ 0} is the ith (of a total of m) trajectory simulated. We
also know that u∗

n(x) satisfies the linear system

u0 = f

uj = Puj−1 + f j = 1, · · · , n (30)
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If we now take uj = u∗

j for j = 1, · · · , n then

Mn(i) =
n
∑

k=1

un−k(Xk(i)) − Pun−k(Xk−1(i))

=
n
∑

k=0

f(Xk(i)) − un(X0(i)) (31)

so that under Px we have that

var{α̂n} = var

{

m
∑

i=0

(

{

n
∑

k=0

f(Xk(i))} − Mn(i)

)}

= var

{

m
∑

i=0

un(X0(i))

}

= 0 (32)

(33)

6 Average Steady-State Reward
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