
Least Squares Support Vector Machines

Rohan Shiloh Shah

April 29, 2005

Contents

1 Introduction 2

1.1 Vapnik’s SVM Regression . 2
1.2 The Least Squares Approach . 3

1.2.1 Computational algorithm for LS-SVMs: Nystrom Method 4
1.2.2 Computational algorithm for LS-SVMs: Incomplete Cholesky Fac-

torization . 4
1.3 Feature Selection . 5

1.3.1 Information Gain . 5

2 Bayesian Approach to Learning 6

2.1 Maximum Likelihood and the Hierarchichal Bayes Approach 6
2.2 Bayesian Inference . 7
2.3 Predictions . 9

3 Bayesian Approach to Feature Selection - Relevance Vectors 9

4 Results 9

4.1 Output for RVM Regression . 9
4.2 Output for RVM Classification . 10

1

1 Introduction

Support Vector Classification is a multi-class learning algorithm; it identifies each class
by first projecting the data into a higher dimensional space and then using a hyperplane
(or hyperplanes when there are more than 2 classes) to separate and classify the pro-
jected data1. The hyperplane that an SVM learns has a maximised margin amongst all
hyperplanes that separate the data. The squared error is also minimised simultaneously
while determining the optimal separating hyperplane. Intuitively we see that maximising
the margin and minimising the squared error produces a decision boundary that is both
accurate and generalises well to test data.

Support Vector Regression is similar to SVM Classification in that it learns a linear re-
gression function in a higher dimensional space. The learnt function deviates the least
from the training data amongst all such linear surfaces in the expanded space, according
to some loss function. This regression surface is taken to be a weighted linear combination
of a set (possibly infinite) of basis functions in the input space(see [1]), so the surface is
non-linear in the input space and linear in the feature space.

1.1 Vapnik’s SVM Regression

For training data {xi, yi}
N
i=1, a mapping m from the input space to what is called a feature

space (some higher dimensional space) is defined:

(x1, x2, · · · , xN) 7→m (φ1, φ2, · · · , φr) ◦ (x1, x2, · · · , xN) (1)

where r is the size of the feature vector (ie, the dimension of the feature space) and φi is
the ith feature. In this way every xi can be projected into an r dimensional space with
coordinates given by (φ1, φ2, · · · , φr) ◦ (xi). The hope is that r is not too large, because
a reduced feature space dimension will involve less computation, and more significantly,
will generalize better. A linear function in the feature space can now be defined as:

y
w
(xi) = w>φ(xi) + β0 (2)

The loss function we will use to evaluate the accuracy of the regression surface is the
empirical risk which is defined as

Remp =
1

N

N∑

i=1

|yi − y
w
(xi)|ε (3)

so our primal optimisation task maximises the margin: minw,ξ
1
2
wTw + c

∑N
i=1 ξi subject

to the correct classification of the data2: |yi − y
w
(xi)| ≤ ε + ξi, i = 1, · · · , N and ξi ≥

1This assumes the data is linearly separable. For the case where the data is not linearly separable,
we define a slack variable ξi that measures the error associated with training example i, and find a
hyperplane that minimizes

∑

i
ξi. There is a key tradeoff between the complexity of our model and the

sum of the slack variables; if we allow no ‘slack’, then we will have to map our features to a fairly high
dimensional feature space where the training examples are perfectly linearly separable, resulting in an
increased model complexity. If we allow a fair amount of ‘slack’, then we can lower the dimension of our
model significantly.

2In the case of non-linear function approximation this corresponds to the case where all training
points are within an ε-tube of accuracy. When small values of ε are chosen it might be the case that all

2

0, i = 1, · · · , N (see cite2). The lagrangian is:

Lα,η(w, β0, ξ) =
1

2
wT w +

N∑

i=1

(cξi − ηiξi) −

N∑

i=1

αi(ε + ξi + y
w
(xi) − yi) (4)

The vectors φ(x) and w may be infinite dimensional and hence the need for an equivalent,
yet computationally feasible, optimisation task. The saddle point is found by maximizing
the lagrangian over the lagrange multipliers after minimising over the remaining variables;
differentiating with respect to these remaining variables and setting the differential equal
to zero gives us w =

∑N
i=1 αiφ(xi),

∑
αi = 0, and c − αi − ηi = 0; substituting these in

the lagrangian and simplifying gives us the dual, a quadratic optimisation, which is of
the form:

max
α

[

−
1

2

N∑

i,j=1

αiαjφ(xi)φ(xj) +

N∑

i=1

(yiαi − εαi)

]

such that

N∑

i=1

αi = 0, αi ∈ [0, c] (5)

We now make use of the kernel trick and substitute the dot product in the feature
space φ(xi)φ(xj) with K(xk, xl), transforming it into a non-parametric problem since the
size of the solution vector α varies with the amount of data N , whereas the primal was
parametric as the solution vector in that case, w, varied with the dimension of the feature
space and not the number of input data points. The regression surface is now defined as
yα,β0

(xi) =
∑N

k=1 αkK(xi, xk) + β0, intuitively this corresponds to a linear combination
of basis functions in the input space. One of the advantages of Vapnik’s SVM is that we
have sparseness, i.e. the quadratic optimisation sets many αi equal to zero, and hence the
regression surface can be redefined as yα,β0

(xi) =
∑S

k=1 αkK(xi, xk) + β0 where S is the
number of non-zero αi’s; the corresponding φ(xi) are called support vectors and hence S
is the number of support vectors.

1.2 The Least Squares Approach

There are many aspects of Vapnik’s SVM that make it attractive; for instance the sparse-
ness of the solution vector α, the implicit redefining of the optimisation in the input space
etc. It still remains computationally difficult as the dual increases in complexity with the
size of the dataset. We would like to simplify the original formulation while retaining its
many ‘good’ properties.

We now consider the primal:

min
w,β0,e

1

2
wT w + γ

1

2

N∑

i=1

e2
i such that yi = y

w
(xi) + ei, i = 1, · · · , N (6)

Notice that this is a slightly modified approach; an equality constraint is defined
which aligns the regression surface in the feature space exactly with the target surface
{yi, i = 1, · · ·N} 3 with the use of a slack variable ei. Ideally we would like to see

the data does not fit within an epsilon tube of accuracy and hence a further slack variable ξi is defined.
Furthermore, the sum of these slack variables in minimised.

3In classification the analagous interpretation is that overlaps in the target distribution are accomo-
dated

3

misclassifications in this ’overlap’ area minimised and so we optimise the sum of the square
of this error variable (see [9]). The lagrangian is: Lα(w, β0, e) = 1

2
wT w + γ 1

2

∑N
i=1 e2

i −
∑N

i=1 αi{w
T φ(xi)+β0 +ei−yi} and differentiating gives us: w =

∑N
i=1 αiφ(xi),

∑N
i=1 αi =

0, αi = γei, i = 1, · · · , N and wTφ(xi) + β0 + ei − yi = 0, i = 1, · · · , N . Substituting w
and e in the lagrangian gives us the following KKT linear system:

[
0 1T

N

1N ZT Z + I/y

] [
β0

α

]

=

[
0
y

]

where ZT =







φ(x1)
T y1

φ(x2)
T y2

· · ·
φ(xN)T yN







(7)

The kernel trick can now be applied in forming the matrix ZT Z: K(xi, xj) = φ(xi)
T φ(xj),

implicitly transforming the linear system so that computation is performed in the in-
put space instead of the feature space. The resulting regression surface is yα,β0

(x) =
∑N

i=1 αiK(x, xi) + β0. Notice that sparseness of the solution vector is not achieved here;
post-learning pruning needs to be applied in this case. Tests performed in [9] (pages 95-
97) show the least squares SVM to be comparable to Vapnik’s SVM on several datasets
using different kernels.

For large datasets there exist several efficient numerical methods, two are outlined briefly.

1.2.1 Computational algorithm for LS-SVMs: Nystrom Method

Define the kernel matrix as Σ(N,N) = ZT Z then from (7) we know we have to solve the
linear system α = (Σ(N,N) + I/γ)−1y. Using the Sherman-Morrison-Woodbury formula

and the eigenvalue decomposition Σ(N,N) = Ũ Λ̃ŨT we have

α = γ

(

y − Ũ(
1

γ
I + Λ̃ŨT Ũ)−1Λ̃ŨT y

)

(8)

To reduce computation we now apply an approximation by defining Σ(M,M) as a random
selection of M rows of Σ(N,N). We have Σ(M,M) = Ū Λ̄ŪT and use the following estimates:

λ̃i =
N

M
λ̄i and ũi =

√

N

M

1

λ̄i

Σ(N,M)ūi (9)

where Λ̄ = diag([λ̄1; · · · ; λ̄M]). So we can now compute Ũ and Λ̃ for use in (8) from Ū
and Λ̄.

1.2.2 Computational algorithm for LS-SVMs: Incomplete Cholesky Factorization

In solving a quadratic form using an interior point method (applied to SVMs), the most
computationally expensive operation is inverting or factorising (see [10]) the sum of the
kernel matrix αiαjK(xi, xj) and a diagonal matrix D to find a solution to Mu = v where
M = D + αiαjK(xi, xj). It is numerically stable to use a product cholesky factorisation:

M =

L
︷ ︸︸ ︷

L1L2 · · ·Lk Λ (Lk)T · · · (L2)T (L1)T

︸ ︷︷ ︸

LT

(10)

4

Next the following lower triangular systems L1u1 = w, L2u2 = u1, · · · , LKuk = uk−1 are
solved using forward substitution and the following upper triangular systems (Lk)T uk+1 =
Λ−1uk, · · · , (L1)T u = u2k−1 are solved using back substitution, to obtain the solution u.
Solving for u takes 0(n3) time. If αiαjK(xi, xj) is low rank then each Li has a special
structure and the solution u can be obtained more efficiently in O(k2n) time where k is
the rank of a n × k matrix V such that αiαjK(xi, xj) = V V T . Let v be any column
vector from V then assuming LΛLT is the Cholesky factorisation of D we have

D + vvT = LΛLT + vvT = InD(In)
T + LppT LT = In(Λ + ppT)(In)T = L̃Λ̃L̃T (11)

This amounts to updating a Cholesky factorisation by accomodating a rank-one matrix
and is easily done in O(n) time. Since V V T =

∑k
i=1 vi(vi)

T , we simply have to apply this
rank-one update k times to get the Cholesky factorisation of D + V V T .

1.3 Feature Selection

Although our heuristic is to minimize the dimension of the feature space, the essential
information contained within the original data should still be captured. Feature selection
typically involves choosing the features φi that are relevant for a given classification task.
In text classification one common feature selection technique is to use the information

gain criteria which measures the decrease in the entropy or ‘randomness’ of our classifier,
that is brought about by including φi in the feature vector. So a high value of IG(φi)
says that φi is a necessary part of the feature vector and therefore the dimension that is
associated with it in the feature space is ‘critical’ to computing a separating hyperplane
or regression surface, specifically one that does not overfit the training data.

So one manual way of performing feature selection involves using the information gain
to find irrelevant features that are then removed from the feature vector. We say a test
feature φi is irrelevant if its information gain is below some threshold. This method
is computationally infeasible because the feature vector might be of infinite dimension
and because computing the information gain is a long and boring procedure (even for a
computer).

1.3.1 Information Gain

We can compute the information gain of a feature φt:

IG(φt) =

2∑

i=1

H(ci)

︸ ︷︷ ︸

1

−P (φt) ·

2∑

i=1

H(ci|φt)

︸ ︷︷ ︸

2

−P (φt) ·

2∑

i=1

H(ci|φt)

︸ ︷︷ ︸

3

(12)

(1) is simply the entropy of our classifier. (2) is equal to the weighted (by the prior
probability of φt) entropy of our classifier given φt.

Support Vector Machines have a more robust mechanism for dealing with feature selec-
tion; support vectors are those projected data points that lie on (or close to) the margin
that defines the separating hyperplane4. Or since the separating decision boundary is de-

4For regression tasks we take support vectors to be those projected data points that lie on the edge
of an ε-tube (i.e. ±ε) defined around the regression surface

5

fined ‘close’ to all examples that are difficult to classify; we call these examples support
vectors because they ‘support’ the decision boundary. These support vectors essentially
define the important features of our projected space and a basis function is associated
with each of these support vectors. However, the number of support vector (or features)
typically grows linearly with the size of the training set.

High-dimensional feature spaces are not a computational problem for SVM’s, since all
computation is performed in the input space, but rather a problem of over-fitting the
data. Traditionally, SVM’s have used some post-learning techniques to prune the num-
ber of features. Not only is this inefficient but it might destroy some of what has been
learnt. Is there a way to sparsify the number of features during learning, assigning each

of these features some relevance in comparison to the other features, and producing a

prediction based on the regression surface that has a probabilistic interpretation?

2 Bayesian Approach to Learning

We start by finding appropriate values for the weights used to define the regression
function which in vector notation is given by y

w
(x) = w>φ(x) 5 or in matrix notation,

y
w

= w>Φ, where Φ is the n × n design matrix where Φ = [φ(x1), · · · , φ(xn)] and
φ(xi) = [1, K(xi, x1), · · · , K(xi, xn)]. The penalised least-squares approach minimises:

RSS(y, λ,w) =
n∑

i=1

(y(i) − yw(xi))
2 + λ

∫ b

a

(yw(x)′′)2dt (13)

where a regularisation term has been added to control the complexity (more specifically
the curvature) of the basis functions considered (see [4]). As λ varies from 0 to ∞ we vary
the basis functions from very complex to a simple straight line. If a simpler regularisation
term 1

2

∑
w2

i is used we can express the residual sum of squares in matrix notation as:

RSS(y, λ,w) = (y − w>Φ)′(y − w>Φ) + λw′w (14)

from which it follows after differentiating and setting equal to zero that ŵPLS = (Φ′Φ +
λI)−1Φ′y.

2.1 Maximum Likelihood and the Hierarchichal Bayes Approach

Now if we assume that there exists normally distributed noise in our model with mean 0
and variance σ2 then for t = yw(x) + ε we can write the likelihood (see [5]) as follows:

p(t|x,w, σ2) =
n∏

i=1

1

(2π)1/2σ
exp

[

−
{ti − yw(xi)}

2

2σ2

]

(15)

The maximum likelihood (maximising p(t|x,w, σ2)) estimate is identical to the least-
squares estimate (minimizing the residual sum of squares)6. We now define a gaussian

5Remember φ(xi) is a vector - [φ1(xi), · · · , φn(xi)]
>

6This can be seen by minimising the negative logarithm of the likelihood and comparing it to the
least squares approach

6

prior distribution on the weights, to control the model complexity, with zero mean and
variance parameter 1/α. So we prefer models with wi ≈ 0 because this maximises the
prior p(w|α) - essentially this is a regularisation mechanism because we are assigning a
higher likelihood to simpler models. For each weight there is a separate hyperparameter
αi, and over each of these hyperparameters we define a separate Gamma distribution with
shape parameters a and b. We also define a Gamma hyperprior over the noise variance
σ2 with shape parameters c and d. By setting the shape parameters to zero we obtain
uniform hyperpriors on a logarithmic scale7. So using bayes rule we know that:

p(w|t, α, σ2) =
p(t|w, σ2)p(w|α)

p(t|α, σ2)
(16)

The denominator is a convolution of two gaussians which we have seen before:

p(t|α, σ2) =

∫

p(t|w, σ2)p(w|α)dw

= (2π)−n/2|σ2I + α−1Φ>Φ|−1/2 exp

[

−
1

2
t>(σ2I + α−1Φ>Φ)−1t

] (17)

which is a gaussian distribution over the data vector t. After multiplying and di-
viding these 3 gaussian distributions and rearranging we see that p(w|t, α, σ2) is nor-
mally distributed with mean µ = (Φ>Φ + σ2αI)−1Φ>t and covariance matrix Σ =
σ2(Φ>Φ + σ2αI)−1 which is identical to the penalised least squares estimate ŵPLS with
λ replaced by σ2αi.

8 Is’nt that strange? We changed our regularisation technique (from
minimising the sum of the weights to defining a prior distribution over the weights that
assigns a priori more significance to smaller weights) and we changed our solution method
(from penalised least squares to a bayesian approach that uses maximum likelihood) and
yet the solution is unchanged. Ofcourse, the added advantage of using a bayesian ap-
proach is that we had a point estimate before ŵPLS

9 and now we have a distribution
p(w|t, α, σ2) ∼ N(µ, Σ) that can be used to define a probabilistic estimate.

2.2 Bayesian Inference

Since a decomposition, using bayes rule, of the posterior p(w, α, σ2|t) leaves us with a
normalising factor p(t) that is analytically intractable we will start with the following
decomposition:

p(w, α, σ2|t) = p(w|t, α, σ2)p(α, σ2|t) (18)

where we know that p(w|t, α, σ2) ∼ N(µ, Σ). For p(α, σ2|t) we find the most probable

values αMP and σ2
MP . Type-II Maximum Likelihood estimation assumes uniform priors for

σ2 and α on the logarithmic scale and then equivalently maximises p(t|α, σ2) to arrive
at estimates for αMP and σ2

MP . So we have reduced our learning task to a search for

7I’m not sure why?
8Remember α is a vector [α1, · · · , αn], where each αi is associated with wi

9We could define a distribution around this point estimate with mean ŵPLS and variance var(ŵPLS)
but a change in λ, our preference for the complexity of the regression surface changes the entire distri-
bution and requires a complete recomputation.

7

b

w1
w2

α3α2α1

a

tnt1

.

.

αn

w3
wn

c dσ2

Figure 1: Heirarchical Bayesian Decomposition

8

maximum likelihood parameters αMP and σ2
MP .

If we assume that the priors are not uniform then it is not possible to obtain a closed
form for p(t|α, σ2) and so we use a iterative re-estimation procedure to estimate the
parameters αi and σ2

i . We first find maximum likelihood estimates for first αi and then
σ2 then update our posterior statistics µ and Σ and then repeat the procedure, estimate
αi etc. Other expectation maximisation like techniques for parameter estimation are also
possible.

2.3 Predictions

Once our iterative procedure has converged, given some new data x∗ we would like to
make predictions. Given the estimates for α and σ2 we can approximate the predictive
distribution as:

p(t∗|t, αMP , σ2
MP) ≈

∫

p(t∗|w, σ2
MP)p(w|t, αMP , σ2

MP)dw (19)

which is normally distributed with mean µ∗ = yµ(x∗) =
∑

µiφi(x∗) and variance σ2
∗

=
σ2

MP + f>Σf where f = [φ1(x∗), · · · , φn(x∗)]
>. Intuitively, we see that the new mean µ∗

is simply the model function y
w
(x) evaluated at the posterior mean µ, i.e. the weights

assigned to the basis expanded new data φ(x∗) are a measure of relevance for each of
the features in the feature space. How do these measures of relevance perform feature

selection?

3 Bayesian Approach to Feature Selection -

Relevance Vectors

During learning a large proportion of the αi end up at infinitely large values leading
p(wi|t, α, σ2) to be highly peaked around zero since α−1

i is the variance of wi. The vectors
for which wi are not zero are called relevance vectors. This replaces all our previous
methods of selecting features including the use of support vectors. In practise Relevance
Vector Machines are able to approximate functions of complexity comparable with those
approximated by Support Vector Machines, but with a fewer number of features.

4 Results

I used code provided by Michael E. Tipping to run RVM tests on 2 data sets; noisy ‘sinc’
data for RVM Regression and Ripley’s synthetic data for RVM Classification.

4.1 Output for RVM Regression

A total of 500 iterations were required to estimate αi and σ2 for noisy data generated
from the function sinc(x) = sin(x)/x. Only gaussian kernels were considered in defining

9

the basis functions and looking at Figure 2 we see that a total of 6 relevance vectors
were required to approximate the function with test error 0.0424558. A Support Vector
Regression used 36 support vectors and had a higher test error, so we see that RVMs
clearly perform better for this dataset.

1 *

2 Evaluating kernel ...

3 *

4 Created RVM ...

5 kernel: ’+gauss’

6 scale: 3.000000

7 PHI: 100 x 101

8 *

9 Calling hyperparameter estimation routine ...

10 100> L = 172.115 Gamma = 5.87 (nz = 14) s=0.093

11 200> L = 172.204 Gamma = 5.83 (nz = 10) s=0.093

12 300> L = 172.208 Gamma = 5.84 (nz = 7) s=0.093

13 400> L = 172.211 Gamma = 5.83 (nz = 7) s=0.093

14 500> L = 172.211 Gamma = 5.83 (nz = 7) s=0.093

15 Terminating: max log(alpha) change is 0.000230163 (<0.001).

16 503> L = 172.211 Gamma = 5.83 (nz = 6) s=0.093

17 *

18 Hyperparameter estimation complete

19 non-zero parameters: 6

20 log10-alpha min/max: -0.13/1.91

21

22 RVM regression test error (RMS): 0.0424558

23 estimated noise level: 0.0933 (true: 0.1000)

4.2 Output for RVM Classification

A total of 252 iterations were required to estimate αi and σ2 for Ripley’s data. Only
gaussian kernels were considered in defining the basis functions and looking at Figure
3 we see that a total of 4 relevance vectors were required to approximate the function
(3 positive relevance vectors and 1 negative relevance vector) with test error 8.6%. A
Support Vector Regression used 38 support vectors and had a higher test error at 10.8%,
so we see that RVMs clearly perform better for this dataset as well.

1 *

2 Created RVM ...

3 kernel: ’+gauss’

4 scale: 0.500000

5 PHI: 100 x 101

6 *

7 Calling hyperparameter estimation routine ...

8 50> L = -7.630 Gamma = 3.61 (nz = 23)

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sinc function
RVM predictor
RVs

Figure 2: RVM Regression with noisy ‘sinc’ data

9 100> L = -7.630 Gamma = 3.60 (nz = 13)

10 150> L = -7.630 Gamma = 3.60 (nz = 8)

11 200> L = -7.630 Gamma = 3.60 (nz = 6)

12 250> L = -7.630 Gamma = 3.60 (nz = 5)

13 Terminating: max log(alpha) change is 2.67016e-07 (<0.001).

14 252> L = -7.630 Gamma = 3.60 (nz = 4)

15 *

16 Hyperparameter estimation complete

17 non-zero parameters: 4

18 log10-alpha min/max: -1.86/-0.99

19

20 RVM CLASSIFICATION test error: 8.60%

11

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

Class 1
Class 2
Decision boundary
p=0.25/0.75
RVs

Figure 3: RVM Classification of Ripley’s synthetic data

References

[1] Christopher J. C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition”, 1998

[2] Nello Cristianini, John Shawe-Taylor, “An Introduction to Support Vector Ma-
chines”, 2000

[3] Radford Neal, “Bayesian Learning for Neural Networks”, 1996

[4] George Seber, Alan Lee, “Linear Regression Analysis”, 2003

[5] Michael E. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine”,
2001

[6] Nello Cristianini, Lecture Notes from www.cs.berkeley.edu/~nello, 2002

[7] Thorsten Joachims, SVM-light, svmlight.joachims.org

[8] Trevor Hastie, ‘The Elements of Statistical Learning’, 2001

[9] Suykens, Van Gestel, De Brabanter, De Moor, Vandewalle, ‘Least Squares Support
Vector Machines’, 2002

[10] Schienberg, Fine, ‘Efficient SVM training using Low-Rank SVM Kernel Representa-
tions’, 2001

12

