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In Classification and Regression, the primary goal is the estimation of a prediction function. The
likelihood or conditional density is one such function; for regression p(~y|~x) = p(~y, ~x)/

∫

p(~y, ~x)d~y and
similarily for classification p(c|~x) = p(c, ~x)/

∑

c p(c, ~x) where c is a class label from the set of labels
C. These are supervised learning tasks since each training example is paired with a corresponding
label or annotation; for regression ~y ∈ R

n and for classification c ∈ C.
Given an unannotated training data set, we seek to build a model, specifically an unconditional

probability density function, that delineates the essential information contained in the observation
space X. This is un-supervised learning since it is performed in the abscence of annotations (and
hence without any cost or loss function ) through direct interaction with ‘new experiences’.

One common approach is to assume the density has a fixed parametric form and then to estimate
the parameters (using a maximum likelihood approach) associated with this form; for example using
a mixture model we can decompose the unknown density as follows:

f̂(µ,Σ)(~x) =

m
∑

i=1

ζi P(µi,Σi)(~x), ζi ≥ 0,
∑

ζi = 1 (1)

where the mixing coefficients ζi quantify the contribution of the ith model in the mixture to the
generation of the estimate f̂(µ,Σ). However, in many instances parametric mixture approximations
do not converge in probability to the true density. The following sections present a regularized,
non-parametric estimate that is a mixture of convolved kernel functions and is asymptotically both
unbiased and consistent.

1 Non-Parametric Density Estimation

Provided with n discrete observations of a random variable

S = {~x1, ~x2, · · · , ~xn} ⊆ X

all of which are identically and independently distributed (iid) according to some unknown prob-

ability distribution F (~x), we seek an estimate f̂(~x) of the true probability density function f(~x).

The search for f̂(~x) is usually performed in a restricted functional space Hf ; which is infact a
Reproducing Kernel Hilbert Space (see Section ??). The functional space is further restricted to
only those functions that are non-negative and integrate to one. The probability density function
(PDF) is simply the derivative of the cumulative distribution function (CDF):

f(~x) =
∂F (~x)

∂~x
⇐⇒ F (~x) =

∫ ~x

−∞

f(~ψ)d~ψ (2)
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We can rewrite 2 as a linear mapping [WGS+99]:

∫

+∞

−∞

I~ψ<~xf(~ψ)d~ψ = F (~x) ⇐⇒ Af(~x) = F (~x) (3)

where both integrals in 2 and 3 are vector integrations and A is an injective mapping from Hf to
the Hilbert Space where F is defined; HF . Neither f or F are known (whereas the operator A and
its inverse are well defined) so we begin by estimating F using samples S generated by the random

process and then proceed to deriving f̂ from our estimate F̂ using an approximation of the inverse
of the linear transformation A.

The empirical distribution at ~x can be estimated from the data by taking the ratio of the number
of samples that are less than or equal to ~x to the total number of samples:

F̂ (~x) =
1

n

n
∑

i=1

I(−∞, ~xi](~x) (4)

and is an unbiased maximum likelihood estimate that is piece-wise constant. For the density to
exist, the estimated distribution F̂ must be differentiable and hence continuous and so to smooth
out the estimate F̂ ; a non-linear regression (Figure 1) is used to approximate the distribution in
the regions where training samples are unavailable; specifically the regression is performed on the
set of pairs

{

~xi, F̂ (~xi); i = 1, · · · , n
}

and is parametrized by the vector ~ρ which leads to our new estimate for the distribution: F̂~ρ(~x).
Support Vector Regression techniques may also be used to derive accurate regressions since regu-
larization (see Section ??) is then possible.

Now to estimate the density function at ~x we need to estimate the derivative of F̂~ρ(~x) which
can roughly be done by taking the difference between two evaluations of the distribution function
at fixed lengths +h and −h from ~x:

f̂(~x) = A
−1F̂~ρ(~x)

=
1

2h

∫ ~x+h

~x−h

dF̂~ρ(ψ) (5)

=
1

2h

(

F̂~ρ(~x+ h) − F̂~ρ(~x− h)
)

=
1

2h

(

1

n

n
∑

i=1

I~xi≤~x+h −
1

n

n
∑

i=1

I~xi≤~x−h

)

=
1

2h

(

1

n

n
∑

i=1

I~xi≤~x+h − I~xi≤~x−h

)

=
1

2h

(

1

n

n
∑

i=1

I~x−h ≤ ~xi ≤ ~x+h

)

=
1

V
×
k(~x)

n
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Figure 1: Estimating the Density and Distribution Functions: [left] A linear interpolation on
F̂~ρ between the end points of the region R = [~x − h, ~x + h] gives us an estimate for the slope

f̂(~x). [right] A non-linear regression on evaluations of 4 at all training samples, in this case on
(~x1, F̂ (~x1)), (~x2, F̂ (~x2)), · · · , (~x6, F̂ (~x6)), yields a smooth estimate for the distribution function.

where k(~x) =
∑n

i=1 I~x−h ≤ ~xi ≤ ~x+h is the number of samples that fall in the region R = [~x−h, ~x+h]
and V is the volume of R which in this case is simply (2h)−1. The shape of the region R and
hence its volume V can be adjusted as more random samples become availible; it has been shown
[DHS01] that as the regions R get smaller (limn→∞ V = 0) and the samples in the region increases

(limn→∞ k = ∞), the estimated density f̂(~x) will converge to f(~x) provided that limn→∞ k/n = ∞
(that is to say the proportion of samples falling within the region to those outside it is very small);
in the limit it will be a smooth density function.

2 Kernel Density Estimation: Parzen Windows

In the previous section we decomposed the CDF into regions or windows R and estimated
the PDF for each window separately. There are several ways to choose the placement (i.e. the
center) of the windows; for example they can be disjoint and cover the entire domain as is the case
with Frequency Histogram Estimation (Figure 2); the benefit of using such a method is that the
structure of the windows are independant of the number of random samples (although the estimation
procedure is not). Alternatively, the approach we will consider henceforth will associate a window
with each random sample ~xi so that we have a sequence of windows R1,R2,R3, · · · centered at
~x1, ~x2, ~x3, · · · . Since the number of windows (and their volume) is now dependent on the sample
size we will re-write the result (5) as

f̂n(~x) =
1

Vn
×
kn(~x)

n
(6)
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Figure 2: Parametric Frequency Histogram Estimation: The true unknown density (top left) can
be estimated by taking random samples (top right, 1000 random samples) and placing them in bins
of fixed length to generate a histogram. Histograms with bin-size h = 0.2, h = 0.1, h = 0.01 and
h = 0.001 are shown; the bin-size or bandwidth (as well as the actual placement of the bins) is an
important parameter in estimating the density function; in this case only a bin-size of h = 0.01 is
able to capture the multi-modality of the true density. In the limit as the bandwidth goes to zero
the histogram will converge to the true density provided the number of samples goes to infinity.
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Figure 3: Let the hypercube window Rn have dimension d = 2; then kn(~x) is simply a count of
the random samples that fall in the square with sides of length hn and centered at ~x; in this case
kn(~x) = 3.

where Vn is the volume of the region Rn and kn is the number of samples that fall inside it; as more
samples are generated the regions can either be refined (as is the case with the Parzen method) or we
can reverse this logic and gradually increase the size of the regions starting with an inconspicuously
small R1 (which is the case with the nearest-neighbor estimation method).

Let us further generalize [DHS01] the definition of the region Rn so that we can estimate multi-
variate densities; assume the windows Rn are d-dimensional hypercubes with edges of length hn;
the volume is then simply Vn = (hn)

d. Now that the window has changed we need to revise our
definition of kn(~x) which was previously defined using a simple indicator function I~x−h≤~xi≤~x+h;
generalising this from counting random samples within an interval to counting within a hypercube
can be done by first using a window function ω of the form:

ω(~s) =

{

1, |sj| ≤ 0.5 ∀j = 1, · · · , d
0, otherwise

which defines the boundary for a unit-hypercube centered at ~0 and then defining kn as follows:

kn(~x) =

n
∑

i=1

ω

(

~x− ~xi
hn

)

So ω
(

~x−~xi

hn

)

= 1 if and only if ~x−~xi

hn

≤ (1
2 , · · · ,

1
2 )T or ~x−~xi ≤ (1

2hn, · · · ,
1
2hn)

T , in other words if ~xi

is less than half the length of an edge of the hypercube away from ~x in all dimensions i = 1, · · · , d.

So ω
(

~x−~xi

hn

)

defines a (d+1)-dimensional hypercube of volume (hn)
d (since the (d+1)th dimension

has edges of length 1), centered at ~x which counts the number of random samples that fall within
the d-dimensional hypercube window R. Finally substituting this result into 6 gives:

f̂n(~x) =
1

Vn
×
kn
n

(7)

=
1

n

1

(hn)d

n
∑

i=1

ω

(

~x− ~xi
hn

)
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Figure 4: Product Kernel Window Functions: instead of counting the number of random samples
within a hypercube centered at ~x, we can associate a single-variate kernel function with each
dimension and weight the count for each random sample by the product of its kernelized distances
from ~x in each dimension. More generally a multi-variate kernel function may be used.

The resulting estimated density is ‘jagged’ since the window (basis) functions in the above linear
combination are hypercubes (Figure 3) with abrupt edges; reducing the width hn as more samples
are generated will smooth out the estimate. Infact if limn→∞ hn = 0 then the estimated density
function is proved [Fuk72] to be asymptotically unbiased; limn→∞ E(f̂n) = f .

2.1 Kernel Basis Functions

Instead of simply counting the number of random samples that fall within a fixed volume surronding
~x, we can weight the count [DHS01] for each random sample by its kernelised distance from ~x. This
can be achieved by replacing the unit hypercube window function ω(~s) with a smooth, symmetric

kernel density function K(~s) satisfying Vn =
∫ +∞

−∞
K(~s) d~s = 1 and K(~s) ≥ 0 and then rewriting 7

as:

f̂n(~x) =
1

n

n
∑

i=1

Khn
(~x− ~xi) (8)

where the bandwidth hn is shifted into the definition of the kernel as the standard-deviation so
that Khn

(~s) = K(~s/hn) and the term involving the volume disappears since Vn = 1. The gaussian
kernel is most often used;

KΣ(~x− ~xi) =
1

(2π)n/2|Σ|1/2
exp

(

−
1

2
(~x− ~xi)

TΣ−1(~x− ~xi)

)

(9)

where Σ is the covariance or bandwidth matrix. The key difference between the parametric density
estimate 1 and non-parametric kernel density estimation 8 is that in the former the models that
define the mixture have means or centers that are estimated from the data, while the latter makes
use of kernel functions that are centered at the various samples in the training data.

The use of kernel basis functions has several advantages, the most significant of which is that
the resulting estimate f̂(~x) is also a smooth density function. It has been shown [Fuk72] that
provided that limn→∞ hn = 0 and limn→∞nhn = ∞ the estimated kernel density estimate pointwise
converges in probability to the true density - this is asymptotic consistency; uniform convergence
in probability is also proved under the additional condition limn→∞ n(h(n))2 = ∞.
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Figure 5: Comparing the Gaussian and Epanetchnikov Kernels [Ihl03]: a bandwidth of 0.0215 is
used - the entropy for the Gaussian and Epanetchnikov Kernels are 0.0439 and 0.0430 respectively.
Notice how even though the original or true density is defined only on the interval [0, 1] so that
random samples are also only generated on this interval, the resulting estimated density extends
outside this interval; this can be good if there are regions of missing values so that an implicit
non-linear interpolation estimates the density in these regions; it can be bad when the estimation
extends into regions for which the density is meant to be undefined.
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2.2 Regularization by Convolution

The estimate 8 can be re-written as a convolution of the kernel with the true density function;

f(~s) ⋆ K(~s) ≡

∫ +∞

−∞

K(~s− ~x)f(~x)d~x (10)

= Ef(~x) (K(~s− ~x))

≅
1

n

n
∑

i=1

K(~s− ~xi)

= f̂(~s)

and so in a sense, the kernel density estimate is approximately a deconvolution from the true
density; in [DH73] we see that in the limit as the number of random samples approaches infinity,

f̂(~s) converges to f(~s)⋆K(~s)1. We can also write the density estimate as a smoothing2 convolution
of the impulsive density function (which assigns a probability mass of 1

n to each of the n random

samples; f̂ i(~x) = 1/n) with the kernel function:

f̂ i(~s) ⋆ K(~s) =

n
∑

i=1

f̂ i(~xi) K(~s− ~xi) (11)

=
n
∑

i=1

1

n
K(~s− ~xi)

= f̂(~s)

Essentially the convolution is a regularization of the estimate through the addition of ‘smoothing’
noise in the regions where the impulsive density is undefined.

It is interesting to note that the Parzen Method has been shown [ZPR05] to be equivalent to a
Regularized Least Squares Method (or Tikhonov Regularization) where the regularizing functional
is taken to be the norm of the resulting estimated density. One benefit [MZ00] of ‘regularizing by
convolving’ is that there are no explicit regularization parameters that need to be estimated and
then re-trained.

2.3 Bandwidth Matrix Selection

Changes in the bandwidth hn of the Kernel function, can severely effect the resulting estimate;
choosing a large bandwidth will produce biased estimates that hide localised features whereas
smaller bandwidths will increase the estimates variability by introducing sharp modulations. The
simplest choice of bandwidth is as some function of n, for example kn = 1/n, so that as the number
of samples increases the kernel gets smaller. A more complex method minimizes the integrated
mean squared error between f̂n and fn with respect to kn. In Figure 6, three bandwidth selection
methods are compared.

1ok, but don’t we want f̂ to converge to f?
2We refer to smooth and smoothing in two contexts; smooth functions have continuous derivatives and smoothing

operations remove localized features
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Figure 6: Kernel Bandwidth Selection [Ihl03]: Three bandwitdh selection methods are compared: the
entropy and bandwidth of each are: ROT (0.1037, 0.0761), LCV (0.0439, 0.0215), HALL(0.0491, 0.0268).
Notice the positive correlation between the entropy and the bandwidth; intuitively as the bandwidth in-
creases the kernel density estimate gets smoother and closer to a uniform distribution which has the maximal
entropy.

2.4 Computation and Sparsity

To form an estimation of the kernel density using Parzen Windows, 8 (or 7) must be evaluated
for all n random samples. The sum in 8 (or 7) is another n evaluations of the window function,
which in itself is a function of d the number of dimensions. In subsequent sections on support
vector density estimation, an equally robust estimate involving considerably less computation will
be considered.

9



References

[DH73] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

[DHS01] Richard O. Duda, Peter E. (Peter Elliot) Hart, and David G. Stork. Pattern classifica-
tion. Wiley, second edition, 2001.

[Fuk72] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 1972.

[Ihl03] Alexander Ihler. Kernel density estimation toolbox for matlab, 2003.

[MZ00] C. Molina and J. Zerubia. Regularisation by convolution in probability density esti-
mation is equivalent to jittering. In Proc. IEEE International Workshop on Neural
Networks for Signal Processing (NNSP), Sydney, Australie, December 2000.

[WGS+99] J. Weston, A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk, and C. Watkins.
Support vector density estimation, July 12 1999.

[ZPR05] Peng Zhang, Jing Peng, and Norbert Riedel. Finite sample error bound for parzen
windows. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proceedings,
The Twentieth National Conference on Artificial Intelligence and the Seventeenth In-
novative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pages 925–931. AAAI Press; AAAI Press / The MIT Press, 2005.

10


