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1 INTRODUCTION

The assumption that the state space is not perfectly observable is what dif-
ferentiates a POMDP from a MDP. This implies that we cannot decide with
certainty the state of a system at any given time. As a result of this difference
we define a new action, in addition to the control actions defined in MDP’s,
the purpose of which is to gather more information (or observations) in or-
der to make the state space more resolute. So at each stage of the planning
problem the agent is faced with the usual task of choosing the next optimal
action: an agent in a POMDP environment bases this decision on (i) the
new information that an action may provide, (ii) the expected reward of the
action, and (iii) the changes to the system that are foreseen as a result of the
execution of the action. As an example consider an agent whose task is to
find the Twin Towers in New York starting from outside Manhattan: if the
agent were to choose its action based solely on maximised expected reward
it would never find the Twin Towers since they no longer exist. If it were
to ask someone however it could terminate the task without wasting more
time but runs the risk of being shot at by whoever it asks, thereby reducing
the expected reward. So there is a balance that the agent must find between
each of (i), (ii) and (iii).

So we see there are two sources of stochasticity in a POMDP: (i) we define
T:8x8xA—|0,1]: transition probabilities between a state, an action
and the state that results from executing that action, and (ii) the imperfect
observability of the state space.

2 FRAMEWORK FOR POMDP’s

We define a tuple (S, A4,0,T,0, R, Q) where S is the set of states, A thet set
of actions, © is a set of observations, O is a set of observation probabilities,
T is a set of transition probabilities, R is a reward function, and (@ is a
prior distribution over the intial states S. Our objective is to maximise the
discounted expected reward.

2.1 Complete Information States

Consider the task of navigating through a maze: we cannot make a decision
based on our current observations since our current view of the maze is not
neccesarily unique, but instead we must look at a history of all actions and



observations we have made since we started navigating the maze. So we
define a complete information state I; as consisting of (i) Q(Sy) where Sy is
the start state, and (ii) a set {0y, ag, 01.a1, -+ , 04 1,01 1,01 }. So given a new
observation o;,; and the last action a; it is trivial to form information state
I, from I;. We can now abstract away from states completely and consider
only information states and rewrite the Bellman Equation as:

expected 1-step reward of executing a in I  discounted expected value of I’
N N

V*(I) = max er(s,a)P(sU)‘ + ;ZP(I'U, a)V*(I';

seS

where p(s,a) = ZTsas)xR(sas)

S (1)

Since we know that consequent information states I;; are functions of the
previous information state I; and the new observation o;,; as well as the last
action a; (i.e. I+ = 7(I;, as,04+1)) we can rewrite the Bellman equation as:

V*(I) = max Zp s,a)P(s|I) +’yZP oll,a)V*{r(I,a,0)} (2)

acA
seS 0€O

Using this value function an appropriate optimal control policy can be ex-
tracted.

2.2 Belief States

Equations (1) and (2) are not useful computationally since keeping complete
information states implies the usage of an infinite amount of memory in
the infinite-horizon case. Since the environment is assumed to be Markov,
we now look at a sufficient statistic that summarizes the full information
content and is therefore more compact: we define a belief state 6 to be a
discrete probability distribution over the states conditioned on past actions
and observations. We can compute belief states incrementally in the following



way:

0o(s') = Q(5")

9t+1(SI) = P(8'|Ot+1,at; T 7a0700)
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belief state at time t
S ="
=a- P01, ar) Z P(s'|at,s) X% 0:(s)
——
s€s Lransition probability J

(3)

So given the sufficient statistic ;, computing a new belief state distribu-
tion over the states 6, (using the new observation oy, and the last action
executed a;) is possible and can be done independantly of the complete in-
formation history. Furthermore, the distributions derived using either belief
states or complete information states are the same:

0r = P(s:|1}) (4)

We now extend the Bellman Equations to belief states in order to derive
a policy mapping belief states to actions:

V(b) = max p(b, a)+7Y  P'|ba)-V (V)

bl

= max Zb p(s,a) +v)_ P(¥']a,b,0) - P(o|a,b) - V(7 (b,o, a))]

sES 0€0
= max Zb p(s,a +’yZIb/f bo0,a) (ZP 0ls,a) )) V(r (b,o,a))]
LseS 0cO sES

(5)

where Iy —r(p,0,4) is an indicator function that is true when the incrementally
computed new belief state distribution is equal to ¥'. In the policy improve-
ment stage, we need to extract a policy pu : Z — A where Z is the space of



all belief states using the value function we have just computed V':

discounted 1-step lookahead for all b’
.

-

w(b) = arg max Zp(s, a)b(s) + ’ryz P(olb,a)V(7(b,0,a))

= argmax Zp(s, a)b(s) + 72 (Z P(ols,a) - b(s)) V(7(b, o, a))]

(6)

Our aim is to compute p* : Z — A, the optimal action set, but since it is de-
fined over the space of all belief distributions (a very high dimensional space)
it is almost impossible to compute. So we resort to computing an approx-
imation to V* : Z — R which in turn will let us extract an approximately
optimal action set.

3 Policy Trees

A policy tree is a t-step set of actions and the observations that can result
from the execution of those action.

'

Figure 1: A 1-step Policy Tree where the observations are marked on the
edges.

For the 1-step policy tree; the value of any state is simply the reward
achieved by executing the action specified at the root of the policy tree. For
a t-step policy tree p we have the following:

Vp(s) = p(s, a’p) +7 Z P(SI|S’ ap) Z P(O‘S', ap)vzu(o)(sl) (7)

s'eS 0€cO



where qa,, is the action specified at the root of policy tree p and V() (s') is
the value of s’ using the policy tree that results from deleting the root node
in p and making observation o. Given that the state space is not perfectly
observable, we must define the value function in terms of belief states like we
did previously. In this case, V,(b) is simply the expected value of executing
p over all states. If we define oy, to be a vector of the values over all states
(generated using policy tree p and Equation 7):

Vo(b) =0y - b
Vi(h) = maxb- o (8)
p

So we see that the that V,(b) is a linear function of the belief distribution.
The application of the maz operator indicates that V;(b) is the upper surface
of all the linear surfaces generated by all possible policy trees: so V;(b) is
piece-wise linear and convex. We could reformulate the update rule as:

Vp(b) =y b= b(s)- Vp(s)

s€S

= p(s,a)b(s) +7) (Z P(s']s, ap)b(8)> > P(ols', ap) Vo ()

seS s'€S \seS 0€0
Ve(b) = maxb- oy

= max Z p(s,a)b(s) + v Z (Z P(s's, ap)b(s)) Z P(o|s', ap)V},(o)(s')]
P LseS s'eS \seS 0€®

= max Z p(s,a)b(s) + vz max Z P(s',0ls,a) Vp(o)(s')]
w4 es oco """ 3es Lses

9)

Although we have been able to provide a geometric interpretation for the
value function and redefine it in terms of policy trees, the optimal value
function is still defined over the space of all belief states. We must resort to
approximate methods in order to get computable solutions.

4 Function Approximation

4.1 Assuming Full Observability

The easiet way to approximate the is to assume that the environment is fully
obervable. Under this assumption we can easily solve for an optimal value

6



function as follows:

(10)

s'es

Vit (s) = max [p(s, a)+ 7Y P(ss,)Vi(s)

We know that an optimal solution V* can be found in a finite amount of
time. We can now use this optimal solution coupled with a belief distribution

as follows:
= b(s)V*(s)

s€S
(11)
= Zb max [ s,a) +72P(s'|s,a)‘/;*(s')
seS s'esS

In terms of policy trees this would give:

Zb max[ s, a +’yZP "Is, a)maXV( ) (12)

a€A
sES s'es

Notice that the difference between Equations 11 and 12 is that V* is dropped
to instead maximise V' over all policy trees. The reason we rewrite the update
rule in terms of policy trees is because we can make a comparison to the exact
update rule derived in the section on policy trees (see section Comparison of
Results).

4.2 Fast Informed Bound Method

Assuming partial observability, we can get a better approximation (tighter
upper bound) to the exact POMDP solution than the assuming full observ-
ability approach using the following observation:

ZmaXZZPs ols,a)V, <ZZmaxZPS ols, a)Vp(o)(s")

069 s'eS seS 069 SES s'eS

> -

-~
from Exact Policy Tree update rule from Fast Informed Bound

(13)

The exact policy tree update rule performs a maximum over all policy
trees after the summation over both s and s’ is done. In contrast the Fast
Informed Bound Method performs the same maximum after only the summa-
tion over all s’ has been performed making it an upper bound approximation



to the exact policy tree update rule. The Fast Informed Bound Method is as
follows:

= max [Zpsa +’}/ZZIH&XZPS ols,a)b(s)V, (s)]

SES 0€O seSs s'esS

= max ESb( l s, a +’}’ZII13XZPS ols, a) V(o) (")

0€® s'eS

(14)

Intuitively, this rearangement of the exact policy tree update rule can be seen
as selecting the best linear function for each observation and each current
state s as compared to selecting the best linear function for each observation
and every combination of both the current state and the next state.

4.3 Assuming No Observability

The other extreme of the fully observable assumption is to assume that there
are no observations that can be made, which results in the following update
rule:

= max Zps a)b +7maXZZP (s'[s,a)b(s)Vp)(s") | (15)

acA
SES SES seS’!

The update rule is identical to the exact update rule except that the summa-
tion over all observations has been dropped. We are still maximising over all
policy trees and so in a sense we are still considering observations; but only
to direct our recurrence and never in a computation.

4.4 Comparison of Results

We can now compare the solutions that have been defined in terms of policy
trees with the exact update rule. We already know that the Fast Informed
Bound Method is an upper bound to the exact update rule, but how tight is



this bound? We have that:

V($)eact = I;leaj( Z p(s,a)b(s) + Z max Z

seS 06@ s'eS
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seS

p(o ( I)]

< i
< e 0 )+ Y 3 PO ol 4
seS 0€0 s'es
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(16)

We have already discussed why the first inequality holds (see section on
Fast Informed Bound Method). The second inequality holds because the max
and sum over all s operators have been switched: so in the gully observable
method we are maximising many more times (i.e. for each s € S) and them
summing which has the effect that it upperbounds both the exact and the fast
informed bounds methods. So we see that the Fast Informed Bound Method
is a better approximation that the assuming full observability method since
it has a tighter upper bound on the exact update rule.

4.5 Grid Based Approach with value
Interpolation-Extrapolation

We can divide the belief space into a predefined set of grids and abstract out
of the belief space and into the grid-belief space, learning a value function
over the grids instead. Since the belief space may be very large, the grid
based approach reduces the dimensionality of the problem considered. With
this reduction however comes a loss in accuracy: the larger the grids, the
more inacurate the resulting interpolated value function.

In order to generate the training set for the grid based approach, we se-
lect a set of grid points G = {by,by,--- ,br} and then use the exact up-
date rule for a POMDP to generate the corresponding function values ¢ =
{V(b1),V(b2), -,V (br)}. Any method that uses only this training data to
compute an approximate value for any point in the belief space is called an
interpolation-extrapolation rule. As new points in the belief space are as-
signed value approximations, new training data is generated which changes
the value function and therefore the value of all old belief points, i.e. the
approximation of V(b 1) affects {V (b1), V(by), -,V (bg)} . This is clearly

!Note that in some cases, applying this interpolcation-extrapolation rule every time
new data arrives is unneccesary.




a disadvantage. However, the advantage of such an approach is that the
expensive exact update rule is used to compute only a finite number of train-
ing data points, whereas solving the POMDP (until convergence) using this
same exact update rule is infeasible since the belief space is infinite.

4.5.1 Convex Rules

There are a number of rules that an interpolation-extrapolation method
might use in order to estimate or approximate the value function: if it satis-
fies the following properties:

V(b) = Zk:/\?-V(B;)
i&’ ., (17)

0<A <1, vV

then we say the rule is from the convex family.? Given a point in belief space
b, we consider two examples: (i) the Nearest-Neighbor approach assigns a
parameter setting A = 1 for the nearest (nearnes defined as some distance
metric in the belief space) to the point b. All other points are assigned A = 0.
(ii) Kernel-Regression considers more than a single point (some set of points
that meets some criteria based on b) and assigns them each a normalised
lambda score which is weighted by their distance to b.

4.6 Least-Squares F'it

We assume the value function has some predefined parametric distribution;
our goal is to learn the appropriate parameters by minimising the least-
squares error. This implies we are supplied with a training set of belief-value
pairs. The grid based approach differs in that this training set must explicitly
be stored at all times whereas we only store the parameters of the distribu-
tion in the least squares method.

Given the training set of points in the belief space, we compute their cor-
responding values using the exact value update. We now find appropriate
parameters for a distribution that has a minimised square error. The dis-
tribution could be linear, but more appropriately a quadratic distribution is
used. Alternatively, any other convex rules are also possible. Like the Grid

2Note that A changes with each belief state.
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approach only a finite number of value updates need to be calculated, how-
ever divergence has been shown to occur in some cases. If the data is only
availible in an incremental fashion, then an online method might be most ap-
propriate where as each data point becomes availible, its value update is first
calculated and then the weights of the parametric distributed are updated
using a gradient descent rule, i.e. use the new training example to take a
step in the direction of the ‘correct’ parameters to the distribution.
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