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Random variables are denoted with boldface letters, not necessarily capital. If x is
a random variable and µ a distribution, x ∼ µ means that x is distributed according
to µ. The notation E [·] and Pr [·] is used for expectation and probability respectively.
When the random variable(s) and the distribution(s) are clear from the context, the
expectations and the probabilities do not have any subscripts, e.g. E [f(x)]. If the
distribution is clear but we would like to explicitly point out the random variables, we
put the random variables as subscript, e.g. Ex [f(x)]. We also sometimes choose to make
the distribution explicit in this notation, e.g. Ex∼µ [f(x)]. The uniform distribution is
always denoted by U and the underlying set will always be clear from the context.

1 2 Player Deterministic Model

The most basic and fundamental model in communication complexity is the 2 player
deterministic model (introduced in [Yao79]). The setting is as follows. We have a
function F : X × Y → Z and two players Alice and Bob. In these notes, we’ll assume
that X = Y = {0, 1}n and Z = {1,−1}. Alice gets x ∈ X and Bob gets y ∈ Y . They
want to collaboratively compute F (x, y) by communicating with each other. Their
communication consists of bits that are being transferred from one player to the other.
They carry out this communication according to a protocol that they have agreed
upon beforehand. More precisely, the protocol tells each player:

1. Whose turn it is to send a bit; the protocol determines this purely based on the
communicated bits thus far, and we assume without loss of generality that Alice
sends the first bit.

2. What bit to send; the protocol determines this based on the communicated bits
thus far as well as the input of the player sending the bit.

The protocol also determines when communication stops and the value of the output
based on the whole transcript of the communicated bits (which implies both players
know the output at the end). The resource of interest is the number of communicated
bits, or in other words, the length of the transcript. The goal is to compute the
function with the shortest transcript possible. It is worth explicitly noting that we put
no restriction on the computational capacities of Alice and Bob, and the sole interest
is in the number of bits needed to communicate in order to compute the function.
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Let P denote a protocol that correctly computes a function F . Denote by ΠP (x, y)
the transcript of protocol P for the input (x, y) (i.e. the sequence of communicated
bits). The cost of P is

cost(P )
def
= max

(x,y)∈X×Y
|ΠP (x, y)|.

The deterministic communication complexity of F , denoted D(F ), is the cost of
the most efficient protocol that computes F correctly. That is,

D(F )
def
= min

protocol P that computes F
cost(P ).

Unless explicitly stated otherwise (for example, we will do so in Chapter ??), we
deal with the standard setting of X = Y = {0, 1}n and Z = {1,−1}, and we are
interested in how fast D(F ) grows as a function of n. Observe that every function can
be trivially computed with n + 1 bits of communication: Alice sends x to Bob, Bob
computes F (x, y) and sends the result back to Alice. Hence for any F :

0 ≤ D(F ) ≤ n+ 1.

In view of this, protocols of cost at most poly-log(n) are considered to be efficient and
protocols of larger cost are deemed inefficient. As an example of an efficient protocol,
suppose we want to determine if the majority of the bits in x and y is 1, i.e. is
|x| + |y| ≥ n? This function can be computed using dlog ne + 1 bits since Bob can
compute the output if Alice sends him |x|. A canonical example of a hard function
is the equality function which evaluates to −1 if and only if x = y. Intuitively one
expects that for Alice and Bob to be sure that x = y, or detect a difference, they
would have to compare xi and yi for all i ∈ [n]. That is, our intuition tells us that
D(EQUALITY) ≥ n. But is this correct, and if it is, how do we formally prove it?

In order to prove lower bounds on communication complexity, we need to have a
combinatorial understanding of what protocols do. To this end, we first observe that
a protocol can be conveniently described with a binary tree as follows (see Figure 1).
Each node v of the tree is labelled with the letter A or B (indicating whether the node
belongs to Alice or Bob) and a function fv. This function is of the form fv : X → {0, 1}
if the label is A or it is of the form fv : Y → {0, 1} if the label is B, and it determines
what bit the corresponding player communicates. Let us trace the behaviour of the
protocol to understand the meaning of this tree. As always, Alice gets x and Bob gets
y. First, without loss of generality, the root r is always labelled A, which means that
Alice is the first to communicate a bit. Then the protocol determines what bit Alice
will send by evaluating fr(x), i.e. Alice sends Bob fr(x). If fr(x) is 0, we move to
the left child of the root and if fr(x) = 1 we move to the right child. Without loss of
generality let’s assume we are at the right child, which we denote by v. If v is labelled
with A, then it is again Alice’s turn to speak. If it is labelled B, it is Bob’s turn. And
as before, the function fv tells the player what bit to send. In this fashion we make
our way down the tree until we reach a leaf node. Leaf nodes are special and they
determine the output of the protocol.
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Figure 1: A binary tree representing a protocol. Each node is labelled with A or B to
indicate whose turn it is to speak. A function associated with a node tells the player
what to send. Depending on whether 0 or 1 is sent, we move to the left or the right child
of the node. The leaf nodes are indicated with double lines. The functions associated
with them determine the output of the protocol.
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Observe that every protocol can be described with such a tree and this tree de-
scription is entirely consistent with the description we provided in the beginning. In
particular, whose turn it is to speak is determined based only on the communicated
bits thus far and what a player sends is determined by the communicated bits as well
as the input of the player. Obviously the cost of the protocol is the height of the tree.

With this point of view, we will be able to gain a very good understanding of what
a protocol does when computing a function F . First we represent F by a |X | × |Y|
matrix MF where the rows are labelled with x ∈ X , columns are labelled with y ∈ Y ,
and MF [x, y] = F (x, y). A submatrix S × T where S ⊆ X and T ⊆ Y is called a
rectangle. The rectangle is said to be monochromatic if MF restricted to S × T
has the same value on all of its entries. We will now see that a protocol of cost c that
computes F partitions1 MF into at most 2c monochromatic rectangles. In fact, this is
the most important property of a protocol and all lower bound techniques will be based
on this observation.

Proposition 1.1. Let P be a protocol that computes F : X ×Y → Z with at most c bits
of communication. Then P induces a partition of MF into at most 2c monochromatic
rectangles.

To see why this is the case, let’s trace once again the behaviour of the protocol down
the associated tree. We start at the root which is labelled with A. The root corresponds
to the whole matrix X ×Y . The function fr is boolean and therefore partitions X into
two sets X0 and X1: for all x ∈ X0 Alice sends 0 to Bob, and for all x ∈ X1 she sends
1. Therefore the left child of r corresponds to the rectangle X0 ×Y and the right child
corresponds to X1×Y . In some sense, if we go to the left child, we eliminate (disregard)
the inputs X1 × Y and our new matrix is X0 × Y (this is where the input (x, y) lives).
If we go to the right child, we eliminate X0 × Y and our new matrix is X1 × Y . Note
that X0 × Y and X1 × Y are disjoint. This process inductively continues, so for each
node of the tree, there corresponds a rectangle. If a node is the descendent of another,
the rectangle of the descendent will be a subset of the other. Otherwise the rectangles
are disjoint. Once we reach a monochromatic rectangle, there is no need to partition
it further since we can safely declare F (x, y) as the value of this rectangle. Hence each
leaf node corresponds to a monochromatic rectangle. Suppose the height of the tree is
c, i.e. the protocol has cost c. Then there are at most 2c leaves. Thus, the protocol
partitions MF into at most 2c monochromatic rectangles.

It is instructive to see a different proof of the above fact. The following gives an
alternative definition of a rectangle.

Proposition 1.2. A set R ⊆ X ×Y is a rectangle if and only if for all (x, y), (x′, y′) ∈
R, we have (x, y′) ∈ R.

An important observation is that if a protocol produces the same transcript for
(x, y) and (x′, y′), i.e. Π(x, y) = Π(x′, y′), then Π(x, y) = Π(x′, y′) = Π(x, y′). This

1The word partition here is important. The rectangles are mutually disjoint and together cover the
whole matrix MF .
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implies that all the inputs that produce a particular transcript form a rectangle. There
are at most 2c different transcripts and therefore we have at most 2c monochromatic
rectangles that partition MF .

Proposition 1.1 immediately suggests a lower bound strategy: to show a function
F has high communication complexity, show that no matter how you partition MF

into monochromatic rectangles, you need many rectangles. Let’s denote by CD(F ) the
minimum number of rectangles in any monochromatic disjoint cover of MF . The lower
bound strategy can be restated as follows.

Corollary 1.3.
D(F ) ≥

⌈
logCD(F )

⌉
.

With this tool, it is now easy to show D(EQUALITY) ≥ n + 1. The matrix
corresponding to the equality function is basically the identity matrix: the diagonal
elements are −1 and the off-diagonal elements are 1. Observe that no monochromatic
rectangle can contain more than one −1 since if a rectangle contains the entries (a, a)
and (b, b), then it also has to contain (a, b), which corresponds to a 1 entry. This means
that we need at least 2n rectangles to cover the diagonal elements, plus we need at
least one rectangle to cover the 1’s in the matrix. So in total we need at least 1 + 2n

rectangles and hence D(EQUALITY) ≥ dlog(1 + 2n)e = n+ 1.
Although every protocol that computes F induces a partition of MF into monochro-

matic rectangles, simple examples show that the converse is not true. So if some
monochromatic partitions do not correspond to any protocol, how tight is Corollary
1.3? The next theorem states that the gap is not very large.

Theorem 1.4.
D(F ) ≤ O(log2CD(F )).

Let’s reiterate that Proposition 1.1 and Corollary 1.3 are the basis for all lower bound
techniques in communication complexity, including the randomized model which we will
discuss in the next section. In most cases it is not easy to exactly determine CD(F ) so
all the various lower bound techniques try to find a suitable lower bound for CD(F ). For
instance one might try to upper bound the size of the largest monochromatic rectangle
in MF . If all monochromatic rectangles are small, then we can conclude that we need
many rectangles to partition MF . A more interesting lower bound technique uses the
rank of MF .

Proposition 1.5.
D(F ) ≥ log rankMF .

Proof. Suppose a protocol P of cost c computes F and denote by S1 × T1, . . . ,St × Tt
the t monochromatic rectangles that the protocol induces (t ≤ 2c). For each of these
rectangles Si × Ti, define the |X | × |Y| matrix MSi×Ti by

MSi×Ti [x, y] =

{
MF [x, y] if (x, y) ∈ Si × Ti
0 otherwise
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These matrices are like the indicator matrices of the rectangles. Obviously we have
MF =

∑t
i=1MSi×Ti . By the subadditivity of the rank, we have rankMF ≤

∑t
i=1 rankMSi×Ti .

Since each MSi×Ti has rank at most 1, we conclude that rankMF is at most t ≤ 2c, i.e.
c ≥ log rankMF .

Arguably the most famous open problem in communication complexity is whether
the rank lower bound is close to being tight.

Conjecture 1.6 (Log Rank Conjecture [LS88]). There is some universal constant k
such that

D(F ) ≤ O(logk rankMF ).

Needless to say there are other lower bound techniques and each has its own advan-
tages depending on the particular function we are dealing with.

One of the well-studied restrictions of the deterministic model is called the simul-
taneous model. Here, the players are not allowed to interact with each other. Upon
receiving their inputs, the players send a message to an external referee. The referee,
who does not see the players’ inputs, determines the output based on these messages.
The cost is the number of bits sent to the referee and we denote by D||(F ) the deter-
ministic simultaneous communication complexity of F .

2 Randomized Model

The previous section introduced the most basic communication complexity model. In
this section we will introduce the randomized model which has a variety of interesting
applications.

A natural way to extend the deterministic model to utilize randomness is to allow
each player to privately flip coins and make decisions based on the outcomes of those
coin flips. Normally, we have to allow some probability of error in computing the
function correctly. To make this more concrete, let’s say that Alice has access to a
random binary string rA and Bob has access to a random binary string rB. Then a
randomized protocol computes F with ε error if

∀(x, y) ∈ X × Y , Pr [F (x, y) 6= P (x, y)] ≤ ε,

where P (x, y) denotes the output of the protocol and the probability is over the random
choices of rA and rB. The cost of a randomized protocol is the maximum number of bits
communicated, where the maximum is over all inputs and random strings. It is worth
making it clear that the random strings being used by the players do not count towards
the cost at all. We denote by Rε

pri(F ) the randomized communication complexity
of F with ε-error, i.e. the cost of the most efficient randomized protocol that computes
F with ε-error (the subscript ‘pri’ will be clarified shortly). We are mainly interested
in the case where ε < 1/2 is some constant. The particular choice of the constant does

6



not matter as it can be shown that it affects the communication complexity by only a
constant factor.

Let us revisit the equality function and demonstrate the power of randomness. One
might be tempted to think that even in the randomized model, the players are bound to
check whether xi = yi for most of the i ∈ [n] to convince themselves that the two strings
are equal or not (for instance the strings might differ in just one coordinate). On the
contrary, by using a clever protocol, the players can compute EQUALITY(x, y) with
high probability using only O(log n) bits of communication. We describe this protocol
now.

To avoid confusion, for this protocol let’s denote Alice’s input by a = a0a1 . . . an−1
and Bob’s input by b = b0b1 . . . bn−1. The players fix some prime number p ∈ [n2, 2n2].
Alice views her input as the polynomial

qA(x) = a0 + a1x+ a2x
2 + · · · an−1xn−1 mod p

over Zp, and Bob views his input as the polynomial

qB(x) = b0 + b1x+ b2x
2 + · · · bn−1xn−1 mod p.

Then Alice chooses uniformly at random an element z ∈ Zp, and sends Bob z as well as
qA(z). This requires O(log n) bits of communication. Bob computes qB(z), compares it
to qA(z), and declares the output to be 1 if they are the same, 0 otherwise. It is easy
to see that if a = b, then the protocol is always correct. On the other hand, if a 6= b,
the players make a mistake if qA(z) = qB(z), i.e. qA− qB(z) = 0. Note that qA− qB is a
polynomial of degree at most n− 1 and therefore has at most n− 1 roots. The players
make an error if Alice accidentally picks one of the roots so the probability of error is
at most n−1

p
≤ 1

n
.

The model we have just introduced is called the “private-coin” model because each
player has his/her own private random string. A perhaps less natural but more useful
model is the “public-coin” model in which players share a common random string. It is
clear that the public-coin model is stronger than the private-coin model and therefore a
lower bound in the public-coin model immediately translates into a lower bound in the
private-coin model (and we are mainly interested in lower bounds). Furthermore, it is
well known that the two models are pretty much equivalent when the error probability
is a constant: the communication complexity of a function in the private-coin model
is at most O(log n) more than the communication complexity in the public-coin model
[New91]. For these two reasons, and the fact that it is easier to reason about public-coin
protocols, our discussion will be about the public-coin model only. Therefore, we drop
the subscript ‘pri’ and denote by Rε(F ) the randomized communication complexity of
F in the public-coin model.

Going back to the equality example, let’s show Rε(F ) = O(1) for a constant error
probability ε. Let r ∈ {0, 1}n denote the public random string. Alice sends Bob

〈x, r〉2
def
= x1r1 + · · ·+ xnrn mod 2 and Bob compares this value to 〈y, r〉2. If they are

the same, he declares the output to be 1, otherwise he outputs 0. If x = y then this
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protocol never fails. If on the other hand x 6= y, then it is easy to see that the inner
products will be equal with probability exactly 1/2. So the error probability of the
protocol is 1/2. If we repeat this protocol k times with fresh random strings, it is easy
to see that the error probability can be reduced to 1/2k.

Now that we have seen some interesting upper bounds, let’s turn our attention to
proving lower bounds. As mentioned earlier, one of the reasons for working with public-
coin protocols rather than private-coin protocols is that public-coin protocols are easier
to study and understand. A useful way of viewing a public-coin randomized protocol
of cost c is as a probability distribution over deterministic protocols, each of cost at
most c. Once the random string r is fixed, what the players do is totally deterministic.
So the players follow a deterministic protocol Pr that corresponds to the random string
r. The success criterion for a randomized protocol is equivalent to saying that for all
inputs, at least 1− ε fraction of the deterministic protocols should produce the correct
answer. Consider a matrix where the rows are labelled with all the possible Pr and the
columns are labelled with the inputs (x, y). At the entry corresponding to a particular
Pr and (x, y) we put a 1 if Pr(x, y) = F (x, y), and 0 otherwise. The success criterion for
the randomized protocol tells us that each column contains at least 1− ε fraction of 1’s.
So in total, the whole matrix has at least 1− ε fraction of 1’s. This implies that there
must be at least one row that contains at least 1− ε fraction of 1’s. To sum up, if there
is an ε-error randomized protocol for F of cost c, then there must be a deterministic
protocol P ∗ of cost at most c such that

Pr [F (x,y) 6= P ∗(x,y)] ≤ ε.

In fact, it is not difficult to see that the above statement is true for any probability
distribution over the inputs (x, y). This property of a randomized protocol is the basis
for all lower bound techniques because arguing against a deterministic protocol that
makes some error is much easier than arguing directly against a randomized protocol.
In particular, all the insight we have about deterministic protocols can be put to use
in this setting.

Before moving forward, let’s make the formal definition of the distributional com-
munication complexity model that we have just motivated. Let µ be a distribution over
X × Y . The ε-error distributional complexity of F under µ is denoted by Dε

µ(F )
and is defined to be the minimum cost of a deterministic protocol P such that

Pr(x,y)∼µ [F (x,y) 6= P (x,y)] ≤ ε.

We have already proved that for any µ, Rε(F ) ≥ Dε
µ(F ). It turns out a much stronger

relationship holds:

Proposition 2.1 ([Yao83]).

Rε(F ) = max
µ

Dε
µ(F ).
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The proof easily follows from von Neumann’s Minimax Theorem.
In light of the relationship between randomized communication complexity and dis-

tributional communication complexity, we arrive at an obvious lower bound strategy: to
prove lower bounds for Rε(F ), pick your favorite distribution µ and prove a lower bound
for Dε

µ(F ). As mentioned earlier, this is essentially how all lower bound arguments pro-
ceed. Given that a cost c deterministic protocol that computes F partitions MF into at
most 2c monochromatic rectangles, a protocol that computes F with ε fraction of error
partitions MF into at most 2c “almost” monochromatic rectangles, on average (not all
rectangles that the protocol induces must be almost monochromatic but a good fraction
must be). To rule out such a possibility with a small c, there are various tactics one
can try. Arguably the most famous one is the so called discrepancy method. The idea
is to show a lower bound for Dε

µ(F ) by showing that every (large enough) rectangle in
MF is balanced in the sense that there are roughly the same fraction of 1’s and −1’s.

Let’s now mathematically formalize the discrepancy method. Let S×T be a rectan-
gle, where S ⊆ X and T ⊆ Y . For a distribution µ over X ×Y , define the discrepancy
of the rectangle S × T with respect to F and µ as the absolute value of the difference
between the weight of the 1’s and the weight of the −1’s in S × T , i.e.

discµ(F,S × T )
def
=
∣∣Pr(x,y)∼µ [F (x,y) = 1 and (x,y) ∈ S × T ]

−Pr(x,y)∼µ [F (x,y) = −1 and (x,y) ∈ S × T ]
∣∣

=

∣∣∣∣∣∣
∑

(x,y)∈S×T

F (x, y)µ(x, y)

∣∣∣∣∣∣ .
The discrepancy of F is the maximum discrepancy over all rectangles:

discµ(F )
def
= max
S×T

discµ(F,S × T ).

The discrepancy method (see e.g. [CG88]) says that to lower bound Dε
µ(F ), it suffices

to upper bound the discrepancy discµ(F ).

Proposition 2.2 (Discrepancy Method).

Dε
µ(F ) ≥ log

(
1− 2ε

discµ(F )

)
.

Proof. Let Dε
µ(F ) = c, so there is a deterministic protocol P of cost c that computes F

with ε error under µ. Let S1×T1, . . . ,St×Tt, t ≤ 2c, be the rectangles that P induces.
We denote by P (Si ×Ti) the value the protocol outputs for the inputs (x, y) ∈ Si ×Ti.
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Then,

1− 2ε ≤
∣∣Pr(x,y)∼µ [F (x,y) = P (x,y)]−Pr(x,y)∼µ [F (x,y) 6= P (x,y)]

∣∣
=

∣∣∣∣∣∣
∑
(x,y)

F (x, y)P (x, y)µ(x, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∑
i=1

∑
(x,y)∈Si×Ti

F (x, y)P (x, y)µ(x, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∑
i=1

P (Si × Ti)
∑

(x,y)∈Si×Ti

F (x, y)µ(x, y)

∣∣∣∣∣∣
≤

t∑
i=1

|P (Si × Ti)|

∣∣∣∣∣∣
∑

(x,y)∈Si×Ti

F (x, y)µ(x, y)

∣∣∣∣∣∣
=

t∑
i=1

discµ(F,Si × Ti)

≤ t · discµ(F ) ≤ 2c · discµ(F ).

Rearranging, we get 2c ≥ 1−2ε
discµ(F )

.

Let’s see the discrepancy method in action by showing an exponentially small upper
bound on the discrepancy of the inner-product function IP under the uniform distri-
bution. The inner product function is defined as IP(x, y) = (−1)

∑
i xiyi . For a real

valued matrix M , let ‖M‖ denote its spectral norm, i.e. ‖M‖ = maxu:‖u‖2=1 ‖Mu‖.
It turns out that it is easy to bound the discrepancy of a function under the uniform
distribution in terms of the spectral norm of MF .

Proposition 2.3.

discU(F ) ≤ ‖MF‖
2n

.

Proof. Let S × T be a rectangle. Denote by 1S the indicator vector for S, i.e. the 2n

dimensional vector which has a 1 for positions corresponding to S and 0 everywhere
else. Similarly for 1T . By the definition of discrepancy,

discU(F,S × T ) =
1

22n

∣∣∣∣∣∣
∑

(x,y)∈S×T

F (x, y)

∣∣∣∣∣∣ .
It is not hard to verify that the right hand side is equal to

1

22n
|1TS ·MF · 1T | =

1

22n
|〈MF1T ,1S〉|.
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Using the Cauchy-Schwarz inequality, we get 1
22n
|〈MF1T ,1S〉| ≤ 1

22n
‖MF1T ‖ · ‖1S‖.

Then by the definition of the spectral norm we conclude:

discU(F,S × T ) ≤ 1

22n
‖MF1T ‖2 · ‖1S‖2

≤ 1

22n
‖MF‖‖1T ‖2‖1S‖2

≤ 1

22n
‖MF‖

√
|T |
√
|S|

≤ ‖MF‖
2n

.

The spectral norm of MIP, where IP denotes the inner product function, is easy to
calculate. It is well known that the spectral norm of a matrix M is equal to the largest
singular value of M , σmax(M), which in return is equal to the square-root of the largest
eigenvalue of MTM . Using the definition of IP, one can easily check that MT

IPMIP =
2nI, where I denotes the identity matrix. Therefore for all u, MT

IPMIPu = 2nu. This
implies λmax(M

T
IPMIP) = 2n, or in other words, ‖MIP‖ = 2n/2. Using Proposition 2.3,

we have discU(IP) ≤ 1/2n/2. Plugging this into the Discrepancy Method (Proposition
2.2), we conclude

Rε(IP) ≥ n

2
+ log(1− 2ε).

Is the discrepancy method the all powerful method that will give us tight lower
bounds for any function? The answer is no and let’s explain why. First note that for
any function, achieving error probability 1/2 is trivial since we can just output a random
bit. The discrepancy method is a very strong tool in the following sense. If one shows
a lower bound of say Ω(n) on the randomized communication complexity of a function
using the discrepancy method, then the lower bound applies to protocols that make
1/2−1/exp(n) probability of error, i.e. error exponentially close to 1/2. For example, in
the case of inner product, suppose we allow the protocol to make error ε = 1/2−1/2αn for
some constant α < 1/2. Then Rε(IP) ≥ n/2+log(1−2ε) = n/2−αn = Ω(n). When our
primary interest is in constant probability of error, this is an overkill. There are many
functions that require Ω(n) communication complexity when the error probability is a
constant but has O(1) communication complexity once we allow the error probability to
be 1/2− 1/exp(n). In particular, it is well known that the discrepancy method cannot
yield good lower bounds for any function with small non-deterministic communication
complexity. A canonical example is the famous disjointness function and to handle
such functions, one needs to develop more sophisticated tools. On this note, we end
our discussion of the 2 party randomized communication complexity model and move
on to the non-deterministic model.
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3 Non-Deterministic Model

Non-determinism is a very important notion in computational complexity theory. At
a high level, the motivation is to understand whether verifying a given solution to a
problem is easier than finding a solution. The answer of course depends on which com-
putational model we are dealing with. In communication complexity, non-determinism
can be much more efficient and in this section, we will briefly go over non-deterministic
communication complexity.

As usual, there are two equivalent ways to view the non-deterministic model. We
can view it as a model in which players are allowed to take non-deterministic steps, or
we can view it as a proof verification process. We prefer to use the latter version. As
before, Alice gets x ∈ X and Bob gets y ∈ Y . We also have a third player called God,
who sees the input (x, y) and furnishes a proof string z which is then communicated to
both Alice and Bob. Upon receiving z, Alice and Bob communicate with each other
and agree on an output. If F (x, y) = −1, there must be at least one proof string z
that leads Alice and Bob to output −1. On the other hand, if F (x, y) = 1, no matter
what proof string Alice and Bob receive, they should output 1. We include in the cost
the length of z. The non-deterministic communication complexity of F , denoted
by N−1(F ), is the cost of the most efficient non-deterministic protocol that computes
F as described above. The co-non-deterministic communication complexity of
F is denoted by N1(F ) and is defined to be equal to N−1(−F ), the non-deterministic
complexity of the negation of F .2

Recall the definition of the disjointness function. It is straightforward to see that
N1(DISJ) ≤ O(log n). God provides an index i ∈ [n] and Alice and Bob exchange xi
and yi with each other in order to check if xi = yi = 1. If x and y are not disjoint, then
there is an index i such that xi = yi = 1. If not, for no index we will have xi = yi = 1.
A similar protocol also shows that N1(EQUALITY) ≤ O(log n). On the other hand,
intuitively it seems unlikely that N−1(EQUALITY) is small; how can God furnish a
short proof that two strings are equal?

In Section 1, we defined CD(F ) as the minimum number of disjoint monochromatic
rectangles needed to partition MF . Define Cz(F ) as the minimum number of possi-
bly intersecting monochromatic rectangles needed to cover the z-entries of MF . This
quantity accurately characterizes the non-deterministic communication complexity of
F .

Proposition 3.1.
logCz(F ) ≤ Nz(F ) ≤ 2 + logCz(F ).

We skip the proof of this proposition but remark that it is quite straightforward and
uses the fact that once the proof string is fixed, Alice and Bob follow a deterministic
protocol.

2Note that in the literature, N−1(F ) is almost always denoted by N1(F ) and N1(F ) is denoted by
N0(F ). This is due to the range of the function F , which is often {0, 1} as opposed to {1,−1} as in
here.

12



Needless to say, Proposition 3.1 is the backbone of all lower bound techniques for the
non-deterministic model. Going back to the equality example, we see that a monochro-
matic rectangle can cover at most one −1 entry and therefore we need 2n rectangles to
cover all the −1 entries.

At the end of the previous section (Section 2), we mentioned that the discrepancy
method fails to give good lower bounds on the randomized communication complexity
of functions that have low non-deterministic communication complexity. Let us now
make this formal.

Proposition 3.2 (see e.g. [Cha08] Lemma 6.17). Let F be such that min{N1(F ),N−1(F )} =
c. Then, under any distribution µ over the inputs,

discµ(F ) ≥ Ω(1/2c).

4 Multiparty Number on the Forehead Model

There are various ways one can extend the two player model to more players. Given
F : X1 × X2 × · · · × Xk → Z, the most natural generalization would be to distribute
the input (x1, x2, . . . , xk) so that Player i gets xi. This is called the “number in the
hand” multiparty model; it is an interesting model with nice applications. In this thesis
however, we are interested in the so called “number on the forehead” multiparty model
in which Player i sees all xj with j 6= i. We visualize this scenario as xi being written on
the forehead of Player i. Once the input is distributed, the players once again follow a
protocol in order to compute F (x1, . . . , xk). The description of a protocol is equivalent
to the 2 player model and when a player communicates a bit, all the other players get
to see it.

We can generalize the equality example seen in the 2 party setting to an arbitrary
number of players in the obvious way: let EQk(x1, x2, . . . , xk) = 1 if and only if x1 =
· · · = xk. When k = 2, we saw that the deterministic communication complexity of
equality is n+1. On the other hand, when k > 2, it is easy to see that the communication
complexity drops down to just 2 bits. Player 1 checks if x2 = x3 = · · · = xk and Player
2 checks if x1 = x3 = x4 = · · · = xk. If both equalities are confirmed, all the strings are
equal, otherwise they are not. This example demonstrates the power of the multiparty
number on the forehead model. The overlap of information among the players can be
exploited to give efficient protocols.

We denote by Dk(F ), D
||
k(F ), Rε

k(F ), Dε
k,µ(F ), and N−1k (F ) the k-party deter-

ministic, deterministic simultaneous, randomized, distributional and non-deterministic
communication complexity of F respectively. In the 2 player setting, the single most
important property of a protocol was the fact that it induced rectangles. For the k
party model with k ≥ 3, the appropriate generalization of the notion of a rectangle is
called a cylinder intersection. A cylinder Ci in the ith direction is a subset of the input
space X1×· · ·×Xk such that membership in Ci does not depend on the ith coordinate,
i.e. if (x1, . . . , xi, . . . , xk) ∈ Ci then (x1, . . . , x

′
i, . . . , xk) ∈ Ci for all x′i ∈ Xi (see Figure

13



Figure 2: A cylinder in the 3rd direction. The bold dots represent a subset of X1×X2,
which then completely determines the corresponding cylinder.

2). A cylinder intersection C is just an intersection of k cylinders, one in each direc-
tion, i.e. C = ∩ki=1Ci where Ci is a cylinder in the ith direction. It is important to take
a moment and observe that when k = 2, this definition corresponds to the notion of a
rectangle (see Figure 3).

In Proposition 1.2, we gave an alternative definition of a rectangle. The same
characterization holds also for cylinder intersections. A set of k points

(x′1, x2, . . . , xk), (x1, x
′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)

in X1 × · · · × Xk is called a star if x′i 6= xi for all i ∈ [k]. The point (x1, x2, . . . , xk) is
called the center of the star.

Proposition 4.1. A set C ⊆ X1 × · · · Xk is a cylinder intersection if and only if for
every star in C, its center is also contained in C.

Now it is easy to see that a multiparty protocol induces a partition of MF into
monochromatic cylinder intersections. Here MF denotes the k-dimensional matrix (of-
ten called a tensor) such that MF [x1, . . . , xk] = F (x1, . . . , xk) for all (x1, . . . , xk) ∈
X1 × · · · × Xk.

Proposition 4.2. Let P be a deterministic protocol that computes F : X1×· · ·×Xk → Z
with at most c bits of communication. Then P induces a partition of MF into at most
2c monochromatic cylinder intersections.

Proof. As in the 2 player case, it is easy to see that if the protocol produces the
same transcript for all the elements of a star, then the protocol must produce the same

14



Figure 3: A rectangle as the intersection of two cylinders.

transcript for the center of the star as well. Therefore, the set of all points corresponding
to a particular transcript forms a cylinder intersection. There are at most 2c possible
transcripts and the statement follows.

The definition of discrepancy naturally generalizes to cylinder intersections. We
will now make the formal definition with respect to complex valued functions F :
X1×· · ·×Xk → C since the definition does not call for a restriction on F to be boolean.
Furthermore, there are situations where one can be interested in the discrepancy of
complex valued functions.

Given a cylinder intersection C = ∩ki=1Ci, let φi denote the characteristic function
of Ci, i.e. φi(x1, . . . , xk) = 1 if (x1, . . . , xk) ∈ Ci and φi(x1, . . . , xk) = 0 otherwise. Then

φ
def
=
∏k

i=1 φi is the characteristic function of C. For a distribution µ over X1× · · ·×Xk,
and a cylinder intersection C, the discrepancy of F with respect to µ and C is

discµ(F, C) def
=

∣∣∣∣∣∣
∑

(x1,...,xk)∈C

F (x1, . . . , xk)µ(x1, . . . , xk)

∣∣∣∣∣∣
=
∣∣E(x1,...,xk)∼µ [F (x1, . . . ,xk)φ(x1, . . . ,xk)]

∣∣ . (1)

The discrepancy of F is the maximum discrepancy over all cylinder intersections:

discµ(F )
def
= max

C
discµ(F, C).

The discrepancy method generalizes to the multiparty setting with the same proof
[BNS92].

Proposition 4.3 (Discrepancy Method). Let F : X1 × · · · × Xk → {1,−1}, and µ a
distribution over X1 × · · · × Xk. Then,

Dε
k,µ(F ) ≥ log

(
1− 2ε

discµ(F )

)
.
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In the two party setting, we saw how to upper bound the discrepancy of F using
the spectral norm of the matrix MF . This linear algebraic technique does not work in
the multiparty setting because MF is no longer a matrix and a cylinder intersection
is a relatively complicated combinatorial object. There is still however a famous trick
one can resort to in order to deal with cylinder intersections: repeatedly apply Cauchy-
Schwarz inequality to get rid of the cylinder intersection.

Lemma 4.4 ([CT93, Raz00]). Let F : X1 × · · · × Xk → C and let µi be a distribution
over Xi. Define the distribution µ as the product of the µi, that is µ(x1, . . . , xk) =
µ1(x1) · · ·µk(xk). Then,

(discµ(F ))2
k ≤ Ex0

1,...,x
0
k

x1
1,...,x

1
k

 ∏
u∈{0,1}k

Cu1+···+uk(F (xu11 , . . . ,x
uk
k ))

 , (2)

where in the expectation, (x0
i ,x

1
i ) are distributed according to the product distribution

µi × µi.

Proof. We prove the lemma by induction on k and in order to reduce clutter, we will
prove it for real valued functions as opposed to complex valued functions. The proofs
are identical. Our induction hypothesis is that the lemma is true for every function
with k − 1 players. Let C = ∩1≤i≤kCi be an arbitrary cylinder intersection with the
characteristic function φ(x1, . . . , xk) = φ1(x1, . . . , xk) · · ·φk(x1, . . . , xk). Recall that φi
does not depend on xi. Then, writing the discrepancy as in (1), we have

discµ(F, C) =

∣∣∣∣∣E
[
F (x1, . . . ,xk)

k∏
i=1

φi(x1, . . . ,xk)

]∣∣∣∣∣
≤ Ex1,...,xk−1

[∣∣∣∣∣φk(x1, . . . ,xk)Exk

[
F (x1, . . . ,xk)

k−1∏
i=1

φi(x1, . . . ,xk)

]∣∣∣∣∣
]
.

Squaring both sides and using the consequence E [Z]2 ≤ E [Z2] of Cauchy-Schwarz
inequality, we obtain

discµ(F, C)2

≤ Ex1,...,xk−1

φk(x1, . . . ,xk)
2Exk

[
F (x1, . . . ,xk)

k−1∏
i=1

φi(x1, . . . ,xk)

]2
= Ex1,...,xk−1

Exk

[
F (x1, . . . ,xk)

k−1∏
i=1

φi(x1, . . . ,xk)

]2 . (3)

If we let

F x0k,x
1
k(x1, . . . , xk−1)

def
= F (x1, . . . , xk−1, x

0
k)F (x1, . . . , xk−1, x

1
k),

16



and also let

φ
x0k,x

1
k

i (x1, . . . , xk−1)
def
= φi(x1, . . . , xk−1, x

0
k)φi(x1, . . . , xk−1, x

1
k)

for each i ∈ {1, . . . , k − 1}, then we can rewrite (3) as

discµ(F, C)2

≤ Ex1,...,xk−1

[
Ex0

k,x
1
k

[
F x0

k,x
1
k(x1, . . . ,xk−1)

k−1∏
i=1

φ
x0
k,x

1
k

i (x1, . . . ,xk−1)

]]

≤ Ex0
k,x

1
k

[∣∣∣∣∣Ex1,...,xk−1

[
F x0

k,x
1
k(x1, . . . ,xk−1)

k−1∏
i=1

φ
x0
k,x

1
k

i (x1, . . . ,xk−1)

]∣∣∣∣∣
]

= Ex0
k,x

1
k

[
discµ′(F

x0
k,x

1
k , C ′)

]
. (4)

Above, µ′ is the product of µ1 up to µk−1 and C ′ is the cylinder intersection defined by∏k−1
i=1 φ

x0
k,x

1
k

i (x1, . . . ,xk−1). Raising both sides of equation (4) to the power of 2k−1, we
get

discµ(F, C)2k ≤ Ex0
k,x

1
k

[
discµ′(F

x0
k,x

1
k , C ′)

]2k−1

.

A repeated application of the Cauchy-Schwarz inequality implies E [Z]2
k−1

≤ E
[
Z2k−1

]
.

Hence,

discµ(F, C)2k ≤ Ex0
k,x

1
k

[
discµ′(F

x0
k,x

1
k , C ′)2k−1

]
.

Now applying the induction hypothesis to discµ′(F
x0k,x

1
k , C ′)2k−1

, we get the desired result.

The RHS of Inequality 2 is important and deserves a name. Let µ be a product
distribution over X1 × · · · × Xk, i.e. µ(x1, . . . , xk) = µ1(x1) · · ·µk(xk), where µi is
a distribution over Xi. We define the cube measure of a complex valued function
F : X1 × · · · × Xk → C under µ as

Eµ(F ) = Ex0
1,...,x

0
k

x1
1,...,x

1
k

 ∏
u∈{0,1}k

Cu1+···+uk(F (xu11 , . . . ,x
uk
k ))

 .
The cube measure is always a non-negative real number. In fact, the quantity (EU(F ))1/2

k
,

where U is the uniform distribution, is known as the hypergraph uniformity norm and
is a measure of “quasirandomness” of F . When F = f ◦ xor, the hypergraph unifor-
mity norm of F corresponds to Gowers uniformity norm of f over Fn2 (see e.g. [Gow10,
Section 2.4] and references therein). Lemma 4.4 can now be restated as

discµ(F ) ≤ (Eµ(F ))1/2
k

.

Let us see the above inequality in action and show an exponentially small upper
bound on the generalized-inner-product function GIP. This function is defined as
GIP(x1, x2, . . . , xk) = (−1)

∑
i x1,ix2,i···xk,i .
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Theorem 4.5.
discU(GIP) ≤ exp

(
− n

4k

)
.

Proof. Using Lemma 4.4, our task is to upper bound the cube measure EU(GIP). Since
we can decompose GIP as parity ◦ and, and parity is just multiplication over ±1
valued variables, we have

EU(GIP) = E

 ∏
u∈{0,1}k

GIP(xu11 , . . . ,x
uk
k )


= E

 ∏
u∈{0,1}k

n∏
i=1

(−1)and(x
u1
1,i,...,x

uk
k,i)

 .
Using independence, we can move the inside product outside to obtain

EU(GIP) =
n∏
i=1

E

 ∏
u∈{0,1}k

(−1)and(x
u1
1,i,...,x

uk
k,i)


= (EU(and))n .

Thus, all we need to do is bound the cube measure of the and function on k variables.
It is not difficult to see that if for all j ∈ {1, . . . , k}, x0

j,i 6= x1
j,i, then the expectation

is -1. This happens with probability 1/2k. On the other hand, if there is some j such
that x0

j,i = x1
j,i, the product evaluates to 1. Therefore,

EU(and) =

(
1− 1

2k

)
− 1

2k
= 1− 1

2k−1
.

So EU(GIP) = (1 − 1/2k−1)n ≤ exp(−n/2k−1), and the result follows from Lemma
4.4.

Corollary 4.6.

Rε
k(GIP) ≥ n

4k
+ log(1− 2ε).

Note that the above lower bound collapses once k reaches log n. This is an un-
avoidable consequence of Lemma 4.4 where we used the Cauchy-Schwarz inequality
repeatedly in order to get rid of the cylinder intersection. As all lower bounds in the
NOF model use this trick, they all suffer the exponential loss in the number of players.
As mentioned in the introduction, proving lower bounds in the NOF model for log n
players is an outstanding open problem.
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5 Communication Complexity Classes

In computational complexity theory we try to classify problems in terms of the resources
required to compute their solution. An important part of this classification requires
well defined complexity classes, like P,NP, and BPP, which correspond to problems
with efficient deterministic, non-deterministic and randomized solutions respectively.
In communication complexity, we can define ([BFS86]) analogous complexity classes
once we agree on the meaning of “efficient”. Conventionally, protocols of cost at most
poly-log(n) are considered to be efficient. This naturally leads to the following commu-
nication complexity classes corresponding to the different communication complexity
models:

Complexity class Pcck NPcck coNPcck BPPcck
Complexity measure Dk N−1k N1

k Rk

Unlike the Turing Machine world, we have a reasonably good understanding of the
relationships between the communication complexity classes since we can actually prove
strong lower bounds. For instance, the two player non-equality function is in BPPcc2 and
NPcc2 but not in Pcc2 . Therefore we know that Pcc2 6= NPcc2 and Pcc 6= BPPcc2 . We also
know that NPcc2 6= BPPcc2 via the disjointness function.

6 Information Complexity

The techniques we have seen so far are some of the highlights of the first genera-
tion methods in communication complexity. In recent years, a new method based on
information theory, introduced in the seminal paper [CWYS01], has flourished and con-
tributed significantly to the advancement of the field. We will now very briefly touch
upon this second generation technique. Our discussion will be limited to the 2 party
model since these techniques currently do not extend to the multiparty NOF model.

In a nutshell, information theory methods in communication complexity try to mea-
sure how much information Alice and Bob reveal about their inputs to a third party
or each other when they follow a communication protocol. There are several ways to
measure this quantity but we will for now refer to it informally as information complex-
ity. This information is measured in bits and therefore it serves as a lower bound on
the communication complexity of a function: if a protocol has cost c, it cannot reveal
more than c bits of information. One can then obtain lower bounds on communication
complexity by lower bounding the information complexity of a function. This approach
puts powerful and intuitive tools from information theory at our disposal.

Let µ be a distribution over the input space X × Y , and let P be a protocol that
computes a function F : X ×Y → Z. Recall that ΠP (x, y) denotes the transcript that
the protocol produces when the input is (x, y). The external information cost of a
protocol with respect to µ is defined as

ICext
µ (P )

def
= I(x,y : ΠP (x,y)),
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where (x,y) has distribution µ. This intuitively measures how much information a
third party learns about Alice’s and Bob’s inputs by looking at the transcript of the
protocol. Another useful measure is the internal information cost, which is defined
to be

ICint
µ (P )

def
= I(y : ΠP (x,y)|x) + I(x : ΠP (x,y)|y).

This measures how much information Alice learns about Bob’s input plus how much
information Bob learns about Alice’s input.

Let us restrict our discussion to external information cost. The ε-error information
complexity of a function F with respect to a distribution µ is denoted by ICµ,ε(F ) and
is defined to be the minimum ICext

µ (P ) among all randomized protocols P that compute
F with ε error. It is straightforward to see that for any distribution µ, Rε(F ) ≥ ICµ,ε(F ).

To illustrate how this can be used to prove communication complexity lower bounds,
let’s give a very high level and vague sketch of the lower bound for disjointness. As
we have seen before, disjointness has the composed structure DISJ = or ◦ and. Intu-
itively one expects that any protocol that solves disjointness with good accuracy must
implicitly solve each of the n instances of the and function. Suppose ν is a distribution
over the inputs of a two bit and function and define µ to be the n-fold product of ν,
i.e. µ = νn. Then one can hope to show ICµ,ε(DISJ) = n · ICν,ε(and). Unfortunately
this may not be true in general, for example when ν is not a product distribution over
{0, 1} × {0, 1}. And in the case of disjointness, it is essential that ν is not a product
distribution. To get around this problem, one defines an appropriate random variable
so that conditioned on it, the “direct sum” property that we hoped for holds. This then
reduces our task of showing an Ω(1) lower bound on the information complexity of the
and function on 2 bits. With some effort, this can be proved by elementary means.
The details can be found in [BYJKS04].
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