COMP 531: Advanced Theory of Computation
(Winter 2014)

Assignment 4

Due March 31st

Instructions

Follow these instructions closely.

You will benefit most if you seriously try solving each problem yourself. You may
work with each other but you must write up your own solutions. For each question,
you should clearly acknowledge the people you have worked with. You are not allowed
to use any resources that contain the solution to an assignment question. However, we
value honesty above all. You will get full marks if you happen to find the solution to
a question and you write your own solution, as long as you properly acknowledge
your source. Failure to acknowledge your source can result in 0 points.

Clarity and conciseness of your solutions are as important as correctness.
It is important to learn how to write your ideas and solutions clearly and rigorously.
You will lose marks for correct solutions that are poorly explained/presented. When
writing your solutions, assume that your audience is your class mates rather than the
instructor of the course. The high level ideas and an overview of your argument should
be presented before any technical details, and all non-trivial claims have to be proven.

If you do not know how to solve a problem, do not answer it. This will earn you
20% of the points. Do not make yourself believe in a wrong proof, this is bad for you.
And definitely do not try to sell it! If you don’t know how to solve a problem but
you have some non-trivial ideas, write them down. If you have a solution with gaps,
write your argument and clearly indicate the gaps.

Submit your assignments in class or send a copy to aada@cs.mcgill.ca before
midnight of the due date.

Questions

1.

The probabilistic method is a powerful technique to prove the existence of objects
with desired combinatorial properties. The idea is to define a suitable probability
distribution in which the probability of finding the desired properties is non-zero.
As an illustration of the method, we do the following exercise:

Let G be any graph that has a matching M (a matching is a collection of edges
no two of which intersect each other at any vertex). A subgraph H of G is any
graph whose set of vertices and edges is a subset of the set of vertices and edges

of GG.

Show that G contains a subgraph H, where H is bipartite and contains at least
T(IE(G)] + |M]) edges.

(Hint: Think of a random bipartition scheme of the set of vertices of G such that
you guarantee that each edge of the matching has its endpoints on opposite sides
of the partition. Calculate the expected number of edges of G that have their
endpoints in opposite partitions.)

. The discrete log problem is : given a prime p and a generator g for the multiplica-

tive group Z;, and a point y chosen at random in Z7, find x such that g* = y.
Establish the following claim. Suppose some deterministic poly-time algorithm
correctly solves the discrete log problem for a 1/poly(n) fraction of y € Z¥ (n is
the length of the prime p, i.e. the size of the input); then there is a randomized
poly-time algorithm that solves discrete log at all points with high probability.

. A graph G = (V, E) is called an (n, d, ¢)-expander if the graph has n vertices with

maximum degree d and satisfies the following property: for every subset W of V'
with |W| < n/2, W “expands”, i.e. the size of the neighbourhood of W' (denoted
N(W)) is large, more precisely |N(W)UW| > (1+¢)|W|. Using the probabilistic
method, one can show that such graphs exist.

We can use expanders to amplify the correctness of RP algorithms. Let G be a
(27,5, (2 — v/3)/4)-expander (there is a known construction for that). Use your
n-bits of randomness to pick a random starting point in G. For § = O(logn), find
all the nodes ¥, 9o, ..., yx that are within distance ¢ of your starting node. Run
the RP algorithm £ times using the y’s instead of random strings. Prove that this
method will lower the error bound to 1/n° for some constant c.

. Prove that if NP C BPP then RP = NP.

. You go to your local flee market where you find a vender selling dot-product

machines. A dot product machine has an unknown z € {0, 1}" kept inside it and
an input called z € {0,1}". On input z, it outputs the GF5 inner-product of x
and z, i.e. it outputs z12z7 + 229 + - -+ + 2,2, mod 2. The size of the machine
is n and there is one for every size. Of course, you want one. But the one you

pick out is too expensive. You beg, you plead, but the vender stands firm. Just
as you are about to go, he tells you to wait. From under the counter, he brings
out a machine equipped for the input size you need. The price of this particular
one is reduced by 90%. “Why is this one so cheap?”, you ask. “It’s broken.” he
answers. He goes on to explain that it works fairly well, considering. Obviously
a healthy machine M which computes a linear function must always pass the
following linearity test: M (z;) + M(z2) = M (2 + 22). The cheap machine is
pretty good, it passes the test 99% of the time over random choices of z; and z,.
You can’t resist such a deal - you buy it. Now what?

You wish it worked just as well as a healthy machine. However, it is possible to
use the cheap, defective machine to simulate a healthy one. Furthermore, for each
query to the healthy machine you will only need to make a constant number of
queries to the broken machine as part of the simulation.

The basic experiment is as follows. Since you can’t just believe M when we query
it on z, you calculate M(z) in a roundabout way. We take a self-correcting sample
at z: Pick a random r, output M (z +r) + M(r). (In the case this is not equal to
M (z), the machine is clearly doing something non-linear.)

(a) Show that for any z, when we take a self-correcting sample at z, the prob-
ability of getting the same value twice is at least .98. (Hint: Show that
Pr, o [M(z+ 1)+ M(ry) = M(z4+r1 +12) = M(r1) + M(z+r2)] > .98.)

(b) Using (a), show that when you take a self-correcting sample at z, you get
the same value at least .96 of the time.

(c) Define M'(z) as the value you get at least .96 of the time when you make
a self-correcting sample at z. Show that the M’ is a function computed by
some healthy dot product machine. (Hint: All you need to show is that M’
is linear. Fix any z; and zy. Argue that Pr,.[(M(r+z1) + M(r) = M'(z1)) N
(M(r+29)+M(r) = M'(22)) N (M(r+21) + M(r+z3) = M'(21+ 22))] > 0.
Conclude therefore it must be true.)

(d) Show that Pr.[M(r) = M'(r)] > .94. Show that M’ is the unique linear
function which is that close to M. (Hint: Show that Pr,,[M(z) = M(z +
r)+ M(r)=M(z)] > .94.)

