
COMP 531: Advanced Theory of Computation
(Winter 2014)

Assignment 3

Due March 17th

Instructions

Follow these instructions closely.
You will benefit most if you seriously try solving each problem yourself. You may

work with each other but you must write up your own solutions. For each question,
you should clearly acknowledge the people you have worked with. You are not allowed
to use any resources that contain the solution to an assignment question. However, we
value honesty above all. You will get full marks if you happen to find the solution to
a question and you write your own solution, as long as you properly acknowledge
your source. Failure to acknowledge your source can result in 0 points.

Clarity and conciseness of your solutions are as important as correctness.
It is important to learn how to write your ideas and solutions clearly and rigorously.
You will lose marks for correct solutions that are poorly explained/presented. When
writing your solutions, assume that your audience is your class mates rather than the
instructor of the course. The high level ideas and an overview of your argument should
be presented before any technical details, and all non-trivial claims have to be proven.

If you do not know how to solve a problem, do not answer it. This will earn you
20% of the points. Do not make yourself believe in a wrong proof, this is bad for you.
And definitely do not try to sell it! If you don’t know how to solve a problem but
you have some non-trivial ideas, write them down. If you have a solution with gaps,
write your argument and clearly indicate the gaps.

Submit your assignments in class or send a copy to aada@cs.mcgill.ca before
midnight of the due date.
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Questions

1. Let P be a randomized protocol that computes a function F : X×Y → {0, 1} with
ε probability of error. Design a new protocol P ′ for F that has error probability
less than ε, but has cost more than P (i.e., reduce the error probability of P at
the expense of increasing the cost). What kind of trade-off can you get between
the cost and the error probability? Explain whether your argument depends on
the underlying computational model.

2. Let F : X×Y → {0, 1}. Let U(F ) denote the cost of the most efficient randomized
protocol P such that for all (x, y) ∈ X × Y , Pr[F (x, y) 6= P (x, y)] < 1/2. Note
that the success criterion is very liberal. Achieving error 1/2 is trivial: just output
a random bit. In this model it is important that the randomness used is private:
show that if we allow public randomness then computing every function becomes
trivial.

3. Let π(n) be defined as the number of primes less than or equal to n. In CS, most
applications require only the fact that π(n) = Ω(n/ log n).

(a) Show that a prime p divides n!
∑i=∞

i=1 b
n
pi
ctimes. Define r(p) as the natural

number such that pr(p) ≤ 2n < pr(p)+1. Show that p does not divide
(
2n
n

)
more

than r(p) times. Conclude that 2n ≤
(
2n
n

)
≤
∏

prime p≤2n p
r(p) ≤ (2n)π(2n).

(b) Show that π(n) ≥ n
2 logn

.

(c) Let x and y be two distinct n-bit integers. Let p be a uniformly chosen
random prime in the range [2..4n2]. What kind of upper bound can you get
for Pr[x = y (mod p)]?

(d) Let EQ : {0, 1}n × {0, 1}n → {0, 1} denote the equality function seen in
class. Show that Rε(EQ) = O(log n) using a protocol that is different than
the one presented in class. What is the error probability of your protocol?

4. Let F : {0, 1}n × {0, 1}n → {0, 1} be a communication problem and let D(F )
denote the deterministic communication complexity of F . Consider the following
model for computing F . Alice sends a message to Bob and then Bob decides the
output. The cost is the length of Alice’s message. Let DA→B(F ) denote the cost
of the most efficient protocol that computes F in this model. Give an example of
a function F with small D(F ) but large DA→B(F ). Try to make the gap as large
as possible.

5. (a) Let F : X × Y → {1,−1} and µ be a distribution over X × Y . In class
we saw the discrepancy method to prove lower bounds on the randomized
communication complexity:

Rε(F ) ≥ Dε
µ(F ) ≥ log

(
1− 2ε

discµ(F )

)
.
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Recall that the Disjointness function is defined as DISJ(x) = 1 iff there is
some i ∈ [n] with xi = yi = 1. Show that under any distribution µ over
{0, 1}n×{0, 1}n, discµ(DISJ) ≥ Ω(1/n). This means that one cannot prove
strong randomized communication complexity lower bounds for DISJ using
the discrepancy method.

(b) Let G : X × Y → {1,−1}. Recall that the correlation between F and G
under the distribution µ is defined as

Corµ(F,G) =

∣∣∣∣ Pr
(x,y)∼µ

[F (x, y) = G(x, y)]− Pr
(x,y)∼µ

[F (x, y) 6= G(x, y)]

∣∣∣∣ .
Prove

Rε(F ) ≥ Dε
µ(F ) ≥ log

(
Corµ(F,G)− 2ε

discµ(G)

)
.

This allows us to prove a lower bound for the communication complexity of F
in situations where F itself does not have small discrepancy, but it correlates
well with a function G (e.g., the correlation is some constant more than 2ε)
that has small discrepancy. Indeed, one can prove strong lower bounds on
the randomized communication complexity of DISJ using this technique.

6. In this question you are asked to read and write about an application of communi-
cation complexity. Find a result that interests you and present the main ideas be-
hind it. Focus on how communication complexity is used in the result. Limit your
answer to 1 to 2 pages. Communication complexity has connections/applications
to circuit complexity, time/space tradeoffs for Turing Machines, VLSI chips, ma-
chine learning, game theory, data structures, proof complexity, pseudorandom
generators, pseudorandomness, branching programs, lower bounds for polytopes
representing NP-complete problems, data streaming algorithms, quantum com-
putation, etc. You can use any resource you want.
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