
COMP 531: Advanced Theory of Computation
(Winter 2014)

Assignment 2

Due February 19th

Instructions

Follow these instructions closely.
You will benefit most if you seriously try solving each problem yourself. You may

work with each other but you must write up your own solutions. For each question,
you should clearly acknowledge the people you have worked with. You are not allowed
to use any resources that contain the solution to an assignment question. However, we
value honesty above all. You will get full marks if you happen to find the solution to
a question and you write your own solution, as long as you properly acknowledge
your source. Failure to acknowledge your source can result in 0 points.

Clarity and conciseness of your solutions are as important as correctness.
It is important to learn how to write your ideas and solutions clearly and rigorously.
You will lose marks for correct solutions that are poorly explained/presented. When
writing your solutions, assume that your audience is your class mates rather than the
instructor of the course. The high level ideas and an overview of your argument should
be presented before any technical details, and all non-trivial claims have to be proven.

If you do not know how to solve a problem, do not answer it. This will earn you
20% of the points. Do not make yourself believe in a wrong proof, this is bad for you.
And definitely do not try to sell it! If you don’t know how to solve a problem but
you have some non-trivial ideas, write them down. If you have a solution with gaps,
write your argument and clearly indicate the gaps.

Submit your assignments in class or send a copy to aada@cs.mcgill.ca before
midnight of the due date.
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Notation

A Boolean function f : {0, 1}n → {0, 1} has the range {0, 1}. Often, it is convenient to
map 0 to 1 and map 1 to -1, and view the range as {1,−1}. That is, Boolean functions
have the form f : {0, 1}n → {1,−1} when convenient. The particular choice of the
range does not matter. We could choose true and false or apples and oranges. But a
clever choice of the range can make the mathematical manipulations easier.

Recall that a threshold function f : {0, 1}n → {0, 1} is specified by integer weights
w0, w1, . . . , wn and f(x) = 1 iff w1x1 + w2x2 + · · ·+ wnxn > w0. So

AND(x) = 1 iff x1 + x2 + · · ·+ xn > n− 1,

OR(x) = 1 iff x1 + x2 + · · ·+ xn > 0,

MAJ(x) = 1 iff x1 + x2 + · · ·+ xn > n/2.

If f : {0, 1}n → {1,−1} is a threshold function, it can be represented as sign(w0 +
w1x1 + · · · + wnxn) for some integer weights. Here, for t ∈ R, sign(t) = 1 if t > 0,
sign(t) = −1 if t < 0 and sign(t) = 0 if t = 0.

Define the mod6 : {0, 1}n → {0, 1} function/gate as follows: mod6(x) = 0 if and
only if

∑
xi is divisible by 6. A generalized mod 6 function is such that for A ⊆

{0, 1, 2, 3, 4, 5}, modA6 (x) = 1 if and only if
∑
xi modulo 6 is in A. A generalized mod

6 gate is denoted by GMOD6.
A function f : {0, 1}n → {0, 1} is called symmetric if the output depends only

on the number of input bits set to 1, i.e. f(x) = f(x′) whenever
∑

i xi =
∑

i x
′
i. A

symmetric function/gate will be denoted by SYM.
We denote by f ◦g the class of depth 2 circuits whose output gate is f and the gates

at the first level are g. For example, AND ◦MAJ denotes the class of depth 2 circuits
where the output gate is AND and the first level has majority gates.

Every circuit is allowed access to the constants 0 and 1 (on top of the input variables
and their negations).
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Questions

1. Show that any symmetric function can be computed by linear size MAJ ◦MAJ
circuits.

2. Let C = (Cn) be a family of circuits constructed with binary AND and OR gates.
Assume that C has polynomial size and the graph of each Cn is a tree. Show that
the induced boolean function is actually in NC1.

3. Show that the multiplication of two n-bit integers is not in AC0.

4. (a) Show that any function f : {0, 1}n → {0, 1} can be computed by a MOD6 ◦
SYM circuit. Note that there is no restriction on the size of the circuit.

(b) We say that two functions f, g : {0, 1}n → Z are mod6 equivalent if f(x)
is divisible by 6 if and only if g(x) is divisible by 6. Show that if f is
computed by “small” size MOD6◦SYM circuit, then f is mod6 equivalent to
a “low” rank function g over any field (poly(n) would be considered “small”
or “low”). The meaning of rank of a function is as follows. Partition the
input variables any way you like x = (x1, x2) and consider the matrix whose
rows are labeled with all the possible values for x1 and columns are labeled
with all the possible values for x2. The (x1, x2) entry contains g(x1, x2).
The rank of g is defined to be the maximum rank of this matrix, where the
maximum is over all possible partitions x = (x1, x2). Hint: Use the fact that
rank is subadditive.

(c) Using part (b), find an explicit function that requires exponential size MOD6◦
SYM circuits.

(d) (Open Problem - not for credit) Find an explicit function that requires
superpolynomial size GMOD6 ◦GMOD6 circuits. (Note that a generalized
mod 6 function is a symmetric function so part (c) comes close to proving
this but it does not.)

5. For this question, all Boolean functions will be ±1 valued. Consider the 2n dimen-
sional vector space of functions over the reals V = {p : {0, 1}n → R}. Obviously
this vector space includes all the Boolean functions f : {0, 1}n → {1,−1} that we
are interested in. Equip this vector space with the following inner product:

〈p, q〉 = Ex[p(x)q(x)] =
1

2n

∑
x

p(x)q(x),

where the expectation is over a uniformly random x ∈ {0, 1}n. For a subset
S ⊆ [n] = {1, 2, . . . , n}, we define χS(x) = (−1)

∑
i∈S xi . These are called the

characters and correspond to the parity function over the input variables in S.

Question: Show that the set {χS : S ⊆ [n]} is an orthonormal basis.
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Hence we can write every function p ∈ V as a linear combination

p =
∑
S⊆[n]

p̂(S)χS,

where p̂(S) are the appropriate real coefficients.

Question: Show that for all S ⊆ [n], p̂(S) = 〈p, χS〉.
This way of expanding the function as a sum of the parity functions (charac-
ters) is referred to as the Fourier expansion of p and p̂(S) are called the Fourier
coefficients. We will refer to the elements of V as polynomials. To justify this
terminology, observe that if we consider the domain to be {1,−1}n rather than
{0, 1}n, we see that

p =
∑
S⊆[n]

p̂(S)χS =
∑
S⊆[n]

p̂(S)
∏
i∈S

xi,

which is a multilinear polynomial (every variable has exponent 0 or 1).

For p, q ∈ V , and a distribution µ over {0, 1}n, define the correlation of p and q
under µ as follows:

Corµ(p, q)
def
= |Prx∼µ [p(x) = q(x)]−Prx∼µ [p(x) 6= q(x)]| .

Question: Show that if f, g ∈ V are Boolean functions, then

CorU(f, g) = |〈f, g〉|,

where U denotes the uniform distribution.

Question: Show that for p, q ∈ V ,

〈p, q〉 =
∑
S⊆[n]

p̂(S)q̂(S).

This forms the bridge between the usual representation of a function in terms of
the values {p(x) | x ∈ {0, 1}n} and the Fourier representation in terms of the
Fourier coefficients {p̂(S) | S ⊆ [n]}.
Question: Show that for boolean functions,

∑
S f̂(S)2 = 1.

In other words, the squares of the Fourier coefficients of a boolean function can
be thought as a probability distribution over the subsets S.

In many different settings, the hardness of a function exposes itself in the func-
tion’s Fourier expansion. In other words, different analytic measures associated
with the Fourier coefficients of f can be good approximations to how complex the
function is e.g., in circuit complexity, learning theory, communication complexity,
etc.
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