
UNIFIED LOWER BOUNDS FOR MONOTONE COMPUTATION

by

Robert Robere

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Department of Computer Science
University of Toronto

c© Copyright 2018 by Robert Robere

Abstract

Unified Lower Bounds for Monotone Computation

Robert Robere
Doctor of Philosophy

Department of Computer Science
University of Toronto

2018

Razborov [55] introduced an elegant rank-based complexity measure for proving lower bounds

on the monotone formula complexity of boolean functions. Later work by Gál [25] showed that

Razborov’s rank measure also provides lower bounds on monotone switching networks, which

measure space complexity, and monotone span programs, which are an elegant complexity

measure that have connections to cryptography. Despite this, the only lower bounds known

for the rank measure are the original nΩ(logn) bounds for function computable in NP due to

Razborov [55].

In this thesis, we give a new analysis of the rank measure; in particular, connecting it to the

Nullstellensatz degree from propositional proof complexity. This ultimately allows us to “lift”

Nullstellensatz degree lower bounds to rank measure lower bounds in a generic way, and using

this lifting theorem we are able to prove a variety of new lower bounds in monotone complexity

theory, as well as obtaining new proofs of many old lower bounds.

To prove our results we introduce several technical tools which we hope will have other

applications. In particular, we introduce a new algebraic complexity measure called the alge-

braic gap complexity which is crucial in our reductions, as well as a generic way to transform

multilinear polynomials into matrices such that the rank of the matrix can be directly calculated

from the monomials in the polynomial (this generalizes an earlier result of Sherstov [61]).

ii

Acknowledgements

Academically, I would not be where I am today without the help of many wonderful supervi-
sors over the years. First and foremost, I will be forever thankful to both Toni and Stephen for
their excellent supervision in my graduate work. It should go without saying that they are both
first-rate scientists: excellent taste in problems, full of good advice, and seemingly endless
knowledge about mathematics. But what strikes me most about both of them is their amazing
attitudes: they care about their research because they like to think about cool things and then
share those things with other people. What more could you ask for in an advisor? If I have
picked up anything from them, I hope it is this.

Next down the list (academically), I would not even be in this program without the help
of my undergraduate advisors, Todd Wareham and Antonina Kolokolova. It’s crazy to think
that all of this ultimately boils down to a chat with Todd (“So, what are you working on right
now?”) in the hallway one summer afternoon during a programming job at Memorial. On the
other hand, Antonina is responsible for so much by now that I’m not even sure where to begin
— thanks for the research support, for introducing me to the community, and for being a great
friend.

I would also like to thank a number of folks in the community for some very interesting
conversations over the years — Yuval Filmus, for good chats and for being a good pal since
my Masters; Ben Rossman, for lots of discussions about circuit complexity and for serving on
my final exam committee; Vijay Ganesh, for so, so many interesting chats about SAT solving;
and Jakob Nordström, for inviting me to visit Sweden and many subsequent discussions about
complexity theory in general and proof complexity in particular.

Life isn’t all academics, of course, and for keeping me sane I have to thank all of my friends
in Toronto. In no particular order: the lab (Lalla, Noah, Mika, Atiyeh, Spooner, Akis, David(s),
Dustin, . . .), the climbing crew (Adam, Mike Pohlod, Sam, Alex, Kwok, Evan, JR, Danny, Ro-
drigo, Kirby, and Hans), and my fellow Newfie expatriates (Ryan, Evan (again), Nick, Danny
Dillabough, Mike Fardy, Mitch, Ciarán, Andy, Wyatt, Big Dan, and Noah (again)). I also
wouldn’t have made it through this without Kate: thank you for the support, for putting up
with me (“You look like you’re thinking about math”), but most of all, just for being yourself.

Finally, I would like to thank my parents for their endless support through this (admittedly
strange) path that I’ve chosen.

Thanks again. Without ya’ll life would be much less colourful.

iii

Contents

Acknowledgements iii

Contents iv

1 Introduction 1
1.1 Complexity Theory . 1

1.2 Boolean Circuits . 3

1.3 Boolean Formulas . 5

1.4 Switching Networks . 7

1.5 Span Programs . 9

1.6 Comparator Circuits . 12

1.7 Our Contribution. 14

2 Preliminaries 19
2.1 Boolean Functions . 19

2.2 Karchmer-Wigderson Games . 21

2.3 Monotone Karchmer-Wigderson and Rectangle Covers 22

2.4 Razborov’s Rank Measure . 23

2.5 Algebraic Tiling Number . 26

3 Pattern Matrices and the Rank Measure 29
3.1 Multilinear Polynomials and Pattern Matrices 29

3.2 CNF-Search Problems and Canonical Rectangle Covers 31

3.3 Lifting Algebraic Gaps to Razborov’s Rank Measure (Real Case) 33

4 Algebraic Gaps and Nullstellensatz 36
4.1 Nullstellensatz Refutations . 36

4.2 Algebraic Gaps: A General Definition . 37

4.3 Algebraic Gaps = Nullstellensatz (Characteristic 2 Case) 39

iv

4.4 Algebraic Gaps = Nullstellensatz (General Case) 43

5 Main Lifting Theorems 45
5.1 Lifting Polynomial Degree to Rank . 46
5.2 Constructing Good Gadgets . 48
5.3 Lifting Algebraic Gaps to Razborov’s Rank Measure 50
5.4 Lifting Nullstellensatz to Algebraic Tiling . 53

6 Applications 55
6.1 Canonical Rectangle Covers and Monotone CSP-SAT 55
6.2 Induction and The ST-Connectivity Problem 58
6.3 Pebbling Tautologies and The Generation Problem 60
6.4 Counting Principles and Strongly Exponential Lower Bounds 63

7 Conclusion 66

Bibliography 67

Bibliography 68

v

Chapter 1

Introduction

1.1 Complexity Theory

This is a thesis in computational complexity theory, which is the area of theoretical computer
science that seeks to classify computational tasks by the resources — such as computation
time or the amount of memory — required to solve them. Formally, this is done by study-
ing complexity classes, which are collections of computational tasks that can be solved by
an algorithm using a bounded amount of a computational resource. For example, the class
P, (which stands for polynomial time), contains all tasks that can be solved by an algorithm
using a polynomially-bounded (in the input length) amount of computation time; while the
class EXPSPACE, for exponential space, contains all tasks that can be solved by an algorithm
using an exponentially-bounded amount of memory. One of the central goals of complexity
theory is to develop a deep enough understanding of computation to prove lower bounds on
the amount of resources that are required to solve computational tasks. In some instances the-
orists have been quite successful — it is known that P 6= EXPSPACE, for example, and so not
every problem that can be solved in exponential space can be solved in polynomial time — but
many questions (such as the famous P vs. NP problem [20]) remain far out of reach of current
techniques.

One of the main lines of research into these lower bound problems is known as circuit com-

plexity. The main objects of study here are boolean circuits, which are a simple mathematical
abstraction of the digital logic circuits present in any computer in the real world. Formally,
a boolean circuit C consists of a collection of wires which carry boolean (i.e. {0, 1}) values;
these wires connect together logical gates which take boolean values as input and then output
a boolean value on the gate’s output wires. The functions computed at each gate are usually
simple (reflecting the simplicity of the logic gates in electronic circuits) — typically we allow
the two-input AND (output 1 if both inputs are 1), the two-input OR (output 1 if either input is

1

CHAPTER 1. INTRODUCTION 2

1), and the one-input NOT gate (output the opposite of the input). Then, if we designate some
subset of wires as “inputs” and another set of wires as “outputs”, a boolean circuit becomes
a device that computes a boolean function f : {0, 1}Inputs → {0, 1}Outputs in the natural way.
Figure 1.1 depicts a simple boolean circuit.

∧

∨ ∨

¬ ¬

x1 ∧

x2 x3

Figure 1.1: A Boolean Circuit. Note ∧ := AND, ∨ := OR, and ¬ := NOT

From the perspective of complexity theory, boolean circuits are nice to study because they
are combinatorial. That is, a circuit is “just” a directed acyclic graph with some computational
semantics attached to its elements. This is nice as combinatorial measures of boolean circuits
correspond to computational resources in a nice way: for instance, the size (number of gates)
of a boolean circuit C measures the amount of computation time it takes to evaluate C on an
input if we evaluate each gate in sequence; while the depth (longest path from an input wire
to an output wire) measures the amount of time it takes to evaluate C when every gate can
operate in parallel. This suggests the application of combinatorial techniques to understand
circuit complexity, and indeed there have been several outstanding successes along these lines
for restricted circuit families. For example:

1. Håstad [30] proved that for every positive integer d, any depth-d circuit C computing
the parity of its input bits (i.e. whether the number of 1s is even or odd) requires size
2Cn

1/d−1 for some universal constant C.

2. Håstad [31] proved that for every ε > 0, any boolean formula (that is, a circuit where
each gate has exactly one output) performing a certain task in P requires size n3−ε.

3. Razborov [54] proved that any monotone circuit (that is, a circuit that does not use NOT

CHAPTER 1. INTRODUCTION 3

gates, only AND and OR) solving the k-Clique problem (given a graph G, determine if
it has a complete subgraph with k nodes) requires size nΩ(k).

4. Raz and McKenzie [49] gave, for each positive integer i, an example of a computational
task that can be efficiently computed by depth-logi n monotone circuits, but not by any
monotone circuit of depth logi−1 n.

The results presented in this thesis are of this type: we prove lower bounds on the sizes of
restricted models of boolean circuits performing natural computational tasks. In particular we
will focus on monotone circuit complexity; we review the details of this theory next.

1.2 Boolean Circuits

Let f : {0, 1}n → {0, 1} be a boolean function on input variables z1, z2, . . . , zn. As we have
just outlined, a boolean circuit is a computational model used for studying the amount of time
it takes to compute f by both parallel and sequential algorithms. Formally, using the shorthand
∧ ≡ AND,∨ ≡ OR, and ¬ ≡ NOT, a boolean circuit computing f is defined by a sequence of
boolean functions g1, g2, . . . , gt where

• gi = zi for each i = 1, 2, . . . , n,

• gt = f , and

• for each i = n+ 1, n+ 2, . . . , t, either gi = ¬gj for some j < i or gi = gj ◦ gk for some
◦ ∈ {∧,∨}.

The depth of a boolean circuit is the length of the longest path in the corresponding graph, and
is a measure of the amount of time it takes to compute f by a parallelized algorithm. This
is intuitively justified by thinking of each gate of the circuit as being evaluated by a separate
processor, where each processor activates as soon as its inputs are available. On the other hand,
the size of a boolean circuit is the number of gates, and is a measure of the sequential time it
takes to compute f . Intuitively, a sequential algorithm can evaluate a boolean circuit by sorting
the gates of the circuit in topological order from sources to sink and then processing each gate
according to this order. If f is a boolean function then we let C(f) denote the minimum size of
any circuit computing f , and D(f) denote the minimum depth of any circuit computing f .

Before we continue, a note on conventions. In complexity theory one typically studies the
computational resources consumed by an algorithm as a function of its input length. This is
modelled as follows: if f = {fn : {0, 1}n → {0, 1}}∞n=1 is a sequence of boolean functions
(one for each input length), a circuit family computing f is given by a sequence of boolean

CHAPTER 1. INTRODUCTION 4

circuits C = {Ci}∞i=1 where the circuit Ci has i inputs and computes the function fi. The
circuit family is said to be polynomial-size if there is a constant c such that |Cn| = O(nc) for
all n. Following convention, we will often be rather loose with this terminology; for example,
we use “boolean function” to really mean a sequence of boolean functions and “polynomial-
size circuit” to refer to a polynomial-size circuit family.

Continuing on: the class of functions computed by polynomial-size circuit families, de-
noted P/poly, is an important class in computational complexity theory. It contains every
language in P, the class of languages computable by polynomial-time algorithms. However, it
is conjectured that P/poly does not contain NP; furthermore, as boolean circuits are generally
considered to be easier to analyze than algorithms (usually formalized using Turing Machines),
proving lower bounds on the sizes of boolean circuits computing languages in NP is considered
to be a promising path to proving P 6= NP by many researchers.

With that being said, what are the best known lower bounds on the sizes of boolean circuits?
A classic counting argument due to Shannon [59] shows that there are boolean functions on n
variables which require very large boolean circuits.

Theorem 1.2.1. For every sufficiently large positive integer n, there exists a boolean function

f on n variables such that C(f) ≥ Ω(2n/n).

Proof Sketch. There are 2O(s log s) boolean circuits with s gates, and exactly 22n boolean func-
tions on n variables. Since every boolean circuit computes exactly one function, setting
s = o(2n/n) yields a contradiction.

This theorem provides very strong — in fact, tight [41] — lower bounds on the size of
boolean circuits, but it provides no control over the hard boolean function itself! By applying
techniques used in Kannan’s theorem [36] one can find a function computable in the (massive)
complexity class Σ2EXP with this large circuit complexity. The best known lower bounds on
circuit size for a family of boolean functions that is more efficiently computable is the following
lower bound due to Iwama and Morizumi [34].

Theorem 1.2.2. There exists a family of boolean functions {fn}∞n=1 computable by a polynomial-

size boolean circuit family such that for all sufficiently large n, C(fn) ≥ 5n− o(n).

The gap between the lower bound in Theorem 1.2.1 and Theorem 1.2.2 is gigantic, and it is
a sobering fact that we are still unable to prove superlinear (!) lower bounds on boolean circuits
computing functions in NP.

As a result, researchers have focused on studying restricted circuit families, and in this
thesis we will focus on monotone circuits. Recall that a boolean circuit is monotone if it only
contains ∧ and ∨ gates (that is, no ¬ gates). Monotone boolean circuits get their name since

CHAPTER 1. INTRODUCTION 5

they can only compute monotone boolean functions: flipping an input bit from 0 to 1 can not
flip the output from 1 to 0 (that is, x ≤ y implies f(x) ≤ f(y)). Since ∧ and ∨ are monotone
boolean functions, it follows that the function computed by any monotone boolean circuit is
also monotone; conversely, every monotone boolean function f is easily seen to be computable
by an exponential-size monotone circuit by a truth-table construction.

What are the best lower bounds known for monotone boolean circuits? For a monotone
boolean function f let mC(f) denote the size of the smallest monotone circuit computing
f , and similarly define mD(f) to be the minimum depth of a monotone circuit computing
f . Pippenger [47] followed the counting argument of Shannon to obtain the following lower
bound (observe that it is smaller than the lower bound in Theorem 1.2.1 as there are fewer
monotone boolean functions than boolean functions).

Theorem 1.2.3. For every sufficiently large positive integer n there exists a boolean function

f on n variables such that mC(f) ≥ Ω(2n/n3/2).

However, unlike the case of non-monotone boolean circuits, we have very strong lower
bounds on the size of monotone boolean circuits computing functions in NP. The first super-
polynomial lower bounds (on the order of nΩ(logn)) for a family of monotone boolean circuits
computing a boolean function in NP were proved by Razborov [54] for circuits computing the
clique function. Andreev [3] proved exponential lower bounds on the order of 2n

1/8−ε for every
ε for another monotone function in NP, and this lower bound was later sharpened by Alon
and Boppana to 2Ω(n1/4) [11]. Finally, Harnik and Raz proved a lower bound on the order of
2Ω((n/ logn)1/3) [29], which is the strongest lower bound known to date.

1.3 Boolean Formulas

A boolean formula is a “tree-like” boolean circuit — the output of each gate can be used at
most once. Formally, a formula is defined by a full binary tree T , in which each of the leaves
of the tree are labelled with an input variable xi or its negation ¬xi and each internal node is
labelled with ∧ or ∨. A formula is monotone if it does not contain any negations, and the size

of a boolean formula is the number of leaves when it is drawn as a tree. Let F(f) denote the
minimum size of any formula computing f , and similarly define mF(f) for monotone formula
size.

Since a boolean formula is a full binary tree, any depth-d formula has at most 2d leaves. A
remarkable fact (usually attributed to Spira [62], although, it was proved earlier by Khrapchenko
[66]) is a converse to the above statement: any formula of size s can be transformed into a for-
mula of depth O(log s).

CHAPTER 1. INTRODUCTION 6

x1 x2 x3

∨

∨

∧∧

x3x2

Figure 1.2: A Boolean Formula computing the Majority function.

Theorem 1.3.1 (Formula Balancing Theorem). For any boolean function f , D(f) = Θ(log F(f)).

Furthermore, if f is monotone, then mD(f) = Θ(logmF(f)).

This implies that the formula size of a boolean function f is a measure of the circuit depth
of f and thus the amount of parallel time required to compute f . In complexity theory, the
class of languages computable by families of polynomial-size boolean formulas is denoted
NC1/poly; it is easy to see that NC1/poly ⊆ P/poly since every boolean formula is a boolean
circuit.

With these results in mind, what are the best lower bounds known for formula size? A
counting argument due to Riordan and Shannon [60], analogous to Theorem 1.2.1, yields the
following strong lower bound:

Theorem 1.3.2. For all sufficiently large n there exists a boolean function f on n variables

such that F(f) ≥ Ω(2n/ log n).

However, we once again have no control over the “hard” boolean function in this theorem.
Unlike the case of boolean circuits, theorists are able to prove super-linear lower bounds on
the size of boolean formulas for more natural boolean functions; the best known lower bound
for any efficiently computable function is n3−ε (due to Håstad [31], building on earlier works
[4, 33, 46, 63]) for a function computable in P.

Theorem 1.3.3. For any ε > 0 the following holds: There exists a family of boolean functions

{fn}∞n=1 computable in P such that for all sufficiently large n, F(fn) ≥ n3−ε.

Once again, in the world of monotone formulas we have much better lower bounds. One
can mimic the proof of Theorem 1.3.2 to again obtain very strong lower bounds against an
“arbitrarily hard” boolean function.

CHAPTER 1. INTRODUCTION 7

Theorem 1.3.4. For all sufficiently large n there exists a monotone boolean function f on n

variables such that mF(f) ≥ Ω(2n/
√
n log n).

Since any monotone boolean formula is also a monotone boolean circuit, it follows that all
lower bounds for monotone circuits described in Section 1.2 apply to monotone formulas as
well — for instance, we have 2Ω((n/ logn)1/3) lower bounds for monotone formulas computing a
function in NP [29]. There are a number of other lower bounds on monotone formula complex-
ity — we have exponential separations between monotone formulas and monotone circuits, as
well as a stronger lower bound for monotone formulas computing a function in NP. These are
reviewed next.

The first superpolynomial lower bounds that separated the power of monotone formulas
from monotone circuits were proved by Karchmer and Wigderson [37], who showed that any
monotone formula for the st-connectivity problem — that is, given a directed graph on n ver-
tices with distinguished vertices s, t, decide if there is a path from s to t — required size
nΩ(logn). Raz and Wigderson [51] give a stronger lower bound of 2Ω(

√
n) for monotone formu-

las computing the matching problem; however, while the matching problem is computable in P,
a result of Razborov [54] shows that it is not computable by polynomial-size monotone circuits.
Circumventing this, Raz and McKenzie [49] proved that any monotone formula computing the
GEN problem — which is also computable by polynomial-size monotone circuits — requires
size 2Ω(nε), where ε > 0 is some universal constant. Moreover, Raz and McKenzie exhibited
a depth-hierarchy theorem showing, for each positive integer i, a monotone boolean function
fi which is computable by polynomial-size monotone boolean circuits of depth (log n)i, but
such that every monotone boolean circuit of depth (log n)i−1 computing fi required exponen-
tial size. Finally, a recent result of Göös and Pitassi [28] proved 2Ω(n/ logn) lower bounds on
monotone formulas computing a monotone function in NP. Despite this progress, note that
there is still a large exponential gap between the best lower bounds for monotone formulas
computing a function within NP and the lower bounds obtained by counting arguments.

1.4 Switching Networks

A switching network is a computational model used for studying the amount of memory it
takes to compute f by an algorithm. Formally, a switching network is defined by an undirected
graph G = (V,E) whose vertices are called states. We distinguish two states s, t ∈ V , and
each edge e ∈ E of the network is labelled with an input variable xi or its negation ¬xi. Given
an input assignment x ∈ {0, 1}n to the variables, an edge e is alive if its label is satisfied by
x; the switching network accepts the input x if there is a path of alive edges from s to t. The
size of a switching network is the number of states in the network. We define S(f) denote

CHAPTER 1. INTRODUCTION 8

the minimum size of any switching network computing f , and mS(f) similarly for monotone
switching networks.

s

x1

¬x1

x2

¬x2

x2

¬x2

x3

¬x3

x3

¬x3

x4

¬x4

x4

¬x4

t

¬x5

x5

s

x1

¬x1

x2

¬x2

x2

¬x2

x3

¬x3

x3

¬x3

x4

¬x4

x4

¬x4

t

¬x5

x5

Figure 1.3: A switching network computing the parity of 5 bits, evaluated on (1, 1, 0, 1, 0).

Switching networks were introduced by Shannon [59] as a model of the large telephone
switching networks in place at the time, and he showed how one could use them (in principle) to
perform computations. The class of boolean functions computable by polynomial-size switch-
ing networks is denoted L/poly, and roughly correspond to those languages computable by
algorithms using a logarithmic amount of memory. The following result, due to Borodin [12],
also relates the size of switching networks to the circuit depth of boolean functions.

Theorem 1.4.1. For any boolean function f , log S(f) ≤ D(f) and D(f) ≤ O(log2 S(f)). Both

inequalities continue to hold for monotone switching network size and monotone depth.

It is not hard to simulate a switching network by a boolean circuit, and thus the previous
theorem shows NC1/poly ⊆ L/poly ⊆ P/poly, and further that these inclusions continue to
hold if the models are monotone.

What are the strongest lower bounds known for switching networks? A counting argument
due to Shannon [59] again yields exponential lower bounds for some (arbitarily hard) boolean
function.

CHAPTER 1. INTRODUCTION 9

Theorem 1.4.2. For every sufficiently large positive integer n, there exists a boolean function

f on n variables such that S(f) ≥ Ω(2n/n).

For non-monotone switching networks, the best lower bound for a function computable in
NP (in fact, the function is computable in P) is due to Nec̆iporuk [44].

Theorem 1.4.3. There is a family of boolean functions {fn}∞n=1 computable in P such that for

all sufficiently large n, S(fn) ≥ Ω((n/ log n)2).

Also worth mentioning is the lower bound due to Razborov [52] on switching networks
computing the Majority function — the technique used by Nec̆iporuk does not apply to Ma-
jority, yet, Razborov was still able to obtain lower bounds of Ω(n log log log∗ n), which is
(technically) superlinear.

In the monotone setting, the strongest lower bounds come from applying Theorem 1.4.1 to
translate the lower bounds from monotone formulas to monotone switching networks. In par-
ticular, applying this theorem to the lower bound of Göös and Pitassi [28] yields 2Ω(

√
n/ logn)

lower bounds for monotone switching networks computing a monotone function in NP. In a
separate, but elegant, line of work, Potechin [48] proved nΩ(logn) lower bounds for switch-
ing networks computing the directed st-connectivity function; a nice corollary is that the
O(log2 S(f)) factor is tight in Theorem 1.4.1 in the monotone case. Potechin’s result was
improved by Chan and Potechin [18], who obtained exponential lower bounds for monotone
switching networks computing the GEN function (which is computable by polynomial-size
monotone circuits) and also the clique function.

1.5 Span Programs

Let F be a field. An F-span program is an exotic device for computing boolean functions
using linear algebra over F. Formally, a span program is defined by a matrix A over F whose
rows are labelled by boolean literals over variables z1, z2, . . . , zn. Given a span program A, a
row vector Ai of A is consistent with an input z ∈ {0, 1}n if the literal labelling Ai evaluates
to 1 under z. The span program A then accepts an input assignment z ∈ {0, 1}n if the set of
rows consistent with z span the all-1s vector; with this definition a span program A computes
a boolean function f : {0, 1}n → {0, 1} in the natural way. Said another way: a span program
A associates a vector space V (`) with each input literal ` over {z1, z2, . . . , zn}. Given an input
assignment to the variables z, the span program accepts z if and only if the closure of the vector
spaces consistent with z contains the all-1 vector. A span program is depicted in Figure 1.4,
where it is also evaluated on the input (1, 0, 0) — adding the “x1 row” to the “¬x3 row” yields
the all-1s vector, so we accept.

CHAPTER 1. INTRODUCTION 10

The size of the span program is the number of rows of A. A span program is monotone

if all literals labelling rows of A are positive, and note that monotone span programs compute
monotone functions since adding row vectors can only increase the linear span.

x1 1 0 0 1

x2 0 0 1 0

x3 0 1 0 0

¬x3 0 1 1 0

x1 1 0 0 1

x2 0 0 1 0

x3 0 1 0 0

¬x3 0 1 1 0

Figure 1.4: A span program, evaluated on (1, 0, 0).

Span programs were introduced by Karchmer and Wigderson [38], who showed that span
programs over fields of non-zero characteristic p compute exactly the languages in the com-
plexity class ModpL/poly, which roughly correspond to counting accepting paths in a non-
deterministic, log-space Turing Machine modulo p. This complexity class is rather exotic, but
has a nice expression in terms of directed switching networks. A directed switching network is
simply a switching network with directed edges instead of undirected edges; for any field F of
positive characteristic define an F-directed switching network to be a switching network which
accepts an input z if and only if the number of live paths from s to t on input z is congruent to
0 in F. Karchmer and Wigderson [38] proved that F-span programs and F-directed switching
networks can efficiently simulate one another; furthermore, they showed that span programs
over any field can efficiently simulate switching networks (proving L/poly ⊆ ModpL/poly for
every characteristic p).

What lower bounds are known for span programs? Once again, in the non-monotone world
our lower bounds are weak if we require the boolean functions to be computable in a small
complexity class. As usual, an adaptation of the counting arguments apply to span programs
as well: over GF(2), this counting argument was already exhibited by Nec̆iporuk [43], who
proved the following lower bound using the model of GF(2)-directed switching networks.

Theorem 1.5.1. For all sufficiently large n, there exists a boolean function f on n variables

that requires GF(2)-span programs of size
√

2n+1.

Karchmer and Wigderson [38] were able to adapt the lower bound of Razborov [52] to
prove superlinear lower bounds for non-monotone GF(2)-span programs computing Majority,
which is obviously efficiently computable.

CHAPTER 1. INTRODUCTION 11

Theorem 1.5.2. Any GF(2)-span program computing the Majority function on n bits requires

size Ω(n log log log∗ n).

What is known about the complexity of monotone span programs? Well, an interesting
feature of monotone span programs is that they are not “really” monotone — monotone span
programs use non-monotone operations to compute monotone functions. Largely because of
this, the relationship between monotone span programs and monotone circuits has been unre-
solved! It is known that monotone span programs can be much more powerful than monotone
circuits: Babai et al. [5] exhibited a function with linear size monotone span programs that re-
quires superpolynomial-size monotone circuits and exponential-size monotone formulas. This
immediately implies that the size and depth lower bound methods for monotone circuits cannot
be used to prove lower bounds for monotone span programs.

Perhaps because of this, there has been a long and interesting history of monotone span
program lower bounds. Karchmer and Wigderson [38], showed that all threshold functions
over GF(2) require monotone span programs of size Ω(n log n), which was quickly improved
by Csirmaz [23] to an Ω(n2/ log n) lower bound. Beimel et al. [9] gave a lower bound of n5/2

for a monotone function in P, and then Babai et al. [5] improved their technique, obtaining
the first superpolynomial lower bound of nΩ(logn/ log logn) for a monotone function in NP. Each
of these results were obtained by direct combinatorial arguments, which were simplified and
improved by Gál to nΩ(logn) [25]. The superpolynomial lower bounds cited above only applied
to functions computable in NP, so, to improve this Beimel and Weinreb [10] gave quasipolyno-
mial lower bounds nΩ(

√
logn) for a function in P, proving that monotone span programs can be

weaker than polynomial time, as well as separating span programs over different fields. Prior to
the results of this thesis, there were no exponential lower bounds for monotone span programs
other than the bounds obtained by counting arguments.

Linear Secret Sharing Schemes. Closely related to monotone span programs are secret

sharing schemes, which are a simple cryptographic device defined as follows. We have a
“dealer” who has some “secret” (say, an element k of a field F), a set of n parties, and an
upward-closed collection A ⊆ 2[n] of subsets of the n parties called an access structure. A
secret sharing scheme for A is a method of sharing information with the n parties such that
any set of parties in A can reconstruct the dealer’s secret, while any subset of parties not in A
are unable to reconstruct the secret. For the sake of completeness we record the definition of
secret sharing schemes here and refer the interested reader to [8] for further details.

Definition 1.5.3. A distribution scheme over a domain K is a pair Σ = (Π, µ) where µ is a
probability distribution over a set R and Π maps pairs in K × R to tuples K1 × K2 × · · · ×

CHAPTER 1. INTRODUCTION 12

Kn, where Kj is the domain of shares of player pj . Given a distribution scheme Σ, a dealer
distributes a secret k ∈ K to n players as follows: first, the dealer samples a random string
r ∈ R and computes Π(k, r) = (s1, s2, . . . , sn). Then for each i ∈ [n], the dealer privately
communicates share si to the ith player. A distribution scheme is a secret sharing scheme for
an access structure A ⊆ 2[n] if it satisfies the following two properties:

Perfect Reconstruction. The secret can be reconstructed by any set of parties in the access
structure, i.e. for any set of parties A ∈ A there exists a mapping RA :

∏
i∈AKi → K

such that for every k ∈ K, Pr[RA(Π(k, r)A) = k] = 1.

Perfect Privacy Every unauthorized set cannot learn anything from their shares (in the statis-
tical sense). In other words, for any B 6∈ A, for every pair of secrets k1, k2 ∈ K, and
every vector of shares v(si)i∈B we have Pr[Π(k1, r) = v] = Pr[Π(k2, r) = v].

The information ratio of a distribution scheme is max1≤j≤n log |Kj|/ log |K|, and measures
the relative amount of information shared between parties. A secret sharing scheme is linear

over a field F if K = F, the random strings are field elements chosen uniformly random from
F, and the shares are vectors over F chosen by taking linear combinations of the secret and the
random strings.

Linear secret sharing schemes are an important subclass of secret sharing schemes as
many of the schemes from the literature turn out to be linear. Karchmer and Wigderson [38]
proved that monotone span programs over a finite field F of size s for a monotone function
f : {0, 1}n → {0, 1} imply secret sharing schemes with information ratio s for the natural
access structure associated with f (take all subsets A ⊆ [n] such that f(A) = 1, using the
set-theoretic notation for boolean functions). Conversely, Beimel [7] showed that linear secret
sharing schemes imply monotone spans programs, and thus the two objects are equivalent.

Theorem 1.5.4. Let f : {0, 1}n → {0, 1} be a monotone boolean function and let Af denote

the related access structure. For any finite field F there exists a monotone span program for f

of size s if and only if there exists a linear secret sharing scheme forAf over F with information

ratio s.

This theorem gives a natural alternative motivation for studying monotone span program
lower bounds.

1.6 Comparator Circuits

A simple circuit element which is common in digital logic is the comparator gate: when given
a pair of bits, it outputs them in sorted order. A comparator circuit is a boolean circuit made

CHAPTER 1. INTRODUCTION 13

completely of comparator gates, and are the boolean analogue of sorting networks, which are
models of input-oblivious sorting algorithms. Shallow sorting networks have many applica-
tions in theoretical computer science, and explicit constructions have been extensively studied
in the literature (see [40] for a survey); the famous AKS construction gives O(log n) depth
sorting networks [1], and an alternative construction was recently given by Goodrich [26].

x1

x2

x3

x4

1

1

0

0

1

1

0

1

0

00

1

0

10

1

0

0

1

1

Figure 1.5: A comparator circuit, evaluated on the input (1, 1, 0, 0).

To be more formal, a comparator circuit consists of a set of m wires and a sequence
(i1, j1), (i2, j2), . . . , (is, js) of comparator gates, each connecting a pair of wires (in this no-
tation, the ∧ output of the comparator gate is attached to the first wire, and the ∨ output of
the comparator gate is attaced to the second wire). The size of the circuit is m, the number of
wires, and each wire is initially labelled with either 0, 1, or a boolean literal. We will be in-
terested in comparator circuits which compute boolean functions f : {0, 1}n → {0, 1}, where
n is possibly less than the number of wires; so, we designate one of the wires as the output
wire. A comparator circuit C is monotone if no input wire of C is labelled with the negation
of an input variable, and it is clear from the monotonicity of comparator gates that monotone
comparator circuits compute only monotone functions.

It is not hard to see that comparator circuits are incapable of copying bits in intermediate
computations since the hamming weight of the output of each comparator gate is the same as
the hamming weight of the input. The other notable class of circuits which can not re-use in-
termediate computations are boolean formulas; due to this comparator circuits have been used
as a method of studying the power of copying bits “beyond” boolean formulas [64]. The class

CHAPTER 1. INTRODUCTION 14

of problems computable by polynomial-size comparator circuits is called CC/poly, and the
structural complexity of this class was recently studied by Cook, Filmus and Le [22]. Despite
their inability to copy, polynomial-size comparator circuits are surprisingly powerful: they can
compute everything in non-deterministic log-space and appear to be incomparable with poly-
logarithmic depth circuits [22, 64].

What is known about lower bounds for comparator circuits? One can mimic the counting
argument as before to get an exponential lower bound:

Theorem 1.6.1. For all sufficiently large positive integers n, there is a boolean function f on

n variables such that every comparator circuit computing f requires Ω(
√

2n/n) wires.

However, to the best of our knowledge, there are no other lower bounds known for non-
monotone comparator circuits, other than the bounds known for unrestricted boolean circuits.
Indeed, the situation is the same for monotone comparator circuits: all lower bounds in the
literature follow directly from the lower bounds for monotone boolean circuits.

1.7 Our Contribution.

While monotone circuit complexity is quite well-developed when compared to non-monotone
circuit complexity, several significant open problems remain (particularly, in the complexity of
monotone span programs). We collect these problems below.

1. By counting arguments one can show that almost all monotone functions on n variables
require size 2Ω(n) in all of the models above; however, we can not prove such a lower

bound for any of these models for a function computable in NP!

2. The strongest lower bounds on the size of monotone span programs (over any field) that
do not use counting arguments are nΩ(logn) for a monotone function computable in NP.
For all the other circuit models we listed above exponential lower bounds are known.
Can we prove exponential lower bounds for monotone span programs?

3. Babai, Gál and Wigderson showed that there is a function computable by polynomial-
size monotone span programs overGF (2) that requires monotone circuits of size nΩ(logn)

[5], no separation is known in the other direction for any field. Such a separation is
already known for both monotone formulas and monotone switching networks (and, note
that monotone span programs over any field can simulate both of these models). Can

monotone circuits be more powerful than monotone span programs? One can ask the
same question for monotone comparator circuits: Are monotone circuits more powerful

than monotone comparator circuits?

CHAPTER 1. INTRODUCTION 15

4. Is there a monotone function computable by polynomial-size non-monotone span pro-
grams that requires large monotone span programs? Equivalently: is the monotone re-

striction significant for the efficiency of span programs? One can ask the same question
for comparator circuits: is the monotone restriction significant for the efficiency of com-

parator circuits?

5. For any two fields F,F′ of different characteristic, Beimel and Weinreb [10] exhibited a
boolean function that is computable by polynomial-size monotone span programs over
F, but any monotone span program over F′ requires size nΩ(

√
logn). Can this separation

be improved?

We resolve all of these problems, and do so in a unified way — the solution to each of these
problems will be a consequence of a single theorem that we prove later in the thesis (cf. The-
orem 5.0.1). Furthermore, our general theorem can be used to provide alternative proofs of
many of the known lower bounds discussed above, such as the lower bounds against monotone
formulas by Karchmer and Wigderson [37], the depth hierarchy theorem of Raz and McKen-
zie [49], and the lower bounds against monotone switching networks by Potechin and Chan-
Potechin [18, 48].

What techniques can we use to prove such a theorem? At a high level, our approach is to use
ideas from hardness escalation, which is a rapidly growing body of techniques in complexity
theory [19, 27, 28, 32, 39, 49]. The basic idea of hardness escalation is very simple: reduce
the study of algorithms in a “powerful” model of computation to the study of algorithms in
a “weak” model of computation. To do so, one typically studies algorithms for “structured”
functions in the “powerful” model of computation, which can then be reduced to studying
“simple” functions in the “weak” model of computation.

We will prove a hardness escalation result for a simple matrix-theoretic complexity measure
introduced by Razborov [55]. For any field F, he defined a measure of boolean functions µF(f)

(which we will call the rank measure) to study lower bounds on formula size for boolean
functions f ; using this measure Razborov gave a simple proof that any monotone formula
computing a certain monotone function in NP must have size at least nΩ(logn). While not the
strongest lower bound known against monotone formula size — similar bounds were already
known for st-connectivity [37], and stronger lower bounds are known for other functions [28,
50] — Razborov’s method is exceptionally elegant, and further research showed that µF(f) is,
in fact, a lower bound on monotone span programs, monotone formulas, monotone switching
networks, and monotone comparator circuits! So, for the purposes of lower bounds we will
prove a hardness escalation-type theorem for µF(f).

The starting place for our theorem is the search problem associated with unsatisfiable CNF

CHAPTER 1. INTRODUCTION 16

formulas. More formally, associated with any unsatisfiable CNF formula C is the following
search problem Search(C): given an assignment to the variables of C, output any clause in C
falsified by the assignment. Given an unsatisfiable CNF C, there is a natural method (introduced
by Raz and McKenzie [49] and refined by both Göös and Pitassi [28] and Oliveira [45]) of
associating a “lifted function” fC with C that can be thought of as a monotone variant of the
SAT problem. With this in hand, we introduce a new complexity measure on Search(C) that
we call the algebraic gap complexity, and show how to translate lower bounds on the algebraic
gap complexity of C into lower bounds against the rank measure µF(fC). This allows us to
resolve the questions posed above by proving the appropriate bounds on algebraic gaps for
certain special formulas C.

Now, rather than directly prove lower bounds on the algebraic gap complexity, we instead
show that the algebraic gap of C is exactly the same as the Nullstellensatz degree of refuting C,
which is a very well-studied measure in propositional proof complexity. This provides a new
and interesting dual characterization of Nullstellensatz degree, and also allows us to use the
broad literature on Nullstellensatz degree lower bounds [6,13–15,57] in a black-box fashion to
prove our results. Already, the techniques we have discussed are sufficient to resolve problems
1 through 4.

To resolve Problem 5 we prove a second hardness escalation theorem, this time just for
span programs. Gál [25] introduced an interesting algebraic measure on monotone boolean
functions that she calls the algebraic tiling number, denoted χF(f), and shows that the alge-
braic tiling number is exactly the monotone span program size for computing f . In a separate
argument from above, we show how to translate Nullstellensatz degree upper bounds on an
unsatisfiable CNF C into upper bounds on the size of the algebraic tiling number χF(fC) (and
thus also for monotone span program size). By combining this with the lower bound discussed
above we obtain a characterization of the size of monotone span programs for lifted functions
fC in terms of the Nullstellensatz degree of the underlying CNF C. Then, by exploiting known
separations between Nullstellensatz degree over different fields [15] we resolve Question 5.

Finally, in the process of proving our lifting theorems, we prove a technical theorem that
we hope will be of independent interest, showing how to transform an F-valued multilinear
polynomial p into a matrix Mp such that the rank of the matrix Mp can be calculated directly
from the set of monomials occurring in p. In particular, the statement of our theorem is a
generalization of a similar “degree-to-rank” connection exhibited by Sherstov [61] for real
polynomials; however, our theorem is far more general.

The rest of this thesis is organized as follows:

CHAPTER 1. INTRODUCTION 17

Chapter 2. Preliminaries. We introduce several basic concepts that will be used throughout
the thesis, such as the Karchmer-Wigderson games [37], Razborov’s rank measure [55], and the
algebraic tiling number [25]. We show that the rank measure µF(f) lower bounds the size of
monotone formulas, monotone switching networks, monotone span programs, and monotone
comparator circuits — this was shown for formulas by Razborov [55], for span programs and
switching networks by Gál [25], and showing µF(f) is a lower bound on monotone comparator
circuits is an original contribution of this thesis.

Chapter 3. Pattern Matrices and the Rank Measure. We introduce one of the main tech-
nical tools (pattern matrices) that we use to analyze the rank measure. Using pattern matrices,
we prove a “warmup” version of our main lifting theorem, reducing the real rank measure µR

to the real algebraic gap complexity.

Chapter 4. Algebraic Gaps and Nullstellensatz. Here we study the algebraic gap complex-
ity more deeply. In particular, we show it is exactly the same as the classical Nullstellensatz

degree, which is a complexity measure of propositional tautologies studied in propositional

proof complexity. The results in this chapter allow us to appeal to the vast literature of Null-
stellensatz degree bounds when trying to lower bound the algebraic gap complexity.

Chapter 5. Main Lifting Theorems. In this chapter we give a simple analysis of the rank of
pattern matrices. Then, using the tools we have developed, we prove our main lifting theorems
connecting the algebraic gap complexity and the Nullstellensatz degree to the rank measure
and algebraic tiling number.

Chapter 6. Applications. We apply our lifting theorems to obtain a number of lower bounds
in monotone complexity theory, resolving problems 1 through 5 and unifying the proofs of
many prior lower bounds in the literature.

Chapter 7. Conclusion. We conclude with a collection of open problems.

The results of this thesis appear in the following three papers:

1. Robert Robere, Toniann Pitassi, Benjamin Rossman and Stephen A. Cook. Exponential

lower bounds for monotone span programs. In Proceedings of the 57th Annual Sympo-
sium on Foundations of Computer Science (FOCS 2016). 406-415, 2016.

CHAPTER 1. INTRODUCTION 18

2. Toniann Pitassi, Robert Robere. Strongly exponential bounds lower bounds for mono-

tone computation. In the Proceedings of the 49th Annual Symposium on Theory of
Computing (STOC 2017). 1246-1255, 2017.

3. Toniann Pitassi, Robert Robere. Lifting Nullstellensatz to Monotone Span Programs over

any Field. To appear in the Proceedings of the 50th Annual Symposium on Theory of
Computing (STOC 2018).

Chapter 2

Preliminaries

Let Z be a set and let n be a positive integer. We use the standard notation of Zn to represent
the set of all n-tuples over Z . If z ∈ Zn then zi denotes the ith element of the tuple z, and if
A ⊆ [n] then zA is the tuple of elements in z indexed by A. If A ⊆ [n] we will often write
things like z = zAz[n]\A to mean the natural partition of z into the tuples indexed by A and
[n] \A, even though the indices of A may not technically be the “first” elements of the tuple z.

Let F be a field. If X ,Y are (ordered) sets then we consider functions A : X × Y → F as
|X | × |Y| matrices over F, where the rows of A are indexed by elements of X and columns of
A are indexed by Y . To simplify notation, we refer to such a function A as an X × Y matrix
over F, and use regular function notation (e.g. A(x, y) for (x, y) ∈ X × Y) to index into such
matrices. Let 1X ,Y denote the X × Y all-1s matrix, but we will often leave out the subscript if
the dimensions of the matrix are clear from the context.

If X ,Y are sets then a combinatorial rectangle in X × Y is a subset R ⊆ X × Y such
that R = X × Y for some subsets X ⊆ X , Y ⊆ Y . If A : X × Y → F is a matrix and R
is a rectangle in X × Y then let A�R denote the submatrix of A indexed by elements of R. It
will be convenient to think of A�R as having the same dimensions as A, and thus we formally
define A�R : X × Y → F by

(A�R)(x, y) =

A(x, y) if (x, y) ∈ R

0 otherwise.

The matrix A is embedded in R if A = A�R — i.e. all non-zero entries of A are indexed by R.

2.1 Boolean Functions

A boolean function is a function mapping strings of bits to bits, i.e. a function of the form
f : {0, 1}n → {0, 1} for some non-negative integer n. A restriction of f is a map π : [n] →

19

CHAPTER 2. PRELIMINARIES 20

{0, 1, ∗}, which should be thought of as setting some of the inputs to f to {0, 1} values while
leaving other values (the ∗s) unset. If π is a restriction then vars(π) = π−1({0, 1}) is the set of
inputs restricted by π, and f�π : {0, 1}n−|vars(π)| → {0, 1} is the function obtained from f by
applying the restriction to the inputs of f .

If x, y ∈ {0, 1}n then x ≤ y if xi ≤ yi for all i and x < y if x ≤ y and x 6= y. A boolean
function f is monotone if x ≤ y implies that f(x) ≤ f(y) for all x, y. Fix a monotone boolean
function f . An input x ∈ {0, 1}n is a minterm of f if f(x) = 1 and f(x′) = 0 for all x′ < x.
Dually, an input y ∈ {0, 1}n is a maxterm if f(y) = 0 and f(y′) = 1 for all y′ > y. Let
M ⊆ f−1(1) be the set of all minterms of f ; it is clear that M forms an antichain (for all
distinct x, y ∈ M neither x ≥ y nor x ≤ y holds) in the poset ({0, 1}n ,≤). It is clear that the
set of minterms defines the function f ; this will be useful later so we record it as a proposition.

Proposition 2.1.1. Let f : {0, 1}n → {0, 1} be a monotone boolean function and let M be

the set of minterms of f . Let g : {0, 1}n → {0, 1} be a boolean function defined by g(x) = 1 if

and only if x ≥ y for some y ∈M. Then g = f .

Proof. Suppose otherwise, and let x be an input such that g(x) 6= f(x). Clearly x can not be
a minterm of f . If g(x) = 1 then there is a y ∈ M such that x ≥ y; since y is a minterm of
f and f is monotone it follows that f(x) = 1, a contradiction. On the other hand, if g(x) = 0

then f(x) = 1. Let y ≤ x be any minimal input such that f(y) = 1; clearly y is a minterm and
x ≥ y, contradicting that g(x) = 0.

A partial boolean function is a function f : {0, 1}n → {0, 1, ∗} (informally, if f(x) = ∗
then we “don’t care” what the output of the function is); a partial boolean function f is total

if range(f) = {0, 1}. A partial boolean function f : {0, 1}n → {0, 1, ∗} is monotone if it
can be extended to a total monotone boolean function by choosing {0, 1}-assignments for the
∗ outputs. A boolean circuit model (such as any circuit model considered in the introduction)
computes a partial boolean function f if it agrees with the {0, 1}-outputs of f .

Suppose f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} are boolean functions on variables
y1, y2, . . . , yn and z1, z2, . . . , zm, respectively. Let ρ : {y1, y2, . . . , yn} → {z1, z2, . . . , zm, 0, 1}
be a map from the variables of f to the variables of g and constants {0, 1}. Under such a
map ρ we can consider g(ρ(·)) as a function on the variables of f ; the mapping ρ is called a
monotone projection if g(ρ(y)) = f(y) for all y ∈ {0, 1}n. A monotone projection is one of
the simplest form of reducibility between functions: it says that we can “compute” f using g
just by relabelling variables and plugging in constants.

CHAPTER 2. PRELIMINARIES 21

2.2 Karchmer-Wigderson Games

Rather than study monotone circuit models directly, we instead study the following combina-
torial search problem introduced by Karchmer and Wigderson [37].

Definition 2.2.1. Let f : {0, 1}n → {0, 1, ∗} be a partial boolean function and let U =

f−1(1),V = f−1(0). The Karchmer-Wigderson game of f is the following search problem
KWf : given as input a pair (u, v) ∈ U × V , output an index i ∈ [n] such that ui 6= vi.

If f is monotone, then further define the monotone Karchmer-Wigderson game to be the
following search problem mKWf : given as input a pair (u, v) ∈ U ×V , output an index i ∈ [n]

such that ui = 1 and vi = 0.

Karchmer and Wigderson [37] introduced their games to apply tools from communication

complexity to problems in circuit complexity. As an example, let us consider solving KWf by
a deterministic communication protocol. There are two players, Alice and Bob; Alice receives
an input u ∈ U and Bob receives an input v ∈ V . Their goal is to agree on an index i ∈ [n]

such that ui 6= vi. In order to do this they are allowed to communicate bits to each other over a
communication channel. They meet before seeing their inputs and agree on a communication

protocol that will correctly solve the search problem on arbitrary inputs (u, v) ∈ U × V . The
(deterministic) communication complexity of mKWf is then the minimum number of bits which
must be communicated by Alice and Bob in any communication protocol that solves mKWf .
Karchmer and Wigderson [37] showed that this is exactly the same as the minimum depth of
any monotone circuit computing the function f .

Theorem 2.2.2. Let f be any partial boolean function. The deterministic communication com-

plexity of KWf is exactly D(f), and similarly the deterministic communication complexity of

mKWf is exactly mD(f).

Karchmer and Wigderson were then able to prove Ω(log2 n) bounds on the monotone
Karchmer-Wigderson game associated with the st-connectivity problem [37]; applying The-
orems 2.2.2 and 1.3.1 yields nΩ(logn) lower bounds on monotone formula size, as mentioned in
Section 1.3.

Karchmer-Wigderson games have become one of the central tools for studying circuit com-
plexity and, in particular, monotone circuit complexity — for instance, all of the lower bounds
on monotone formula size discussed at the end of Section 1.3 were proved by analyzing the
corresponding communication protocol. Researchers have discovered many other complex-
ity measures of Karchmer-Wigderson games that characterize the complexity of computing
boolean functions in other circuit models. Over the next several sections we will discuss sev-

CHAPTER 2. PRELIMINARIES 22

eral useful results and complexity measures of Karchmer-Wigderson games that will be studied
in this thesis.

2.3 Monotone Karchmer-Wigderson and Rectangle Covers

The monotone Karchmer-Wigderson game mKWf have a natural characterization in terms of
rectangle covers, and furthermore this seems to be the “right” level of abstraction in which to
study them.

Definition 2.3.1. Let f : {0, 1}n → {0, 1, ∗} be a partial monotone boolean function with
U = f−1(1) and V = f−1(0). For any input i ∈ [n] define the coordinate rectangle at i to be
Xi = {u ∈ U | ui = 1} × {v ∈ V | vi = 0} ⊆ U × V .

f−1(1)× f−1(0)f−1(1)

f−1(0)

X3

X1

X4

X2

f−1(1)

f−1(0)

Figure 2.1: A Monotone Karchmer-Wigderson Game as a Rectangle Covering

Two immediate observations about each coordinate rectangle Xi: first, Xi is the set of all
pairs of inputs (u, v) on which i ∈ [n] is a valid output in the monotone Karchmer-Wigderson
game; second, Xi is (trivially) a combinatorial rectangle in U × V . Since the mKWf game is
total (i.e. every input (u, v) ∈ [n] has a valid output), it follows that the collection of rectangles
{Xi}i∈[n] covers every entry in U × V . This suggests the following definition.

Definition 2.3.2. Let X ,Y be sets. A rectangle covering of X × Y is a collection R of com-
binatorial rectangles in X × Y such that every element (x, y) ∈ X × Y is contained in some
rectangle inR. The size of the rectangle covering is |R|.

As we have observed, if f is a monotone boolean function on n variables then the monotone
Karchmer-Wigderson game of f yields a natural rectangle covering of U ×V by the coordinate
rectangles of mKWf ; from now on we will sometimes abuse notation and use mKWf to refer

CHAPTER 2. PRELIMINARIES 23

both to the search problem and to the corresponding rectangle covering of U ×V by coordinate
rectangles. The main observation of this section is a converse: if X ,Y are sets and R is a
rectangle covering of X × Y by n rectangles, then there is a monotone boolean function f on
n variables such that mKWf is the same rectangle covering asR, up to renaming the elements
of X × Y . We can use this result to “forget” about working with fixed monotone boolean
functions and instead work with arbitrary rectangle coversR, which we can freely convert into
its corresponding monotone boolean function when needed. This proposition is, in some sense,
the key step which makes monotone Karchmer-Wigderson games easy to analyze compared to
their non-monotone counterparts.

Proposition 2.3.3 (Folklore, [25, 55]). Let X ,Y be sets and let R be a rectangle covering

of X × Y . Then there exists a partial monotone boolean function f on |R| variables such

that mKWf , viewed as a rectangle covering of f−1(1) × f−1(0), is equivalent to R up to the

relabelling.

Proof. Write R = {Ri}ni=1, where Ri = Si × Ti for each i ∈ [n]. For each x ∈ X define
A(x) ∈ {0, 1}n by setting A(x)i = 1 if x ∈ Si and A(x)i = 0 otherwise. Similarly, for each
y ∈ Y define B(y) ∈ {0, 1}n by setting B(y)i = 0 if y ∈ Ti and B(y)i = 1 otherwise. Now
define the partial monotone boolean function fR : {0, 1}n → {0, 1, ∗} as follows:

fR(z) =


1 if ∃x ∈ X : z = A(x)

0 if ∃y ∈ Y : z = B(y)

∗ otherwise.

By way of contradiction suppose that fR is not well defined and let (x, y) ∈ X × Y be a
pair of elements chosen so that A(x) = B(y). By construction, it follows that there does
not exist an i ∈ [n] such that (x, y) ∈ Ri, contradicting the fact that {Ri} is a rectangle
covering of R. Furthermore, it is clear from the construction that (x, y) ∈ Ri if and only if
(A(x), A(y), i) ∈ mKWf , and thus (A(x), B(y)) ∈ Xi.

2.4 Razborov’s Rank Measure

The central complexity measure studied in this thesis rank measure, introduced by Razborov
[55], which is an elegant and powerful measure for proving lower bounds on the monotone
complexity of boolean functions. Our main technical contribution is giving a clean analysis of
this measure.

CHAPTER 2. PRELIMINARIES 24

Definition 2.4.1. Let X ,Y be sets and let R be a rectangle covering of X × Y . Let F be any
field, and let A : X × Y → F be any matrix over F. The F-rank measure ofR at A is

µF(R, A) =
rank(A)

max
R∈R

rank(A�R)
.

The F-rank measure of R is µF(R) = maxA µF(R, A), the maximum value µF(R, A) can
take over matrices A over F.

So, for the purpose of proving bounds on the rank measure, we (“just”) need to find a matrix
A over some field F such that the rank ofA is large, but the rank ofA restricted to any rectangle
R ∈ R is small. In the same paper [55] in which he introduced the rank measure, Razborov
proved that log µF(mKWf) ≤ mD(f) by exploiting the Karchmer-Wigderson connection in
Theorem 2.2.2; using this he gave a simple example of a boolean function f computable in NP

such that µR(mKWf) ≥ nΩ(logn), implying Ω(log2 n) lower bounds on mD(f).
Gál later observed that the rank measure also lower bounds monotone span program size

[25] (see Theorem 2.5.3); plugging in Razborov’s lower bound from [55] immediately yielded
nΩ(logn) lower bounds for monotone span programs, improving what was then the state-of-the-
art. Since span programs can efficiently simulate formulas and switching networks, it follows
that the rank measure is a lower bound on these models as well. We now prove that the rank
measure is a lower bound on comparator circuit size, which is an original contribution of this
thesis.

Theorem 2.4.2. For any partial monotone boolean f and any field F we have

µF(mKWf) ≤ mCC(f).

Proof. Define a formal monotone complexity measure (cf. [35]) to be any function µ map-
ping monotone boolean functions to nonnegative reals satisfying the following axioms, for all
monotone boolean functions f, g and all coordinate functions xi:

max {µ(f ∧ g), µ(f ∨ g)} ≤ µ(f) + µ(g)

µ(xi) ≤ 1.

A simple example of a formal monotone complexity measure is monotone formula size mF(f);
furthermore, a simple induction shows that mF(f) is pointwise maximal amongst all monotone
complexity measures.

If µ satisfies the stronger axiom µ(f) +µ(g) ≥ µ(f ∧ g) +µ(f ∨ g) then µ is a submodular

complexity measure; Razborov proved that the rank measure µF is submodular.

CHAPTER 2. PRELIMINARIES 25

Theorem 2.4.3 (Theorem 1, [53]). The rank measure µF is a submodular complexity measure.

We prove that every submodular complexity measure lower bounds monotone compara-
tor circuit size. To do this, we introduce an intermediate notion (a multicomplexity measure)
which is easily seen to lower bound comparator circuit size. Then we show that submodular
complexity measures are multicomplexity measures.

Define a function ρ to be a multicomplexity measure if ρ maps sequences of Boolean func-
tions to nonnegative reals such that the following inequalities hold (note that all inequalities
below are quantified over all sequences of boolean functions and all t, when necessary):

∀i, j : ρ(f1, f2, . . . , fi, . . . , fj, . . . , ft) ≥ ρ(f1, f2, . . . , fi ∧ fj, . . . , fi ∨ fj, . . . , ft) (2.1)

ρ(f1, f2, . . . , ft) + ρ(ft+1, . . . , fm) ≥ ρ(f1, f2, . . . , ft, ft+1, . . . , fm) (2.2)

1 ≥ ρ(xi) (2.3)

ρ(f1, f2, . . . , ft−1, ft) ≥ ρ(f1, f2, . . . , ft−1) (2.4)

∀π ∈ Permutation(t), ρ(π(f1, f2, . . . , ft)) = ρ(f1, f2, . . . , ft) (2.5)

For any sequence of monotone boolean functions f1, f2, . . . , ft let mCC(f1, f2, . . . , ft) de-
note the number of wires in the smallest monotone comparator circuit computing f1, f2, . . . , ft

among its outputs.

Claim. Let f1, f2, . . . , ft be any sequence of monotone boolean functions and let ρ be a multi-
complexity measure. Then

ρ(f1, f2, . . . , ft) ≤ mCC(f1, f2, . . . , ft).

Proof of Claim. Let t be an arbitrary positive integer, and we prove the proposition by induc-
tion on s = mCC(f1, f2, . . . , ft). If s = mCC(f1, . . . , ft) = 1 then t = 1 and f1 is a variable,
and so the inequality follows from (2.3). So, suppose s > 1 and let C be a comparator circuit
witnessing mCC(f1, . . . , ft). We may assume that C has some nonzero number of compara-
tor gates, for if C has no comparator gates then each function in {f1, . . . , ft} is a variable
and the proposition follows from the inductive hypothesis and repeated applications of (2.2)
and (2.3). Let C ′ be the circuit obtained from C by removing (starting from the output) the
minimum number of comparator gates c1, c2, . . . , ct such that C ′ can be partitioned into two
disjoint comparator circuits C1, C2 with no comparator gates connecting C1 and C2. Clearly
s = |C1| + |C2|, and let g1, g2, . . . , gi be the functions output by C1 and gi+1, . . . , gs the func-

CHAPTER 2. PRELIMINARIES 26

tions output by C2. Applying the inductive hypothesis we have

s = |C1|+ |C2| ≥ ρ(g1, g2, . . . , gi) + ρ(gi+1, . . . , gs) ≥ ρ(g1, . . . , gs),

where we have applied (2.2). Now, apply rule (2.1) to the pairs of wires dictated by the
sequence of comparator gates ct, ct−1, . . . , c1, obtaining s ≥ ρ(g′1, g

′
2, . . . , g

′
s), and note that

{f1, . . . , ft} ⊆ {g′1, g′2, . . . , g′s}. Applying (2.4) finishes the proof.

Now, let µ(f) be any submodular complexity measure, and define ρ(f1, f2, . . . , ft) =∑
i µ(fi). We claim that ρ is a multicomplexity measure, from which µF(f) ≤ mCC(f)

immediately follows. Observe that equations (2.2), (2.3), (2.4), (2.5) easily follow from the
definition of ρ and the non-negativity of µ. To see that (2.1) holds we apply submodularity:

ρ(f1, f2, . . . , ft) = µ(f1) + · · ·+ µ(fi) + · · ·+ µ(fj) + · · ·+ µ(ft)

≥ µ(f1) + · · ·+ µ(fi ∧ fj) + · · ·+ µ(fi ∨ fj) + · · ·+ µ(ft)

= ρ(f1, f2, . . . , fi ∧ fj, . . . fi ∨ fj, . . . ft).

Thus, every submodular complexity measure lower bounds monotone comparator circuit size,
and applying Theorem 2.4.3 completes the proof.

The next theorem summarizes the relationships between the complexity measures consid-
ered so far.

Theorem 2.4.4. Let f be a partial monotone boolean function and let F be any field. Then

µF(mKWf) ≤ mSPANF(f) ≤ mS(f) ≤ mF(f),

and

µF(mKWf) ≤ mCC(f) ≤ mF(f).

Proof. In Chapter 1 we discussed the inequalities mSPANF(f) ≤ mS(f) ≤ mF(f) and
mCC(f) ≤ mF(f). We just proved that µF(f) ≤ mCC(f), and in the next section (Theorem
2.5.3) we prove µF(mKWf) ≤ mSPANF(f), which was originally shown by Gál [25].

2.5 Algebraic Tiling Number

The second complexity measure of mKWf that we consider is the algebraic tiling number,
introduced by Gál [25]. Just as deterministic communication complexity captures circuit depth,
the algebraic tiling number captures the size of span programs. Following the previous section,

CHAPTER 2. PRELIMINARIES 27

we will define algebraic tiling in terms of arbitrary rectangle covers R instead of monotone
boolean functions.

Recall that if A is a X × Y matrix and R is a combinatorial rectangle then A is embedded

in R if A only takes non-zero values inside R, i.e. A = A�R. The next definition1 is due to
Gál [25].

Definition 2.5.1. Let X ,Y be sets and letR = {Ri}ni=1 be a rectangle covering of X ×Y . Let
F be any field. An F-algebraic tiling of R is a set of X × Y matrices A1, A2, . . . , An over F
such that

∑n
i=1Ai = 1 and Ai is embedded in Ri for each i. The size of the algebraic tiling is∑n

i=1 rankF(Ai), and the F-algebraic tiling number of R is the minimum size χF(R) of any
F-algebraic tiling ofR.

Theorem 2.5.2 (Theorem 3.4 in [25]). For any partial monotone boolean function f and any

field F, mSPANF(f) = χF(mKWf).

With the definition of algebraic tiling in hand, it is easy to see that Razborov’s rank measure
is a lower bound on monotone span program size. As usual, we will state it in terms of rectangle
coverings.

Theorem 2.5.3 (Lemma 3.2 in [25]). Let X ,Y be sets and let R be a rectangle covering of

X × Y . For any field F we have µF(R) ≤ χF(R).

Proof. WriteR = {Ri}ni=1. LetA be anyX×Y matrix and letB1, B2, . . . , Bn be any algebraic
tiling ofR. We show µF(R, A) ≤

∑n
i=1 rank(Bi), which implies the theorem.

Let 1 denote the X × Y all-1s matrix, and for two matrices X, Y let X ∗ Y denote
their Hadamard (i.e. entrywise) product. The definition of an algebraic tiling states that 1 =∑n

i=1Bi. Since Bi is embedded in Ri we have Bi = Bi�Ri = Bi ∗ (1�Ri); using this fact and
taking Hadamard products with A yields

A =
n∑
i=1

A ∗Bi ∗ (1�Ri) =
n∑
i=1

(A ∗ (1�Ri)) ∗Bi =
n∑
i=1

(A�Ri) ∗Bi.

Taking ranks, and noting that rank is sub-additive and sub-multiplicative with respect to Hadamard
products, we get

rank(A) ≤
n∑
i=1

rank(A�Ri) rank(Bi) ≤ max
i∈[n]

rank(A�Ri)
n∑
i=1

rank(Bi).

1Our definition is slightly modified from the one in [25]. There, an algebraic tiling consists of a set of rank-1
matrices A1, ..., At such that each Ai is embedded in some R ∈ R, and the size of the tiling is t. Our definition
is easily seen to be equivalent by taking a rank-1 decomposition of the matrices in each rectangle.

CHAPTER 2. PRELIMINARIES 28

Dividing through by max
i∈[n]

rank(A�Ri) yields the theorem.

Chapter 3

Pattern Matrices and the Rank Measure

Let us now briefly stop and take stock. In the previous chapter, we introduced the Karchmer-

Wigderson games, which provide a framework in the setting of communication complexity for
studying complexity lower bounds in these models. We discussed two complexity measures of
Karchmer-Wigderson games: first, the rank measure, due to Razborov, provides lower bounds
on nearly every circuit model that we have considered; second, the algebraic tiling number, due
to Gál, characterizes the size of span programs. The main technical goal is to analyze the rank
measure and the algebraic tiling number; this task will be made much easier (conceptually, at
least) by considering arbitrary rectangle covers R instead of the Karchmer-Wigderson games
associated with fixed monotone boolean functions.

The main difficulty in analyzing the rank measure µF(R) is obvious: how do we define a
matrix A such that rank(A) is large while rank(A�R) is small for every rectangle R ∈ R? Our
approach is to restrict A to be a special type of matrix generated by a multilinear polynomial
called a pattern matrix. In this chapter we define pattern matrices and show how we can exploit
their structure to bound the rank measure. Then, as a warmup, we will prove a simple version
of our main theorem for the real rank measure µR(R).

3.1 Multilinear Polynomials and Pattern Matrices

Recall a polynomial p ∈ F[z1, z2, . . . zn] is multilinear if the maximum degree of each variable
zi in p is 1. If p is multilinear, it follows that all terms in p are products of variables

∏
i∈S zi for

some S ⊆ [n], and thus it has at most 2n distinct monomials. Given a multilinear polynomial
p, we will borrow notation from Fourier analysis and let p̂(S) ∈ F denote the coefficient of the
monomial

∏
i∈S zi in p, allowing us to write

p =
∑
S⊆[n]

p̂(S)
∏
i∈S

zi.

29

CHAPTER 3. PATTERN MATRICES AND THE RANK MEASURE 30

Finally, if π : [n] → F ∪ {∗} is a partial restriction of the variables of p, then let p�π denote
the polynomial over the unrestricted variables of π obtained from p in the natural way.

Definition 3.1.1. Let F be a field and let p ∈ F[z1, z2, . . . , zn] be a multilinear polynomial over
F. Let X ,Y be sets and let g : X ×Y → F be any function. The pattern matrix obtained from
p and g is the matrix p◦gn : X n×Yn → F defined by composing p with n independent copies
of g. Formally, for any (x, y) ∈ X n × Yn let

(p ◦ gn)(x, y) =
∑
S⊆[n]

p̂(S)
∏
i∈S

g(xi, yi).

Following the literature, we will refer to the function g used in the construction above as a
gadget.

Pattern matrices were introduced by Sherstov [61] in the special case where p is a real
multilinear polynomial and g was chosen to be a particular gadget gλ; using these pattern
matrices he was able to prove strong lower bounds on quantum communication complexity. A
particular result from [61] that is useful to us is a characterization of the rank of real pattern
matrices generated by gλ.

Theorem 3.1.2 (Corollary of Theorem 4.3 in [61]). Let p ∈ R[z1, z2, . . . , zn] be a real multi-

linear polynomial. For every positive integer λ there exists a gadget gλ : ([λ] × {−1, 1}) ×
{−1, 1}λ → {−1, 1} such that

rankR(p ◦ gn) =
∑

S:p̂(S)6=0

λ|S|.

In a later chapter (cf. Section 5.1) we prove a strong generalization of this theorem that
works for arbitrary fields and for any g satisfying a certain generic property.

Our plan for this chapter is to use pattern matrices to lower bound µR(R) for some special
rectangle coveringR via Theorem 3.1.2. By definition, the real rank measure ofR at a pattern
matrix p ◦ gn is

µR(R, p ◦ gn) =
rankR(p ◦ gn)

max
R∈R

rankR((p ◦ gn)�R)
.

Using Theorem 3.1.2 we can calculate the numerator, but how do we bound rankR((p◦ gn)�R)

for any R ∈ R? Our approach is simple: we will define the rectangle covering R so that
(p ◦ gn)�R is also a pattern matrix for every rectangle R. This will allow us to apply Theorem
3.1.2 again to calculate the denominator!

How can we define a rectangle cover to satisfy this property? In a word, we will choose
the rectangle cover R so that the rectangles in the cover correspond to restrictions of the

CHAPTER 3. PATTERN MATRICES AND THE RANK MEASURE 31

polynomial. This is best illustrated by a simple example. Let p ∈ R[z1, z2, . . . , zn], and let
t ≤ n. For each i ∈ [t], fix x∗i ∈ X and y∗i ∈ Y , and consider the combinatorial rectangle

R = {x ∈ X n | ∀i ≤ t : xi = x∗i } × {y ∈ Yn | ∀i ≤ t : yi = y∗i }

by restricting the first t coordinates of x, y to x∗i , y
∗
i , respectively. Finally, let

π = (g(x∗1, y
∗
1), g(x∗2, y

∗
2), . . . , g(x∗t , y

∗
t))

be the tuple of values obtained by evaluating g at the (x∗i , y
∗
i) pairs. By definition, for all

(x, y) ∈ R we have gn(x, y) = πg(xt+1, yt+1) · · · g(xn, yn); in words, for every assign-
ment (x, y) in the rectangle the first t inputs always evaluate to π. This means we can write
(p ◦ gn)�R = (p�π) ◦ gn−t; the second expression is clearly a pattern matrix of the restricted
polynomial p�π on a subset of the input variables to p. (Our actual construction will be more
involved, but this is the key idea.)

In the next section, we give a generic way to construct such special rectangle covers using
unsatisfiable CNF search problems. We then prove the main theorem of this chapter, which
reduces the problem of lower-bounding the rank measure to bounding a different quantity on
polynomials that we call the algebraic gap complexity (albeit, only for real pattern matrices
due to the use of Theorem 3.1.2). Peeking forward: in the next chapter we will see that the
algebraic gap complexity is exactly the same as the classical Nullstellensatz degree; ultimately
this will allow us to transfer Nullstellensatz degree lower bounds (which are abundant in the
literature, e.g [6, 13, 15, 17]) to lower bounds on the rank measure.

3.2 CNF-Search Problems and Canonical Rectangle Covers

In this section we show how to construct the “special” rectangle covers for which we prove rank
measure lower bounds. These covers have been implicitly used in other works, e.g. [28,45,49].
The starting point is the following search problem associated with unsatisfiable CNF formulas.

Definition 3.2.1. Let C =
∧m
i=1Ci be an unsatisfiable boolean formula on n variables in con-

junctive normal form (CNF). The CNF-Search problem for C, denoted Search(C), is defined
as follows: given an assignment x ∈ {0, 1}n to the variables of C, output any clause Ci that is
falsified by x.

Since C is unsatisfiable the search problem Search(C) is total: for every input x some
clause will be falsified. Using Search(C) and any gadget g : X ×Y → {0, 1} we can construct

CHAPTER 3. PATTERN MATRICES AND THE RANK MEASURE 32

a rectangle cover R of X n × Yn by exploiting this totality. We record this construction in the
next definition.

Definition 3.2.2. Let C be an unsatisfiable CNF on n boolean variables and let g : X × Y →
{0, 1} be any gadget. The canonical rectangle cover RC,g of C and g is defined as follows. For
every clause C ∈ C and every assignment α ∈ X vars(C) define the rectangle

RC,α =
{

(x, y) ∈ X n × Yn | xvars(C) = α and gn(x, y) falsifies C
}

=
{
x ∈ X n | xvars(C) = α

}
×
{
y ∈ Yn | gvars(C)(α, yvars(C)) falsifies C

}
and setRC,g =

{
RC,α | C ∈ C, α ∈ X vars(C)

}
.

The definition of the canonical rectangle cover is rather technical, so let us pull it apart
in steps. Given the search problem Search(C), one can consider the following natural search
problem Search(C, g) ⊆ X n × Yn × C obtained by replacing each variable zi in Search(C)
with g(xi, yi) for fresh variables (xi, yi): then, given (x, y) ∈ X n × Yn the goal is to evaluate
Search(C) on the string z = gn(x, y). This search problem is total since Search(C) is, and so
we can try and exploit this totality to get a rectangle covering of X n × Yn. A natural first
attempt is to consider, for each clause C ∈ C, the set

RC =
{

(x, y) ∈ X n × Yn | gvars(C)(xvars(C), yvars(C)) falsifies C
}
.

Since C is unsatisfiable it follows that {RC} covers all inputs in X n × Yn; however RC may
not in general be a combinatorial rectangle. The definition of the canonical cover fixes this
by “breaking up” each of the sets RC into rectangles by ranging over all fixed assignments to
xvars(C). This is roughly depicted in Figure 3.1.

X n

Yn

RC

X n

Yn

α1

α2

α3

α4

α5

α6

α7

Figure 3.1: Construction ofRC,g.

CHAPTER 3. PATTERN MATRICES AND THE RANK MEASURE 33

Each set RC is thus replaced with at most |X |k rectangles, where k is the width of the
widest clause in C. Recalling how we transform rectangle covers into monotone boolean func-
tions (cf. Proposition 2.3.3), the size of the cover is exactly the number of input variables of
the resulting boolean function — so, we will able to afford the blow-up as long as |X |k is
polynomially bounded. We record this bound on the size of the canonical cover in the next
proposition.

Proposition 3.2.3. Let F be any field. Let C be a width-k unsatisfiable CNF and let g : X ×
Y → {0, 1}. Then |RC,g| ≤ |C||X |k.

Proof. The bound on the size of RC,g follows immediately from the definition since there are
|C| clauses and each clause has at most k variables.

3.3 Lifting Algebraic Gaps to Razborov’s Rank Measure (Real Case)

In this section we bring the results of this chapter together and analyze µR(RC,g). To be precise,
we will not be directly lower bounding µR(RC,g) with the technology we have introduced;
rather, the main theorem reduces the problem of lower bounding µR(RC,g) to lower bounding
a quantity on unsatisfiable CNFs that we call the algebraic gap complexity, introduced next.
(We remark that the next definition is a special case of a more general definition given in the
next chapter (cf. Section 4.2).)

Definition 3.3.1. Let C be an unsatisfiable CNF on n variables, and for each clause C define
the restriction πC : [n]→ {−1, 1, ∗} to be a {−1, 1} restriction to the variables of C by

πC(zi) :=


−1 zi is true in any falsifying assignment of C

1 zi is false in any falsifying assignment of C

∗ otherwise.

The real algebraic gap complexity of C is the largest integer gapR(C) ∈ Z for which there
exists a real multilinear polynomial p ∈ R[z1, z2, . . . , zn] such that

deg(p) = n and ∀C ∈ C : deg(p�πC) ≤ n− gapR(C).

We note that we only use {−1, 1} restrictions here since we will be using Sherstov’s gadget
gλ from Theorem 3.1.2 which outputs {−1, 1} values; we can convert a {−1, 1} assignment to
a {0, 1} assignment using the mapping zi 7→ (1− zi)/2.

There is an obvious analogy between the algebraic gap complexity and the rank measure: in
the rank measure we seek to find a high-rank matrix A such that rank(A�R) is small for every

CHAPTER 3. PATTERN MATRICES AND THE RANK MEASURE 34

rectangleR; similarly, in the algebraic gap complexity we seek to find a multilinear polynomial
p such that deg(p) is large and deg(p�πC) is small for every restriction πC . The main theorem
of this chapter is a reduction from the real rank measure to the real algebraic gap complexity.

Theorem 3.3.2. Let n, k be positive integers and let C be an unsatisfiable k-CNF on n vari-

ables. There exists a gadget g : X × Y → {−1, 1} with |X | = 2n2 such that

µR(RC,g) ≥ Ω(ngapR(C)).

Proof. Choose the gadget g = gλ from Theorem 3.1.2 where λ = n2. Let p ∈ R[z1, z2, . . . , zn]

be the polynomial witnessing the algebraic gap complexity gapR(C), and let A = p ◦ gn be the
pattern matrix obtained by composing p and g. We prove

µR(RC,g, A) =
rankR(A)

max
R∈RC,g

rankR(A�R)
≥ Ω(ngapR(C)).

Applying Theorem 3.1.2 we have

rankR(A) =
∑

S:p̂(S) 6=0

λ|S| =
∑

S:p̂(S)6=0

n2|S| ≥ n2n

since deg p = n by the definition of gapR(C). For the denominator, let RC,α be an arbitrary
rectangle from the coverRC,g. We claim that

rankR(A�RC,α) =
∑

S:p̂�π(S)6=0

n2|S|, (3.1)

To see Equation 3.1, we claim that the matrix A�RC,α is column-equivalent to the block matrix

[(p�π) ◦ g[n]\vars(C), (p�π) ◦ g[n]\vars(C), . . . , (p�π) ◦ g[n]\vars(C)]

for some number of copies of the matrix (p�π) ◦ g[n]\vars(C). Equation 3.1 immediately follows
from the claim as

rankR(A�RC,α) = rankR((p�π) ◦ g[n]\vars(C)) =
∑

S:p̂�π(S) 6=0

n2|S|

by Theorem 3.1.2. So let us prove the claim.

By the definition, for all (x, y) ∈ RC,α we have that gvars(C)(xvars(C), yvars(C)) = π and
xvars(π) = α . Let us first fix any assignment β to yvars(C) so that gvars(C)(α, β) = π. Then for

CHAPTER 3. PATTERN MATRICES AND THE RANK MEASURE 35

all (x, y) ∈ RC,α such that yvars(C) = β we have

gn(x, y) = gvars(C)(α, β)g[n]\vars(C)(x[n]\vars(C), y[n]\vars(C))

= πg[n]\vars(C)(x[n]\vars(C), y[n]\vars(C)),

and so ranging x[n]\vars(C), y[n]\vars(C) over all values yields the matrix (p�π) ◦ g[n]\vars(C). Then,
ranging yvars(C) over all β such that gvars(C)(α, β) = π yields the claim and Equation 3.1.

Applying Equation 3.1, we have

µR(RC,g, A) =

∑
S:p̂(S)6=0

n2|S|

max
RC,α∈RC,g

∑
S:p̂�π(S)6=0

n2|S|
≥ n2n

max
RC,α∈R(C,g)

∑
S:p̂�π(S)6=0

n2|S|

where the inequality follows since deg p = n. Since p witnesses the algebraic gap of C, we
have that deg p�π ≤ n − gapR(C) for all π. We may clearly assume that p̂(S) = 0 when
|S| < n− gapR(C), so, for any π:

∑
S:p̂�π(S)6=0

n2|S| ≤
k∑
i=0

(
n

gapR(C)− i

)
n2(n−gapR(C)−i)

≤
k∑
i=0

(
en

gapR(C)− i

)gapR(C)−i

n2(n−gapR(C)−i)

=
k∑
i=0

(
e

gapR(C)− i

)gapR(C)−i

n2n−gapR(C)−i

≤ n2n−gapR(C)
k∑
i=0

(
e

gapR(C)− i

)gapR(C)−i

≤ 6n2n−gapR(C)

since e+ (e/2)2 + (e/3)3 + · · · ≤ 6. Putting it all together, we get

µR(RC,g, A) ≥ n2n

6n2n−gapR(C) = cngapR(C)

where c = 1/6, proving the theorem.

Now it remains to prove lower bounds on gapR(C) for some unsatisfiable CNF C in order
to obtain lower bounds on the rank measure. We will attack this in the next chapter.

Chapter 4

Algebraic Gaps and Nullstellensatz

Now that we have seen a “warmup” version of our lifting theorem in Theorem 3.3.2, in this
chapter we investigate the algebraic gap complexity. Ultimately, we will show that algebraic
gaps are exactly the same as the Nullstellensatz degree in proof complexity. This will allow
us to appeal to the broad set of Nullstellensatz lower bounds in the literature to obtain lower
bounds on the rank measure.

4.1 Nullstellensatz Refutations

We begin by reviewing the Nullstellensatz proof system [6].

Definition 4.1.1. Let F be a field, and let P = {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfi-
able system of polynomial equations in F[z1, z2, . . . , zn]. A Nullstellensatz refutation of P is a
sequence of polynomials q1, q2, . . . , qm ∈ F[z1, z2, . . . , zn] such that

∑m
i=1 piqi = 1 where the

equality is syntactic. The degree of the refutation is maxi deg(piqi); the Nullstellensatz degree

of P , denoted NSF(P), is the minimum degree of any Nullstellensatz refutation of P .

It is fruitful to compare this definition with Definition 2.5.1: Nullstellensatz degree is the
analogue of the algebraic tiling number for polynomials.

The name “Nullstellensatz” comes from Hilbert’s Nullstellensatz, which is a central theo-
rem in modern algebraic geometry that links the zeros of a system of polynomials (varieties)
to polynomials that are derivable from the system (ideals). In computational complexity (and,
more specifically, propositional proof complexity), the Nullstellensatz proof system is the pro-
totypical example of an algebraic proof system for refuting propositional contradictions [6]. Of
course, in order to refute propositional contradictions we first need to discuss how to encode

propositional formulas into systems of polynomials; we do this next.
Let C = C1 ∧ C2 ∧ · · · ∧ Cm be an unsatisfiable CNF formula over boolean variables

z1, z2, . . . , zn. We introduce a standard encoding of each clause Ci as a polynomial equation.

36

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 37

If C is a clause then let C+ denote the set of variables occurring positively in C and C−

denote the set of variables occurring negatively in C; with this notation we can write C =∨
z∈C+ z ∨

∨
z∈C− z. From C define the polynomial

E(C) ≡
∏
z∈C+

(1− z)
∏
z∈C−

z,

and observe that E(C) = 0 is satisfied (over 0/1 assignments to zi) if and only if the cor-
responding assignment satisfies C. We abuse notation and let E(C) = {E(C) | C ∈ C} ∪
{z2

i − zi}i∈[m] , and note that the second set of polynomial equations restricts the zi inputs to
{0, 1} values.

Definition 4.1.2. Let C be an unsatisfiable CNF formula and let F be a field. The F-Nullstellensatz

degree of C, denoted NSF(C), is the Nullstellensatz degree of refuting E(C).

How do we know that a Nullstellensatz refutation always exists? One can deduce this from
Hilbert’s Nullstellensatz, but, for our purposes, we will use a simple version of it proved by
Buss et al. [16].

Theorem 4.1.3 (Theorem 5.2 in [16]). Let F be any field and let P be any system of polyno-

mial equations over F[z1, . . . , zn] with no {0, 1} solutions. Then there exists a Nullstellensatz

refutation of P ∪ {z2
i − zi = 0}i∈[n].

In proof complexity the Nullstellensatz proof system has been extensively studied (e.g. [6,
14–17]) and we now have very strong lower bounds on the Nullstellensatz degree for a variety
of unsatisfiable systems of polynomial equations.

4.2 Algebraic Gaps: A General Definition

We will now give a general definition of algebraic gaps over arbitrary fields. For technical
convenience, we first introduce the notion of a certificate of an unsatisfiable CNF formula.

Definition 4.2.1. Let C be an unsatisfiable boolean formula on n variables in conjunctive nor-
mal form (CNF), and letC be a clause in C. The certificate ofC, denoted Cert(C), is the partial
assignment π : [n] → {0, 1, ∗} which falsifies C and sets the maximal number of variables to
∗s. Let Cert(C) denote the set of all certificates of clauses of C.

Say that an assignment z ∈ {0, 1}n agrees with a certificate π ∈ Cert(C) if π(i) = zi for
each i assigned to a {0, 1} value by π. Since the CNF formula C is unsatisfiable, it follows
that every assignment in z ∈ {0, 1}n agrees with some {0, 1}-certificate of C (in this sense,
certificates are quite similar to rectangle covers).

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 38

Definition 4.2.2. Let F be a field. Let C be an unsatisfiable CNF on n variables. The F-

algebraic gap complexity of C is the maximum positive integer gapF(C) ∈ N for which there
exists a multilinear polynomial p ∈ F[z1, z2, . . . , zn] such that

deg(p) = n and ∀π ∈ Cert(C) : deg(p�π) ≤ n− gapF(C).

The above definition of the gap complexity generalizes the definition of the real algebraic
gap complexity from Definition 3.3.1 to all fields — observe that the notion of a “certificate”
captures the partial assignments used in the earlier definition. For a simple example, consider
the following unsatisfiable CNF formula:

C = z1 ∧ z2 ∧ · · · ∧ zn ∧

∨
i∈[n]

zi


which asserts that every zi must be false and that some zi must be true. For each of the first n
clauses the corresponding certificate sets zi = 1 and does not set any other variable, and the
certificate for the final clause sets all variables to 0. What is the real algebraic gap complexity
gapR of C? An auspicious choice is a polynomial encoding of the OR function ORn, which
outputs 1 if one of its inputs is 1. It is well known that degR(ORn) = n; furthermore, if we
restrict any input variable to 1 or all inputs to 0 then ORn simplifies to a constant, and thus
its degree is 0. This implies that gapR(ORn) = n — the upper bound is trivial, and the lower
bound follows by the previous argument.

As alluded to earlier, one can think of algebraic gaps as a “polynomial analogue” of
Razborov’s rank measure µF. If we similarly think of Nullstellensatz refutations as a “polyno-
mial analogue” of the algebraic tiling number χF, then Theorem 2.5.3 (which states µF(R) ≤
χF(R)) suggests that gapF(C) ≤ NSF(C). We now prove that this is indeed the case. This
is obtained by mimicking the proof of Theorem 2.5.3, where rank is replaced by degree and
Hadamard products are replaced with polynomial multiplication.

Theorem 4.2.3. For any unsatisfiable CNF formula C and any field F, gapF(C) ≤ NSF(C).

Proof. Let n be the number of variables of C and let p ∈ F[z1, . . . , zn] be the multilinear poly-
nomial witnessing the algebraic gap of C. Given a polynomial q ∈ F[z1, . . . , zn] let degmult(q)

denote the multilinear degree of q (i.e. the degree of the polynomial resulting from q by re-
placing every term of the form zki with zi in q). For any polynomial q it clearly holds that
degmult(q) ≤ deg(q), with equality holding when q is multilinear.

Write C =
∧m
i=1Ci for clauses Ci, and consider any minimum-degree Nullstellensatz refu-

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 39

tation of E(C), which we write as

1 =
m∑
i=1

E(Ci)qi +
n∑
j=1

rj(z
2
j − zj)

for polynomials qi, rj ∈ F[z1, . . . , zn]. Multiplying through by p and taking multilinear degrees
of both sides we get

degmult(p) = max {degmult(pE(Ci)qi)}i∈[m] ∪
{

degmult(prj(z
2
j − zj))

}
j∈[n]

= max {degmult(pE(Ci)qi)}i∈[m]

where the second equality follows since degmult(prj(z
2
j − zj)) = degmult(0) = 0.

Now, for every {0, 1}-assignment z∗, either E(Ci) evaluates to 0 (in which case the clause
is satisfied) or E(Ci) evaluates to 1, if z∗ is consistent with the certificate πi = Cert(Ci). It
follows that for all z∗ ∈ {0, 1}n and all i we have (pE(Ci)qi)(z

∗) = ((p�πi)E(Ci)qi)(z
∗), and

thus degmult(pE(Ci)qi) = degmult((p�πi)E(Ci)qi)). Extracting the maximum over certificates,
we obtain

degmult(p) ≤ max
π∈Cert(C)

degmult(p�π) + max {degmult(E(Ci)qi)}i∈[m] .

Since degmult(p) = deg(p) and degmult(E(Ci)qi) ≤ deg(E(Ci)qi)), we have

gapF(C) = deg(p)− max
π∈Cert(C)

deg(p�π)

= degmult(p)− max
π∈Cert(C)

degmult(p�π)

≤ max {degmult(E(Ci)qi)}i∈[m]

≤ max {deg(E(Ci)qi)}i∈[m] ≤ NSF(C).

In the remainder of the chapter we show that algebraic gaps and Nullstellensatz degree are
actually the same. This is quite surprising, as it seems unlikely that the rank measure is the
same as the algebraic tiling number.

4.3 Algebraic Gaps = Nullstellensatz (Characteristic 2 Case)

Our goal in the remainder of the chapter is to prove an upper bound version of Theorem 4.2.3,
showing that algebraic gaps and Nullstellensatz degree are the same measure.

Theorem 4.3.1. For any unsatisfiable CNF C and any field F, gapF(C) = NSF(C).

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 40

In this section we study the characteristic 2 case, as it is a bit simpler and illustrates the
main idea. We crucially use the following dual characterization of Nullstellensatz degree by
d-designs [14, 17].

Definition 4.3.2. Let F be a field, and let P be an unsatisfiable system of polynomial equations
over F[z1, z2, . . . , zn]. A d-design for P is a linear functional D on the space of polynomials
satisfying the following axioms:

1. D(1) = 1.

2. For all p ∈ P and all polynomials q such that deg(pq) ≤ d, we have D(pq) = 0.

It is known (see, for example, [14]) that the system P does not have a Nullstellensatz
refutation of degree d if and only if it has a d-design, and thus every unsatisfiable system of
polynomial equations P has an (NS(P)− 1)-design.

Before we begin, we will need the following easy lemma regarding the dual of a CNF. Let
C be an unsatisfiable CNF. For any clause C ∈ C let C† denote the clause obtained by negating
every literal in C (so, z is replaced with ¬z and ¬z is replaced with z). Let C† be the CNF
obtained from C by replacing each clause in C with its dual, and note that C† is unsatisfiable if
and only if C is unsatisfiable.

Lemma 4.3.3. For any field F, NSF(C) = NSF(C†).

Proof. Let C = {C1, C2, . . . , Cm} be an unsatisfiable CNF over variables z1, z2, . . . , zn. We
prove NSF(E(C)) = NSF(E(C†)). It will be convenient to consider the following alternative
encoding of CNFs C as a system of polynomial equations. For each variable zi introduce two
variables, denoted zi and zi, along with the axioms

∀i : zi(1− zi) = 0, zi + zi = 1

which enforce that zi = 1 − zi and zi, zi ∈ {0, 1} (this encoding is typically used in the
“polynomial calculus with resolution”, or PCR, proof system [2]). Then encode each clause Ci
as

E�(Ci) =
∏
j∈C+

i

zj
∏
j∈C−i

zj,

which yields an encoding of C in F[z1, z1, z2, z2, . . . , zn, zn]. We show that NSF(E(C)) =

NSF(E�(C)) and then that NSF(E�(C)) = NSF(E�(C†)).

First observe that NSF(E(C)) ≤ NSF(E�(C)) is easy: in the refutation of E�(C) replace
every literal zi with 1− zi. So, we focus on proving NSF(E�(C)) ≤ NSF(E(C)).

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 41

Suppose we have a Nullstellensatz refutation of E(C), and we construct a Nullstellensatz
refutation of E�(C) of the same degree. For this, it suffices to show that there is a low degree
proof of E(C) from E�(C) for each clause C ∈ C. Write E�(C) as

∏
i∈C+ zi

∏
i∈C− zi, and we

use the axioms zj + zj − 1 = 0 for each j ∈ C+ to derive E(C). To do this, multiply the axiom
by −

∏
i∈C− zi, yielding

−
∏
i∈C−

zi(zj + zj − 1) = (1− zj)
∏
i∈C−

zi − zj
∏
i∈C−

zi.

Doing this for each i ∈ C+ and factoring yields∏
j∈C+

(1− zj)
∏
j∈C−

zi −
∏
j∈C+

zj
∏
j∈C−

zi

which yields E(C) (over zi variables) after adding E�(C). Performing this multiplication for
each C ∈ C yields E(C), and it is easy to see that the degree is less than the degree of E(C).

Now let us prove E�(C) = E�(C†). Observe that if
∑

C∈C E�(C)qi = 1 is a Nullstellensatz
refutation of E�(C) then

∑
C∈C E�(C†)q†i = 1 is a Nullstellensatz refutation of C†, where q†i

is the polynomial obtained from qi by exchanging the variables zi and zi for each i ∈ [n] and
b ∈ {0, 1}. This shows that NSF(E�(C)) = NSF(E�(C†)), and thus NSF(C) = NSF(C†).

We can now prove the upper bound for characteristic 2.

Lemma 4.3.4. For any field F of characteristic 2 and any unsatisfiable CNF formula C,

gap(E(C)) ≥ NSF(C).

Proof. We argue that from any d-design for E(C†) we can construct a polynomial p witnessing
an algebraic gap of d+ 1. By Lemma 4.3.3, E(C†) has an (NSF(C)− 1)-design, so the lemma
follows.

Let D be a d-design for E(C†). For any S ⊆ [n] we let zS denote the monomial
∏

i∈S zi,
and thus z∅ = 1. The polynomial p is defined by its coefficients: for each S ⊆ [n] let p̂(S) =

D(x[n]\S). This immediately implies that deg p = n since p̂([n]) = D(1) = 1 so we focus on
proving that

∀π ∈ Cert(C) : deg(p�π) ≤ n− (d+ 1).

We begin by giving an equivalent description of the previous constraint. Let S ⊆ [n] \
π−1({0, 1}) be any subset of indices, and consider the equation

0 =
∑

T⊆π−1(1)

p̂(S ∪ T). (4.1)

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 42

We claim that if Equation 4.1 is satisfied for every certificate π ∈ vars(C) and every S ⊆ [n] \
π−1({0, 1}) with |S| ≥ n−d then pwitnesses an algebraic gap of d+1. To see this, let T ⊆ [n]

be arbitrarily chosen, and observe that after restricting the monomial zT with π we either obtain
0, if T ∩ π−1(0) 6= ∅, or zT\π−1(1) otherwise. Thus, in order for deg(p�π) ≤ n − (d + 1) all
monomials of degree at least n− d that remain after restricting by π must cancel; this happens
if and only if Equation 4.1 holds. By definition of the coefficients of p we must therefore verify
that

0 =
∑

T⊆π−1(1)

D(z[n]\S∪T)

Letting U = [n] \ S ∪ π−1({0, 1}) we can re-write this equation as

0 =
∑

T⊆π−1(1)

D(zUzπ−1(0)zT).

Since π is a certificate of a clause C ∈ C, we have π−1(1) = C− and π−1(0) = C+ since the
certificate falsifies C. By the linearity of D we can thus rewrite the previous equation as

0 = D

zUzC+

∑
T⊆C−

zT


= D(zUE(C†)),

where the last equation follows from the definition of E(C†) over characteristic 2:

E(C†) =
∏
i∈C+

zi
∏
i∈C−

(1− zi) =
∏
i∈C+

zi
∏
i∈C−

(1 + zi) = zC+

∑
T⊆C−

zT . (4.2)

Since |S| ≥ n − d and U = [n] \ S ∪ vars(C) we have that |U ∪ vars(C)| ≤ d, and
so deg(zUE(C†)) ≤ d, implying that D(zUE(C†)) = 0 by the design property, and we have
shown that gapF(C) ≥ d+ 1. The lemma follows.

It is natural to ask what goes wrong in the previous proof when the characteristic is not 2.
In Equation 4.2 we can no longer replace (1− zi) with (1 + zi), and so we obtain

E(C†) =
∏
i∈C+

zi
∏
j∈C−

(1− zj) = zC+

∑
T⊆C−

(−1)|T |zT

 ,

and the alternating factor (−1)|T | prevents us from being able to apply the design property. In
the next section we resolve this problem by a change of basis.

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 43

4.4 Algebraic Gaps = Nullstellensatz (General Case)

As discussed in the prequel, the main obstruction to proving the equivalence between algebraic
gaps and Nullstellensatz degree over arbitrary fields is an “alternation” that occurs. We will
resolve this problem by changing to the Fourier basis — which is a fancy way of saying that we
move from {0, 1} assignments to {−1, 1} assignments via the affine transformation z 7→ 1−2z.

Given a clause C, define the polynomial

E∗(C) =
∏
i∈C+

(1 + zi)
∏
i∈C−

(1− zi).

This is obtained from applying the affine transformation (1− zi)/2 to E(C) and discarding the
powers of 2 — observe that if we think of −1 as “True” and 1 as “False” then E∗(C) = 0 if
and only if the clause C is satisfied. (Clearly this transformation is only useful when the char-
acteristic is different from 2.) Define E∗(C) = {E∗(C)}C∈C ∪ {z2

i − 1}i∈[n] for an unsatisfiable
CNF C. Let NS∗F(C) denote the Nullstellensatz degree required to refute the system E∗(C),
and it is easy to see that NS∗F(C) = NSF(C) (just replace every variable zi with (1 − zi)/2, or
symmetrically replace zi with 1− 2zi).

Similarly, we define gap∗F(C) to be the same as gapF(C) except with respect to {−1, 1}
restrictions. Formally speaking, for each certificate π ∈ Cert(C) one can apply the transfor-
mation 1 − 2zi to each coordinate of π, obtaining a {−1, 1} restriction. (Observe that our
initial definition of algebraic gaps from Section 4.2 was gap∗R(C) rather than gapR(C).) Once
again, it is not hard to see that gap∗F(C) = gapF(C): given a polynomial p witnessing gapF(C)
simply replace every variable zi with (1 − zi)/2, and since the degree of polynomials is pre-
served under affine maps the resulting polynomial will witness gap∗F(C) (we can go in reverse
symmetrically).

Lemma 4.4.1. For any field F of characteristic other than 2 and any unsatisfiable CNF formula

C, gapF(E∗(C)) ≥ NSF(E∗(C)).

Proof. By the discussion above, we just need show that gapF(E∗(C)) ≥ NSF(E∗(C)). We show
that if E∗(C†) has a d-design then E∗(C) has algebraic gap complexity at least d+1. By Lemma
4.3.3, E∗(C†) has an (NSF(C)− 1)-design, and so this completes the proof of the lemma.

So, let D be a d-design for E∗(C†) and for any S ⊆ [n] let zS denote the monomial
∏

i∈S zi.
Recall from Section 4.1 that

E∗(C) =
∏
i∈C+

(1 + zi)
∏
j∈C−

(1− zj) =
∑

T⊆vars(C)

(−1)|T∩C
−|zT . (4.3)

CHAPTER 4. ALGEBRAIC GAPS AND NULLSTELLENSATZ 44

From D we define a multilinear polynomial p witnessing algebraic gaps for E∗(C). (Note that
the d-design is defined for the dual C† of C, while the algebraic gaps are for C.) We define the
(multilinear) polynomial p by its coefficients: namely, for each S ⊆ [n] let p̂(S) = D(z[n]\S).

Clearly deg p = n since p̂([n]) = D(1) = 1 so we focus on proving that deg(p�π) ≤
n− (d+ 1) for all certificates π ∈ Cert(E∗(C)).

This condition is equivalent to the following system of linear equations on the coefficients
of p̂: for any clause C and any subset S ⊆ [n] with S ∩ vars(C) = ∅ and |S| ≥ n− d we have

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|p̂(S, T). (4.4)

By the definition of p, to finish the proof we must verify that

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|D(z[n]\(S∪T)).

Letting U = [n] \ (S ∪ vars(C)) we can re-write this equation as

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|D(zUzvars(C)\T).

Observing that (−1)|T∩C
+|(−1)|(vars(C)\T)∩C+| = (−1)|C

+|, the linearity of D and Equation 4.3
implies that

0 =
∑

T⊆vars(C)

(−1)|T∩C
+|D(zUzvars(C)\T)

= D

 ∑
T⊆vars(C)

(−1)|T∩C
+|zUzvars(C)\T


= D

zU
 ∑
T⊆vars(C)

(−1)|T∩C
+|zvars(C)\T


= D

zU
 ∑
T⊆vars(C)

(−1)|C
+|(−1)|(vars(C)\T)∩C+|zvars(C)\T

 = (−1)|C
+|D(zUE∗(C†)).

Since |S| ≥ n− d and U = [n] \ (S ∪ vars(C†)) we have that |U ∪ vars(C†)| ≤ |[n] \ S| ≤ d,
and so deg(zUE∗(C†)) ≤ d, implying that D(zUE∗(C†)) = 0 by the design property.

Theorem 4.3.1 follows immediately from Lemma 4.3.4 and Lemma 4.4.1.

Chapter 5

Main Lifting Theorems

We are now ready to proceed in full generality. The following theorem is the goal of this
chapter, and is the central contribution of this thesis.

Theorem 5.0.1. Let C be an unsatisfiable, bounded-width CNF on n variables, and let F be

any field. Let g : X × Y → {0, 1} be any good gadget over F with |X | = O(rank(g)), and

consider the canonical rectangle coverRC,g. Then

1. If rank(g) = n2 then µF(RC,g), χF(RC,g) = nΘ(NSF(C)).

2. If NSF(C) ≥ εn for some universal ε and rank(g) = 21/ε+1, then µF(RC,g), χF(RC,g) =

2Θ(n).

This improves our “warm-up” Theorem 3.3.2 in several ways. First, it replaces the use of
Sherstov’s specific gadget with any “good” gadget — in particular, this allows the lifting theo-
rem to work for arbitrary fields instead of just the real numbers. Second, it uses the connection
from the previous chapter (showing that algebraic gaps is the same as Nullstellensatz degree)
to obtain bounds in terms of Nullstellensatz instead of algebraic gaps. Finally, where Theorem
3.3.2 only obtained lower bounds on the rank measure in terms of the algebraic gaps, Theorem
5.0.1 obtains nearly tight upper and lower bounds on both the rank measure and the monotone
span program size in terms of Nullstellensatz degree.

The theorem is proved in three steps. We begin by generalizing Sherstov’s rank theorem
for pattern matrices to arbitrary fields. Our proof has several advantages beyond just working
for arbitrary fields: first, it is much simpler, requiring only elementary notions from algebra;
second, we can give a generic sufficient condition on the gadgets rather than working with a
specific gadget g.

Second, using this result and the general tools we developed in the previous chapter, we
prove a generalization of our “warmup” algebraic-gaps to rank-measure theorem (cf. Theo-

45

CHAPTER 5. MAIN LIFTING THEOREMS 46

rem 3.3.2) which works for arbitrary fields. By using the fact that algebraic gaps are equal to
Nullstellensatz degree (cf. Theorem 4.3.1) we obtain the lower bound in Theorem 5.0.1.

For the upper bound we prove a second lifting theorem directly from the Nullstellensatz
degree to the algebraic tiling number. By combining this with our lifting theorem for the
rank measure, we will be able to give strong separations between span programs over different
fields.

5.1 Lifting Polynomial Degree to Rank

In this section we generalize Sherstov’s rank theorem for pattern matrices [61] (cf. Theorem
3.1.2). Before we state and prove the theorem, we first state our sufficient condition on gadgets
which enables this rank “lifting”. If g : X × Y → F is a gadget then rankF(g) is the rank of
g interpreted as an X × Y matrix over the field F. Further, recall that if A is an m× n matrix
and B is a p × q matrix then the Kronecker product (also called the tensor product) A ⊗ B is
the mp× nq matrix defined by (A⊗B)((i, k), (j, `)) = A(i, j)B(k, `)

Definition 5.1.1. Let F be a field. A gadget g : X × Y → F is good if, for every pair of
matrices A,B over F of the same size we have

rank(1⊗ A+ g ⊗B) = rank(A) + rank(g) rank(B).

For some intuition for good gadgets, note that rank is well-known to be multiplicative under
Kronecker products: rank(A ⊗ B) = rank(A) rank(B). However, while rank is subadditive

under matrix addition, it is far from being additive: for example, taking the identity matrix I
we have rank(I) = rank(−I) = n, but rank(I + (−I)) = 0. A gadget g is therefore good if
tensoring with g forces rank to behave additively.

While this property is strange at first, it turns out that Sherstov’s gadget from Theorem 3.1.2
is good for all fields of characteristic other than 2. We prove this in the next section, as well as
introducing a different gadget that is good for all fields.

Theorem 5.1.2. Let F be any field and let p ∈ F[z1, z2, . . . , zn] be a multilinear polynomial

over F. For any good gadget g : X × Y → F we have

rankF(p ◦ gn) =
∑

S:p̂(S)6=0

rankF(g)|S|

where p̂(S) denotes the coefficient of the monomial
∏

i∈S zi in p.

Proof. The theorem follows by an easy induction using the following claim.

CHAPTER 5. MAIN LIFTING THEOREMS 47

Claim. Let S ⊆ [n], and let zS =
∏

i∈S zi denote a monomial over F[z1, z2, . . . , zn]. Then

zS ◦ gn =
n⊗
i=1

MS(i)

where MS(i) = g if i ∈ S and MS(i) = 1 otherwise.

Proof of Claim. For notational simplicity suppose that S = {1, 2, . . . , t} for some t ≤ n, and
a symmetric calculation applies for general S. Then

zS ◦ gn = [zS(g(x1, y1), g(x2, y2), · · · , g(xn, yn))](x,y)∈Xn×Yn

=

[∏
i∈S

g(xi, yi)

]
(x,y)∈Xn×Yn

= [g(x1, y1)g(x2, y2) · · · g(xt, yt)1(xt+1, yt+1) · · ·1(xn, yn)](x,y)∈Xn×Yn

= g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸
t times

⊗1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−t times

=
n⊗
i=1

MS(i),

where we have used the definition of the Kronecker product.

For the induction, we recall that the Kronecker product is bilinear: if A,B,C,D are matri-
ces then

(A+B)⊗ C = A⊗ C +B ⊗ C

and
A⊗ (C +D) = A⊗ C + A⊗D

whenever the sums are well-defined. We now prove the theorem by induction on n.

When n = 0 the polynomial p is just a constant p̂(∅) in F, and the matrix p ◦ g0 is the 1× 1

matrix [p̂(∅)]. In this case the conclusion of the theorem is trivially satisfied — if p̂(∅) = 0 then
rank(p ◦ g0) = 0 and if p̂(∅) 6= 0 then rank(p ◦ g0) = 1 = rank(g)0.

Now, suppose that n > 0, and write p = q + z1r, where q, r ∈ F[z2, z3, . . . , zn]. By the

CHAPTER 5. MAIN LIFTING THEOREMS 48

claim and the bilinearity of the Kronecker product, we write

p ◦ gn =
∑

S:p̂(S) 6=0

p̂(S)
n⊗
i=1

MS(i)

=
∑

S:p̂(S)6=0
1 6∈S

p̂(S) · 1⊗
n⊗
i=2

MS(i) +
∑

S:p̂(S)6=0
1∈S

p̂(S) · g ⊗
n⊗
i=2

MS(i)

= 1⊗

 ∑
S:p̂(S)6=0

1 6∈S

p̂(S)
n⊗
i=2

MS(i)

+ g ⊗

 ∑
S:p̂(S)6=0

1∈S

p̂(S)
n⊗
i=2

MS(i)


= 1⊗ (q ◦ gn−1) + g ⊗ (r ◦ gn−1).

Applying the inductive assumption and using that g is good, we have

rankF(p ◦ gn) = rankF(1⊗ (q ◦ gn−1) + g ⊗ (r ◦ gn−1))

= rankF(q ◦ gn−1) + rankF(g) rankF(r ◦ gn−1)

=
∑

T :q̂(T)6=0

rankF(g)|T | +
∑

T :r̂(T) 6=0

rankF(g)|T |+1

=
∑

S:p̂(S)6=0
1 6∈S

rankF(g)|S| +
∑

S:p̂(S)6=0
1∈S

rankF(g)|S| =
∑

S:p̂(S) 6=0

rankF(g)|S|,

where we note that in the above sums T ⊆ {2, 3, . . . , n} and S ⊆ [n].

5.2 Constructing Good Gadgets

In this section we describe a simple good gadget that we can use for every field, and also
observe that the gadget used by Sherstov [61] is good for all fields of characteristic other than
2. We first describe our new simple gadget that is good over every field.

Definition 5.2.1. For any positive integer λ define hλ : [λ+ 1]× [λ+ 1]→ {0, 1} by

hλ(x, y) =

1 if x = y = i for some i ∈ [λ]

0 otherwise.

That is, hλ is the (λ+ 1)× (λ+ 1) identity matrix with one of the 1s deleted.

Lemma 5.2.2. For any positive integer λ and any field F the gadget hλ is good and satisfies

rank(hλ) = λ.

CHAPTER 5. MAIN LIFTING THEOREMS 49

Proof. Clearly rank(hλ) = λ, so we focus on the additivity of rank. By definition of 1, hλ,
and the Kronecker product, we have

1⊗ A =


A A · · · A

A A · · · A
...

A A · · · A

 hλ ⊗B =



B 0 · · · 0 0

0 B · · · 0 0
...

0 0 · · · B 0

0 0 · · · 0 0


.

Adding them yields the matrix

A+B A · · · A A

A A+B · · · A A
...

A A · · · A+B A

A A · · · A A


,

which is easily verified to be row- and column-equivalent to

B 0 · · · 0 0

0 B · · · 0 0
...

0 0 · · · B 0

0 0 · · · 0 A


,

by subtracting the final column from each other column, and then subtracting the last row from
all other rows. The rank property follows since there are λ copies of B on the diagonal.

Next, we observe that the gadget introduced by Sherstov [61] (that is, the gadget used in
Theorem 3.1.2) is good for all fields of characteristic other than 2. We do not need this result as
we can use the gadget hλ for every field, and thus the reader can safely skip to the next section
if they wish. However, we believe it is a nice observation that the goodness of gλ combined
with Theorem 5.1.2 yields an alternative proof of Theorem 3.1.2.

Definition 5.2.3 (Implicit in [61]). For any positive integer λ, define the gadget gλ : ([λ] ×
{−1, 1})× {−1, 1}λ → {−1, 1}λ by gλ((x, b), y) = byx.

Lemma 5.2.4. For any positive integer λ and any field F of characteristic other than 2, the

gadget gλ is good and satisfies rank(gλ) = λ.

CHAPTER 5. MAIN LIFTING THEOREMS 50

Proof. By definition of gλ it should be clear that gλ is equivalent (up to a permutation of rows)
to the matrix (

Fλ

−Fλ

)
where Fλ : [λ] × {±1}λ is defined by Fλ(x, y) = yx. Note that Fλ is full rank (that is, it has
rank λ), implying that rankF(gλ) = rankF(Fλ) = λ.

By the definition of the Kronecker product

12λ,2λ ⊗ A+ g ⊗B = 12λ,2λ ⊗ A+

(
Fλ ⊗B
−Fλ ⊗B

)
=

(
1λ,2λ ⊗ A+ Fλ ⊗B
1λ,2λ ⊗ A− Fλ ⊗B

)
.

By adding the top half of the last matrix to the bottom half, we obtain(
1λ,2λ ⊗ A+ Fλ ⊗B

2 · 1λ,2λ ⊗ A

)
,

from which we get the matrix (
Fλ ⊗B
1λ,2λ ⊗ A

)
after dividing the bottom half by 2 and then subtracting it from the top half. Since the Kronecker
product is multiplicative with respect to rank we have that rank(Fλ ⊗ B) = λ · rank(B), and
thus there exists a sequence of row operations that can be applied to the matrix Fλ⊗B to obtain
the matrix (Iλ·rank(B) 0) where 0 is a block matrix of 0s. Applying these row operations to the
top half of the previous matrix we obtain(

Iλ·rank(B) 0

1λ,2λ−1 ⊗ A 1λ,2λ−1 ⊗ A

)
.

The rank of this matrix is clearly rankF(A)+λ·rankF(B) = rankF(A)+rankF(gλ) rankF(B).

We note that one can remove some unnecessary rows and columns from the gadget gλ to
obtain a smaller gadget that is also good with the same rank.

5.3 Lifting Algebraic Gaps to Razborov’s Rank Measure

We are now in a position to collect together all prior results and prove our main lifting theo-
rem from Nullstellensatz degree to Razborov’s rank measure. Its proof follows the proof of

CHAPTER 5. MAIN LIFTING THEOREMS 51

Theorem 3.3.2 while appealing to the more general results proved in this chapter and the pre-
quel. We are also able to optimize the lower bound when the Nullstellenstaz degree is nearly
maximal — this result is required later when we prove strongly exponential lower bounds.

Theorem 5.3.1. Let C be an unsatisfiable, polynomial-size k-CNF on n variables and |C| = nc

clauses, and let F be any field. Let g : X × Y → {0, 1} be any good gadget over F, and

consider the canonical rectangle cover RC,g. Let N = |RC,g| = |C||X |k be the size of the

canonical rectangle cover.

1. If rank(g) = n2 then

µF(RC,g) ≥ nNSF(C)/6 =
1

6

(
N

|X |k

)NSF(C)/c

.

2. If NSF(C) ≥ εn for some universal ε then µF(RC,g) ≥ 2(ε log rank(g)−1)n.

Proof. We remark that the proof is essentially identical to the proof of our “warmup” (Theorem
3.3.2). First suppose that rank(g) = n2. Let p ∈ F[z1, z2, . . . , zn] be the polynomial witnessing
the algebraic gap complexity gapF(C), and let A = p ◦ gn be the pattern matrix obtained by
composing p and g. We prove

µF(RC,g, A) =
rankF(A)

max
R∈RC,g

rankF(A�R)
≥ Ω(ngapF(C)),

and the result follows since gapF(C) = NSF(C) by Theorem 4.3.1. Let us first analyze the
denominator. Let RC,α be an arbitrary rectangle from the coverRC,g and let π = Cert(C). We
claim that

rankF(A�RC,α) =
∑

S:p̂�π(S)6=0

rank(g)|S|, (5.1)

To prove this, we claim that the matrix A�RC,α is column-equivalent to the block matrix

[(p�π) ◦ g[n]\vars(C), (p�π) ◦ g[n]\vars(C), . . . , (p�π) ◦ g[n]\vars(C)]

for some number of copies of the matrix (p�π) ◦ g[n]\vars(C). Equation 5.1 immediately follows
from the claim as

rankF(A�RC,α) = rankF((p�π) ◦ g[n]\vars(C)) =
∑

S:p̂�π(S) 6=0

rank(g)|S|

by Theorem 5.1.2. So let us prove the second claim.

CHAPTER 5. MAIN LIFTING THEOREMS 52

By the definition, for all (x, y) ∈ RC,α we have that gvars(C)(xvars(C), yvars(C)) = π and
xvars(π) = α . Let us first fix any assignment β to yvars(C) so that gvars(C)(α, β) = π. Then for
all (x, y) ∈ RC,α such that yvars(C) = β we have

gn(x, y) = gvars(C)(α, β)g[n]\vars(C)(x[n]\vars(C), y[n]\vars(C))

= πg[n]\vars(C)(x[n]\vars(C), y[n]\vars(C)),

and so ranging x[n]\vars(C), y[n]\vars(C) over all values yields the matrix (p�π) ◦ g[n]\vars(C). Then,
ranging yvars(C) over all β such that gvars(C)(α, β) = π yields the claim and Equation 5.1.

Now, consider the rank measure µF(RC,g), which by Theorem 5.1.2 and Equation 5.1 sat-
isfies

µF(RC,g) ≥
rankF(A)

max
R∈RC,g

rankF(A�R)
=

∑
S:p̂(S)6=0

rank(g)|S|

max
π∈Cert(C)

∑
S:p̂�π(S)6=0

rank(g)|S|

First assume that rank(g) = n2. By definition of gapF(C) we have deg p = n and thus∑
S:p̂(S)6=0 n

2|S| ≥ n2n. For the denominator, since p witnesses the algebraic gap of C, we have
that deg p�π ≤ n− gapF(C) for all π ∈ Cert(C). We may clearly assume that p̂(S) = 0 when
|S| < n− gapF(C), so, for any π:

∑
S:p̂�π(S)6=0

n2|S| ≤
k∑
i=0

(
n

gapF(C)− i

)
n2(n−gapF(C)−i)

≤
k∑
i=0

(
en

gapF(C)− i

)gapF(C)−i

n2(n−gapF(C)−i)

=
k∑
i=0

(
e

gapF(C)− i

)gapF(C)−i

n2n−gapF(C)−i

≤ n2n−gapF(C)
k∑
i=0

(
e

gapF(C)− i

)gapF(C)−i

≤ 6n2n−gapF(C)

since e+ (e/2)2 + (e/3)3 + · · · ≤ 6. Putting it all together, we get

µF(RC,g, A) ≥ n2n

6n2n−gapF(C) = ngapF(C)/6,

proving the theorem.

CHAPTER 5. MAIN LIFTING THEOREMS 53

Now assume that NSF(C) = εn for a universal constant ε. By Equation 5.1,

∑
S:p̂�π(S)6=0

rank(g)|S| ≤
k∑
i=0

(
n

gapF(C)− i

)
· rank(g)n−gapF(C)−i ≤ 2n · rank(g)n−gapF(C).

Then

µF(RC,g) ≥
rank(g)n

2n · rank(g)n−gapF(C) =
rank(g)gapF(C)

2n
≥ 2(ε log rank(g)−1)n = 2Ω(n).

5.4 Lifting Nullstellensatz to Algebraic Tiling

We now complement the lower bounds in Theorem 5.3.1 with nearly tight upper bounds in the
case that C is bounded-width.

Theorem 5.4.1. Let C be an unsatisfiable width-k CNF on n variables and let F be any field.

Let g : X × Y → {0, 1} be a good gadget, and consider the canonical rectangle cover RC,g.
Then

1. If rank(g) = O(poly(n)) then χF(RC,g) ≤ |C||X |k+1nO(NSF(C)).

2. If NSF(C) ≤ εn for some universal ε and rank(g) ≤ 21/ε + 1 then χF(RC,g) ≤
|C||X |k+12O(n).

Proof. Consider a minimum-degree Nullstellensatz refutation of E(C) as witnessed by polyno-
mials q1, q2, . . . , qm. By the definition of a Nullstellensatz refutation we immediately have that∑m

i=1(piqi) ◦ gn = 1, where 1 is the X n × Yn all-1s matrix. However, this is not an algebraic
tiling since the matrices piqi ◦ gn are not necessarily embedded in the rectangles RC,α. We
avoid this problem by breaking up the matrices piqi ◦ gn into rectangles.

For each clause Ci in C let pi = E(Ci) be the encoding of Ci in E(C). Observe that for each
pi and each z ∈ {0, 1}n we have pi(z) 6= 0 if and only if z is consistent with the certificate of
Ci; by extension, for all (x, y) ∈ X n × Yn we have that piqi ◦ gn(x, y) = 0 unless gn(x, y) is
consistent with the certificate of pi. Thus we can write

1 =
m∑
i=1

piqi ◦ gn =
m∑
i=1

∑
α∈X vars(Ci)

(piqi ◦ gn)�RCi,α.

Since rank(g) = poly(n), by Theorem 5.1.2

rankF((piqi ◦ gn)�RCi,α) ≤ rankF(piqi ◦ gn) =
∑

S:p̂iqi(S) 6=0

rank(g)|S| ≤ nO(NSF(C))

CHAPTER 5. MAIN LIFTING THEOREMS 54

for all i ∈ [m] and α ∈ X vars(Ci). This immediately yields

χF(RC,g) ≤ |C||X≤k|nO(NSF(C)).

An analogous calculation holds if NSF(C) = Θ(n).

With this, Theorem 5.0.1 is an easy corollary.

Proof of Theorem 5.0.1. Let C be a width-k unsatisfiable CNF on n variables and let F be
any field. In both cases, the lower bound holds by applying Theorem 5.3.1. The upper bound
follows from Theorem 5.4.1 since |C| ≤ nO(k) and |X | = O(rank(g)). To see this, observe that
in the first case k = O(NSF(C)) and in the second case k = O(1) implies nO(k) is O(poly(n)).

Chapter 6

Applications

In this chapter we describe the applications of our main theorem, recalled here.

Theorem 5.0.1. Let C be an unsatisfiable, bounded-width CNF on n variables, and let F be

any field. Let g : X × Y → {0, 1} be any good gadget over F with |X | = O(rank(g)), and

consider the canonical rectangle coverRC,g. Then

1. If rank(g) = n2 then µF(RC,g), χF(RC,g) = nΘ(NSF(C)).

2. If NSF(C) ≥ εn for some universal ε and rank(g) = 21/ε+1, then µF(RC,g), χF(RC,g) =

2Θ(n).

By applying Proposition 3.2.3 we can convert the canonical rectangle cover RC,g into par-
tial monotone boolean functions for the purpose of applying Theorem 5.0.1. In general, this
monotone boolean function has a natural interpretation as a monotone variant of the SAT prob-
lem. This has essentially been discovered and re-discovered by many authors — Raz and
McKenzie observed the connection for a particular C and g [49], and the modern interpretation
was essentially found by both Göös and Pitassi [28] and Oliveira [45]. We begin this chapter by
recalling the interpretation of RC,g as a SAT problem. Using this interpretation and Theorem
5.0.1, we will then prove lower bounds on the rank measure for several natural computational
problems.

6.1 Canonical Rectangle Covers and Monotone CSP-SAT

We begin by introducing a very general form of the constraint satisfaction problem.

Definition 6.1.1. A constraint satisfaction problem (CSP) is defined by a triple J = (H,Σ,P)

where H = (L ∪R,E) is a bipartite graph, Σ is a finite alphabet, and

P =
{
Pr : ΣN(r) → {0, 1} | r ∈ R

}
55

CHAPTER 6. APPLICATIONS 56

defines for each vertex r ∈ R a predicate Pr on the neighbourhood N(r) ⊆ L of r. The
instance J is satisfiable if there is a Σ-valued assignment L→ Σ to the vertices in L such that
each predicate Pr is satisfied when evaluated on r’s neighbourhood in L.

Constraints

Variables

H1 H2 H3 H4

z1 z2 z3 z4 z5 z6

Figure 6.1: A Constraint Satisfaction Problem. The variables z1, z2, . . . , z6 are Σ-valued, and
each Hi is an arbitrary predicate defined on its neighbourhood. The CSP is satisfiable if there
is a Σ-valued assignment to the variables so that each predicate is satisfied.

Using constraint satisfaction problems we define the monotone variant of SAT. It is obtained
by fixingH and Σ in the definition of a CSP, and letting the input stringw define the constraints
P . We then accept w if and only if the CSP encoded by w is satisfiable.

Definition 6.1.2. Let H = (L ∪ R,E) be a bipartite graph, let Σ be a finite alphabet, and
let N =

∑
r∈R |Σ||N(r)|. The CSP-SAT problem SATH,Σ : {0, 1}N → {0, 1} is defined as

follows. Each w ∈ {0, 1}N defines a set of predicates Pw =
{
Pr : ΣN(r) → {0, 1} | r ∈ R

}
by recording a value Pr(α) ∈ {0, 1} for each r ∈ R and each α ∈ ΣN(r). Then, given w,
SATH,Σ(w) = 1 if and only if the CSP-SAT instance (H,Σ,Pw) is satisfiable.

For any Σ, H observe that SATΣ,H is monotone since replacing a 0 with a 1 in the truth table
of any constraint preserves the constraint’s satisfying assignments. It should be clear from the
definition of SATΣ,H that it is computable in NP.

In what remains, we will show that the partial monotone boolean function corresponding
to the canonical rectangle cover RC,g for an unsatisfiable CNF formula C and gadget g can be
extended to an instance of the CSP-SAT function. This is not hard, but it is technical. Let
C be an unsatisfiable CNF with clauses C1, C2, . . . , Cm and variables z1, z2, . . . , zn, and let
Gr(C) := ([n] ∪ [m], E) be the bipartite graph representing the topology of C (i.e. ij ∈ E if
and only if zi appears in the clause Cj). Let g : X × Y → {0, 1} be a gadget. Let us recall
the definition of the canonical rectangle coverRC,g of X n×Yn (cf. Definition 3.2.2). For each

CHAPTER 6. APPLICATIONS 57

clause C in C and each assignment α ∈ X |C| define the rectangle

RC,α =
{

(x, y) ∈ X n × Yn | xvars(C) = α and gn(x, y) falsifies C
}

=
{
x ∈ X n | xvars(C) = α

}
×
{
y ∈ Yn | gvars(C)(α, yvars(C)) falsifies C

}
.

Then RC,g contains all rectangles RC,α that are not empty; it is a rectangle cover of X n × Yn

since C is unsatisfiable. Our plan is to show that the CSP-SAT function corresponding to RC,g
is SATGr(C),X . We do this by mapping each x ∈ X n to an accepting instance of SATGr(C),X (in
fact, a minterm of SATGr(C),X) and each y ∈ Yn to a rejecting instance of SATGr(C),X .

Accepting Inputs U . Map each x ∈ X n into the CSP with topology Gr(C) having x as its
unique satisfying assignment. Formally, for each constraint vertex j ∈ [m] and for each
α ∈ XN(j), Pj(α) = 0 unless α = xvars(Cj). Clearly this yields every minterm of
SATGr(C),X .

Rejecting Inputs V . Map each y ∈ Yn into the CSP H(x) := C(gn(x, y)). That is, for fixed
y, we consider the CSP which, on input x ∈ X n is satisfied if C(gn(x, y)) = 1. Formally,
for each constraint vertex j ∈ [m] define Pj : XN(j) → {0, 1} by

Pj(α) = Cj(g
vars(Cj)(α, yvars(Cj))).

That is, Pj(α) is satisfied iff the clause Cj , evaluated on gvars(Cj)(α, y), is satisfied. Ob-
serve that this is a rejecting input since C is unsatisfiable.

Note that the input variables of SATGr(C),X correspond to pairs (C, α) where C is a clause
of C and α ∈ X vars(C) is a local assignment to the x-variables of C.

Proposition 6.1.3. Let C be an unsatisfiable CNF and let g : X × Y → {0, 1} be a gadget.

The monotone Karchmer-Wigderson game of SATGr(C),X restricted to U ×V is exactlyRC,g up

to the relabelling defined above.

Proof. LetXC,α = A×B be the coordinate rectangle in KW+(SATGr(C,X)) (restricted to U×V)
that corresponds to the pair (C, α). Similarly, let RC,α = S×T be the corresponding rectangle
in the canonical rectangle cover RC,g. Let z ∈ A be defined by z = U(x), as defined above;
then z ∈ A if and only if xvars(C) = α (and thus x ∈ S). Similarly, if z′ ∈ B is defined by
z′ = V(y), then z′ ∈ B if and only if gvars(C)(α, yvars(C)) falsifies C (and thus y ∈ T).

To summarize this section, we give a dictionary translating the data of the canonical rect-
angle coverRC,g into the data of SATGr(C),X .

CHAPTER 6. APPLICATIONS 58

Canonical Rectangle CoverRC,g CSP-SAT Function SATGr(C),X

Clauses Ci in C Constraint vertices i ∈ [m] in Gr(C)
Variables zi of C Variable vertices j ∈ [n] in Gr(C)
vars(Ci) Neighbourhood N(i) ⊆ [n] in Gr(C)
Rectangles RC,α Input variables uC,α
x ∈ X n CSP with unique satisfying assignment x
y ∈ Yn Unsatisfiable CSPH(x) := C(gn(x, y))

6.2 Induction and The ST-Connectivity Problem

We first consider the layered st-connectivity function. Let m,n be positive integers, and let
Gn,m denote the following directed graph with mn+ 2 vertices V = {vi,j | i ∈ [n], j ∈ [m]} ∪
{s, t}. We think of the vertices as being arranged inm+2 layers indexed by i = 0, 1, . . . ,m+1:
layer 0 contains the vertex s, layer m + 1 contains the vertex t, and the jth layer for j =

1, 2, . . . ,m contains vertices {vi,j | i ∈ [n]}. Finally, for each pair of adjacent layers Li, Li+1

add all edges oriented from Li to Li+1, and note that the final graph contains mn2 + 2n edges.

With this graph in mind, the layered st-connectivity function STCONNn,m is defined as
follows: the input is a boolean string of length mn2 + 2n describing a subgraph of the graph
Gn,m defined above, and the function outputs 1 if and only if there is a directed path from s to
t.

s t

Figure 6.2: STCONN3,4: Given a subgraph of G3,4, decide if there is a path from s to t.

In a seminal work, Karchmer and Wigderson [37] showed that optimal monotone formulas
computing STCONNn,m have size nΘ(logm) — the upper bound follows from recursive dou-
bling, and the lower bound was shown via communication complexity; their lower bound was
improved by Potechin [48] to hold for monotone switching networks. We extend this bound to
the rank measure over all fields. To do this we use the following unsatisfiable CNF encoding

CHAPTER 6. APPLICATIONS 59

induction, introduced by Buss and Pitassi [17], who also proved tight Θ(logm) degree bounds
on its Nullstellensatz degree.

Definition 6.2.1. Let m be a positive integer, and define Indm to be the unsatisfiable CNF

Indm = z1 ∧ (z1 ∨ z2) ∧ (z2 ∨ z3) ∧ · · · ∧ (zm−1 ∨ zm) ∧ zm.

Theorem 6.2.2 ([17]). For any field F, NSF(Indm) = Θ(logm).

We show that SATGr(Indm),Σ is exactly the STCONNn,m function for any alphabet Σ with
|Σ| = n. Applying Theorem 5.0.1 and Theorem 6.2.2 implies that the same nΘ(logm) bounds
for STCONNn,m also hold for the rank measure over every field.

Theorem 6.2.3. For all sufficiently large n and for every field F, µF(STCONNn,m) = nΘ(logm).

Proof. Let λ = n2 and let hλ be the good gadget from Definition 5.2.1. The upper bound
follows from Theorem 2.4.4 (that is, since monotone span programs over any field can simulate
monotone formulas, and mSPANF(f) = χF(f) ≥ µF(f)). For the lower bound, we claim that
STCONNλ+1,m is a total extension of the monotone function corresponding toRIndm,hλ . Using
the claim and applying Theorem 5.0.1 using the lower bound from Theorem 6.2.2 completes
the theorem.

We now prove the claim. In fact, a stronger claim holds: if g : X × Y → {0, 1} is any

gadget with |X | = n then STCONNn,m is a total extension of the partial monotone function
corresponding to RIndm,g. This stronger claim will be proved using the monotone CSP-SAT
function introduced above.

Consider the accepting and rejecting inputs of SATGr(Indm),X obtained from RIndm,g. We
first claim that the variables of SATGr(Indm),X are in 1-1 correspondence with the variables of
STCONNn,m. To see this, recall that each variable of SATGr(Indm),X corresponds to a non-
empty rectangle RC,α ∈ RC,g, which are of the form

RC,α =
{
x ∈ X n | xvars(C) = α

}
×
{
y ∈ Yn | gvars(C)(α, yvars(C)) falsifies C

}
.

Fix such a pair C, α so that RC,α is non-empty and suppose C = (zi ∨ zi+1); the input variable
uC,α corresponding to the rectangle RC,α is therefore naturally identified with the pair α =

(α1, α2) ∈ X 2. In STCONNn,m, the variable uC,α thus corresponds to the edge connecting
node α1 in layer i to node α2 in layer i + 1. (The clauses z1 and zm correspond to the edges
between s and the first layer and the last layer and t, respectively.)

We now claim the set U of accepting inputs corresponds directly to the minterms (i.e. pos-
sible st-paths) in STCONNn,m. Since this is the set of all minterms of STCONNn,m the claim

CHAPTER 6. APPLICATIONS 60

follows from Proposition 2.1.1. Fix any x ∈ Xm. By the definition of U we will set uC,α = 1

if xvars(C) = α. By our identification of edges with xvars(C),α above this corresponds to picking
out one node in each layer of STCONNn,m (namely, we choose node xi in layer i) and adding
edges connecting them all. This clearly yields a st-path, and moreover all st-paths are definable
in this way since x ranges arbitrarily over Xm.

This gives an alternate proof of the results of Karchmer and Wigderson [37] and Potechin
[48] cited above. It also provides tight superpolynomial lower bounds for both monotone com-
parator circuits and monotone span programs over any field computing STCONNn,m. This
is notable for several reasons. Since STCONNn,m is easily computable by polynomial-size
monotone circuits, this provides the first separating example between monotone circuits and
monotone span programs/monotone comparator circuits (we strengthen this separation to ex-
ponential in the next section). In fact, this shows that both of these models can be weaker
than O(log2 n)-depth monotone circuits, since such circuits can compute STCONNn,n. Fur-
thermore, Wigderson [65] proved that STCONNn,m is computable by polynomial-size non-
monotone span programs over GF (2), and thus this provides the first superpolynomial sepa-
ration between monotone span programs and non-monotone span programs. Similarly, Cook,
Filmus and Lê [22] proved that polynomial-size non-monotone comparator circuits can com-
pute STCONNn,m, and thus this provides the first superpolynomial separation between non-
monotone comparator circuits and monotone comparator circuits.

6.3 Pebbling Tautologies and The Generation Problem

Since polynomial-size monotone circuits can compute STCONNn,m, the previous theorem
yields a quasipolynomial separation between µF and mP over all fields F. We can improve this
to a (weakly) exponential separation by considering the GEN function, defined next.

Let n be a positive integer and let T ⊆ [n]3 be a subset of triples of [n]. We say that T
generates a point w ∈ [n] if w = 1, or if there is a triple (u, v, w) ∈ T such that T generates u
and v. The GENn problem is then defined as follows: as input, we receive a subset T ⊆ [n]3,
encoded as a bitstring of length n3, and must decide whether or not T generates the point n.

It is not hard to see that the GENn problem has polynomial-size monotone circuits, and
it has been used in several previous works studying the strength of circuit classes inside mP.
For instance, Raz and McKenzie [49] have used the function to separate mNCi from mNCi+1

for all i, and Chan and Potechin [18] used it to prove strong lower bounds against monotone
switching networks. To prove rank measure lower bounds on GEN we will use the pebbling

tautologies, defined next.

CHAPTER 6. APPLICATIONS 61

1

n

Figure 6.3: GENn: Given a set of triples in [n], decide if we can generate n from 1.

Definition 6.3.1. Let G be a connected, directed acyclic graph with a unique sink node t and
source nodes S ⊆ V (G). The unsatisfiable CNF formula PebG is defined as follows. There is
one boolean variable zv for each vertex v in G, and we have the following clauses:

1. The target clause ¬zt, where t is the sink node

2. For each source vertex s ∈ S add the source clause zs.

3. For each internal vertex v with in-neighboursU ⊆ V (G) add the edge clause
(
zv ∨

∨
u∈U ¬zu

)
.

We consider pebbling tautologies where the underlying graph G is a pyramid graph. Let h
be a positive integer. A pyramid graph of height h is the graph ∆h on n = h(h+ 1)/2 vertices
V , which are partitioned into h sets V1, V2, . . . , Vh where Vi has i vertices. Ordering each Vi
as vi,1, vi,2, . . . , vi,i; then for each i = 2, 3, . . . , h, if vi,j and vi,j+1 are adjacent vertices in Vi
add edges (vi,j, vi−1,j) and (vi,j+1, vi−1,j). A pyramid instance of GEN (cf. Figure 6.3) is a
collection of triples T which is naturally isomorphic to a pyramid graph: the top point of the
pyramid is n, and we assume that the point 1 is connected to each of the points v1,i in the first
layer of the pyramid by triples (1, 1, i).

Buresh-Oppenheim et al. [13] considered Nullstellensatz refutations, and showed that Null-
stellensatz degree of PebG is tightly bounded by a combinatorial measure of directed graphs
known as the pebbling number. Cook [21] showed that the pebbling number of the height-h
pyramid ∆h is Θ(h); combining these yields the following theorem.

Theorem 6.3.2. [Corollary of [13] and [21]] For any positive integer h and any field F,

NSF(Peb∆h
) = Θ(h).

Theorem 6.3.3. Let n be a sufficiently large positive integer. For every field F, µF(GENn) ≥
NΘ(Nε) for some constant ε > 0 and N is the number of input variables to the function.

CHAPTER 6. APPLICATIONS 62

Proof. Let k be a positive integer and let ∆ = ∆k be the height-k pyramid graph. The tau-
tology Peb∆ has m = k(k + 1) variables; so, with an eye to applying Theorem 5.0.1, set
λ = m2 and let hλ be the good gadget from Definition 5.2.1. By Theorem 5.0.1 and Theo-
rem 6.3.2 we have µF(RPeb∆,hλ) = mΘ(NSF(Peb∆)) = mΘ(k). We give a monotone projection
from SATGr(Peb∆),[λ+1] to GENn for n(λ+ 1)m+ 2 = Θ(k6); this yields the theorem since the
number of input variables to SATGr(Peb∆),[λ+1] is N = Θ(n3).

The monotone projection is defined as follows. Partition the (λ + 1)m points of GENn

into m groups S1, S2, . . . , Sm, each of size λ + 1, and further organize these m groups into a
pyramid. For each i ∈ [m], j ∈ [λ + 1] let pi,j denote the jth point in the group Si. Label the
remaining two points s and t, and they are to be thought of as the “source” and “target” point.

For each source clause C = zi and each assignment α : {zi} → [λ + 1], map the variable
uC,α to the input triple (s, s, pi,α(i)). For the target clause C = zt and each assignment α :

{zt} → [λ + 1], map the variable uC,α to the input triple (pt,α(t), pt,α(t), t). Finally, for each
“internal” clause C = ¬zi ∨ ¬zj ∨ zk of Peb∆ and each assignment α : {zi, zj, zk} → [λ+ 1],
map the variable uC,α of SATGr(Peb∆),[λ+1] to the input triple (pi,α(i), pj,α(j), pk,α(k)). Fix all other
inputs of GENn to 0 in the monotone projection.

Let J be a CSP corresponding to an input of SATGr(Peb∆),[λ+1] and let T (J) be the corre-
sponding input to GENn under the above projection. We claim that J is satisfiable if and only
if t can be generated from s in the GEN instance T (J). To see this, consider any satisfying
assignment z : [m]→ [λ+ 1] to the CSP J . In the GEN instance, this corresponds to picking
out one vertex pi,z(i) in each group of vertices Si. Since z satisfies J , it follows that for each
constraint C the variable uC,α = 1 where α(i) = z(i) for each i ∈ vars(C). By the definition
of the monotone projection, it follows that for each triple of vertices pi,z(i), pj,z(j), pk,z(k) picked
out by the satisfying assignment, the corresponding triple occurs in the GEN instance (and the
same holds for the “source” and “target” triples). It follows that we can generate t from s as
T (J) contains a pyramid instance. The converse is shown symmetrically.

Since GENn is computable by polynomial-size monotone circuits, this implies an expo-
nential separation between the rank measure over every field and monotone circuits. This
proves that monotone span programs over every field can be weaker than monotone circuits,
resolving a long-standing open problem [38]. Since there exists a monotone function com-
putable by polynomial-size GF (2)-monotone span programs that requires superpolynomial-
size monotone circuits [5], this shows that monotone span programs and monotone circuits
are orthogonal in power. Furthermore, this yields the first exponential-size separation between
monotone comparator circuits and monotone circuits, and also gives an alternative proof of the
exponential-size lower bounds for monotone switching networks computing GENn given by
Chan and Potechin [18]. Finally, we remark that by instead considering height logi n pyramids

CHAPTER 6. APPLICATIONS 63

vs. height logi−1 n pyramids in the proof of the above theorem we can recover the monotone
depth hierarchy theorem shown by Raz and Mckenzie [49].

6.4 Counting Principles and Strongly Exponential Lower Bounds

In this section we separate the strength of monotone span programs over different fields, and
also prove strongly exponential lower bounds (i.e. of the form 2Ω(n) for a function on n input
variables) on µF.

Beimel and Weinreb [10] showed that for each prime p there is a function with polynomial
size monotone span programs over GF (p), but all fields with characteristic different from p

require monotone span programs of size nΩ(
√

logn). We improve this separation to exponential:
we show that for each prime p there is a function f with polynomial-size monotone span
programs over fields of characteristic p, but for all fields of characteristic q 6= p the function
f requires monotone span programs of exponential size. Our results are proved using the
following counting principles.

Definition 6.4.1. Let p be a prime, and letG be a d-regular undirected graph with n ≡ 1 mod p

vertices. Define the modular counting principle MODG,p as follows. For each edge uv ∈ E(G)

add two “directed edge” variables zuv and zvu taking values in {0, 1, . . . , p− 1}. We then add
the following constraints:

Edge Constraints. For each edge uv, zuv + zvu ≡ 0 mod p.

Vertex Constraints. For each vertex v add the constraint
∑

u∼v zvu ≡ 1 mod p.

We encode MODG,p as a k-CNF, where k = max {p, d}, by introducing a boolean variable z̃e,i
for each directed edge e = uv and each residue i ∈ {0, 1, . . . , p− 1} indicating if the edge
variable ze takes value i. Each edge and vertex constraint can then be written as a collection of
O(pk) clauses on the indicator variables.

Beame et al. [6] gave degree O(k) (i.e. bounded-degree, if the degree of the graph is
bounded) upper-bounds for characteristic-p Nullstellensatz refutations of MODG,p. On the
other hand, Buss, Grigoriev, Impagliazzo and Pitassi [15] proved that if the graph G is a good
expander then MODG,p is hard for Nullstellensatz refutations over any field with characteristic
q 6= p.

Definition 6.4.2. Let G be an undirected graph. The expansion of G is the maximum ε > 0

such that for any subset S of vertices with |S| ≤ |V (G)|/2 we have

| {v ∈ V (G) | ∃u ∈ S such that uv ∈ E} | ≥ (1 + ε)|S|.

CHAPTER 6. APPLICATIONS 64

Theorem 6.4.3 (Theorem 15 in [15]). Let p, q be primes, let d be a positive integer, and let

Fp be a field with characteristic p. Let G be a d-regular undirected graph with n vertices and

expansion ε. Then NSFp(MODG,q) ≥ εn/8.

Using this theorem and the fact that good (i.e. sparse and constant-degree) expanders (see,
e.g. [42]) exist we can prove very strong separations over different fields.

Theorem 6.4.4. For every prime p there exists a monotone boolean function f with N inputs

such that f satisfies mSPANF(f) = poly(N) for all fields F of characteristic p, but for every

field F′ of characteristic q 6= p, µF′(f) = 2Θ(Nε) for some universal constant ε. Furthermore,

the function is f is computable in NP.

Proof. Let F,F′ be any fields with characteristic p, q, respectively. Marcus, Spielman, and
Srivistava [42] proved that for all d, n there exist d-regular graphs with n vertices and expansion
ε ≥ 1/2− 1/

√
d− 1. Fix d = 10 and let G be such a graph with n ≡ 1 mod p vertices. Since

G is d-regular it follows that G contains dn/2 = 5n edges; thus the formula MODG,p contains
m = 2pn = 10pn variables. By the theorem just stated we have NSF′(MODG,p) ≥ εn/8 =

ε′m for some ε′, and by the upper bound result we know that NSF(MODG,p) = O(k) where
k = max {d, p}.

First set λ = m2 and let hλ be the good gadget from Definition 5.2.1. Using the first part
of Theorem 5.0.1 we have that

µF(RMODG,p,hλ), χF(MODG,p, hλ) = mO(k).

When considering the field F′ with characteristic q 6= p, applying the first part of Theorem
5.0.1 again yields

µF′(RMODG,p,hλ), χF′(MODG,p, hλ) = mΘ(m).

Converting RMODG,p,hλ into CSP-SAT as described above proves the theorem and noting m =

poly(N) yields the theorem, whereN is the number of input variables to the resulting CSP-SAT
function.

We finish this section by applying the second part of Theorem 5.0.1 to prove strongly ex-
ponential lower bounds.

Theorem 6.4.5. For every prime p and there exists a monotone boolean function f with N

inputs such that for every field of characteristic different from p, µF(f) = 2Θ(N). Furthermore,

the function is f is computable in NP.

Proof. Follows the proof of the previous theorem, except set λ = 21/ε + 1 where ε is the
expansion and use the second part of Theorem 5.0.1.

CHAPTER 6. APPLICATIONS 65

Thus for every model lower-bounded by the rank measure there is a monotone boolean
function computable in NP with 2Θ(n) lower bounds, where n is the number of input vari-
ables. All prior strongly exponential lower bounds for these models have been proved via the
counting arguments discussed in Chapter 1; the lower bounds for other functions were, at best,
weakly exponential (for monotone formulas, switching networks, and comparator circuits) or
quasipolynomial (for monotone span programs).

It is important to note a subtlety here — one may suspect that we could use Theorem 5.0.1 to
improve the separation in Theorem 6.4.4 to polynomial versus strongly exponential. However,
the polynomial upper bound in Theorem 6.4.4 uses the first part of Theorem 5.0.1, which
requires a gadget of rank (and thus size) n2, whereas the lower bound uses a gadget of rank
(and thus size) 21/ε. Since we must use different gadgets to prove the upper and lower bounds,
the instances of CSP-SAT we obtain are actually different, and so there is no separation!

Quantitatively, the best lower bounds one can hope for are of the form 2(1−o(1))n, whereas
a closer analysis of our proof yields bounds of the form 2αn where α is an extremely small
constant, on the order of 2−2000 or so. Ultimately, α is extremely small since our proof of the
second part of Theorem 5.0.1 requires rank(g) ≈ 21/ε; improving this dependence of rank(g)

on ε is an interesting open problem.

Chapter 7

Conclusion

In this thesis we have provided a unified framework in which it is possible to obtain nearly
every prior lower bound for monotone circuit classes weaker than monotone circuits, as well
as proving many new ones. In what remains, we would like to record several open problems
related to this work that we find particularly intriguing.

Problem 1. Average-Case Monotone Circuit Lower Bounds. One significant limitation of
our lower bound framework is that it only applies to worst-case computation. A natural ques-
tion is whether or not one can obtain similar lower bounds in the average-case setting. In other
words, suppose we have a “natural” probability distribution τ on {0, 1}n. Can we still prove
our lower bounds even when the inputs are selected according to this distribution, and the cor-
responding monotone circuit models are allowed to make errors with probability ε? Many other
circuit lower bounds in the literature can be extended in this way to several natural distributions
(see e.g. [24,54,58]). This is especially well-motivated for the uniform distribution, as proving
lower bounds on monotone circuit complexity against the uniform distribution is closely con-
nected to non-monotone circuit lower bounds — such lower bounds were recently obtained by
Rossman for monotone formulas computing a function closely related to st-connectivity [58].

Problem 2. Strongly Exponential Lower Bounds for Monotone Circuits. All of our lower
bounds proceed by studying Razborov’s rank measure µF. In Section 6.3 we showed weakly
exponential lower bounds on the rank measure for GENn, which is a monotone function com-
putable by polynomial-size monotone circuits. This implies our techniques can not prove lower
bounds on monotone circuit complexity, leaving the following natural open problem: can we
prove strongly exponential (i.e. 2Θ(n)) lower bounds on the size of monotone circuits comput-
ing a monotone function in NP? The current strongest known lower bounds against such a
boolean function is 2Ω((n/ logn)1/3), by Harnik and Raz [29].

66

CHAPTER 7. CONCLUSION 67

Problem 3. Improving the Strongly Exponential Lower Bounds. In Theorem 6.4.5, for
each prime p and each field F of characteristic q 6= p we produce a monotone function
computable in NP requiring strongly exponential F-monotone span program size. An obvi-
ous downside of this result is that we do not have a single function computable in NP such
that monotone span programs over any field require strongly exponential lower bounds. By
Theorem 5.0.1, this would follow from resolving the following open problem: construct a
bounded-width, linear-size unsatisfiable CNF C formula such that for every field F we have
NSF(C) = Ω(n).

Furthermore, our construction only yields strongly exponential lower bounds for a function
computable in NP. For a truly maximal separation, one could ask for a monotone function com-
putable by polynomial-size monotone circuits (or, even polynomial-size non-monotone circuits)
that requires strongly exponential rank measure — we do not even have a candidate function
for either of these examples!

Problem 4. Razborov’s Rank Measure vs. the Algebraic Tiling Number. In Theorem
4.3.1 we have shown that the algebraic gap complexity gapF(C) is exactly the same as the
Nullstellensatz degree NSF(C). After we apply our lower-bounds framework, this implies that
Razborov’s rank measure µF is “essentially” the same as the algebraic tiling number χF for
the monotone CSP-SAT functions SATH,Σ. One could conjecture that this holds in general:
namely, that µF(f) = χF(f) for every boolean function f . However, we know that the connec-
tion fails for non-monotone functions. That is, if we consider the general (i.e. non-monotone)
Karchmer-Wigderson games KWf , Gál has shown that χF(KWf) still captures non-monotone

span program size [25]; but Razborov [53] has shown that the rank measure µF(KWf) is always
at most O(n). This suggests the following open problem: find a natural monotone function
such that χF(f) is large, but µF(f) is small.

Problem 5. “Operationalizing” Razborov’s Rank Measure. When they introduced the
Karchmer-Wigderson games, Karchmer and Wigderson [37] also showed that the determin-

istic communication complexity of KWf exactly captures the formula size of f , and that the
deterministic communication complexity of mKWf captures the monotone formula size of f .
Similarly, Gál [25] showed that the algebraic tiling number χF captures span program size. In
other work, Razborov [56] gave a complexity measure of KWf (and mKWf) which captures
circuit size. Can one work “in reverse”, and find a natural computational model which corre-
sponds to the rank measure µF? Or, in other words, is this a general phenomena — is it the
case that for every “natural” complexity measure of KWf (or mKWf) there is a corresponding
“circuit” model?

Bibliography

[1] M. Ajtai, J. Komlos, and E. Szemeredi. An O(n log n) sorting network. Proceedings of

STOC 1983, pages 1–9, 1983.

[2] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. SIAM J. Comput., 31(4):1184–1211, 2002.

[3] A. Andreev. On a method for obtaining lower bounds for the complexity of individual
monotone functions. Soviet Math. Dokl., 31:530–534, 1985.

[4] A. Andreev. On a method for obtaining more than quadratic effective lower bounds for the
complexity of π schemes. Moscow University Mathematical Bulletin, 41:63–66, 1987.

[5] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for mono-
tone span programs. Combinatorica, 19(3):301–319, 1999.

[6] Paul Beame, Russell Impagliazzo, Jan Krajı́cek, Toniann Pitassi, and Pavel Pudlák. Lower
bound on Hilbert’s Nullstellensatz and propositional proofs. In 35th Annual Symposium

on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November

1994, pages 794–806, 1994.

[7] Amos Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Tech-
nion, 1996.

[8] Amos Beimel. Coding and Cryptology: Third International Workshop, IWCC 2011,

Qingdao, China, May 30-June 3, 2011. Proceedings, chapter Secret-Sharing Schemes: A
Survey, pages 11–46. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[9] Amos Beimel, Anna Gál, and Mike Paterson. Lower bounds for monotone span programs.
Computational Complexity, 6(1):29–45, 1997.

[10] Amos Beimel and Enav Weinreb. Separating the power of monotone span programs over
different fields. SIAM J. Comput., 34(5):1196–1215, 2005.

68

BIBLIOGRAPHY 69

[11] Ravi Boppana and Noga Alon. The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):122, 1987.

[12] Allan Borodin. On relating time and space to size and depth. SIAM J. Comput., 6(4):733–
744, 1977.

[13] Josh Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi. Ho-
mogenization and the polynomial calculus. Computational Complexity, 11(3-4):91–108,
2002.

[14] Samuel R. Buss. Lower bounds on Nullstellensatz proofs via designs. In Proof Complex-

ity and Feasible Arithmetics, Proceedings of a DIMACS Workshop, New Brunswick, New

Jersey, USA, April 21-24, 1996, pages 59–72, 1996.

[15] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst.

Sci., 62(2):267–289, 2001.

[16] Samuel R. Buss, Russell Impagliazzo, Jan Krajı́cek, Pavel Pudlák, Alexander A.
Razborov, and Jirı́ Sgall. Proof complexity in algebraic systems and bounded depth Frege
systems with modular counting. Computational Complexity, 6(3):256–298, 1997.

[17] Samuel R. Buss and Toniann Pitassi. Good degree bounds on Nullstellensatz refutations
of the induction principle. In Proceedings of the Eleveth Annual IEEE Conference on

Computational Complexity, Philadelphia, Pennsylvania, USA, May 24-27, 1996, pages
233–242, 1996.

[18] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via
Fourier analysis. Theory of Computing, 10:389–419, 2014.

[19] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate con-
straint satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.

[20] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights,

Ohio, USA, pages 151–158, 1971.

[21] Stephen A. Cook. An observation on time-storage trade off. In Proceedings of the 5th

Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas,

USA, pages 29–33, 1973.

BIBLIOGRAPHY 70

[22] Stephen A. Cook, Yuval Filmus, and Dai Tri Man Le. The complexity of the comparator
circuit value problem. TOCT, 6(4):15:1–15:44, 2014.

[23] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci.

Math. Hungary, 32(3-4):429–437, 1996.

[24] Yuval Filmus, Toniann Pitassi, Robert Robere, and Stephen A. Cook. Average case lower
bounds for monotone switching networks. In 54th Annual IEEE Symposium on Founda-

tions of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages
598–607, 2013.

[25] Anna Gál. A characterization of span program size and improved lower bounds for mono-
tone span programs. Computational Complexity, 10(4):277–296, 2001.

[26] Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in O(n log n) time. Proceedings of STOC 2014, pages 684–693, 2014.

[27] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. In Proceedings of the Forty-Seventh Annual ACM on Sym-

posium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 257–266, 2015.

[28] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensi-
tivity. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31

- June 03, 2014, pages 847–856, 2014.

[29] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In F. Frances Yao
and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium

on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 378–387. ACM,
2000.

[30] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of

the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,

California, USA, pages 6–20, 1986.

[31] Johan Håstad. The shrinkage exponent of De Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998.

[32] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying commu-
nication complexity hardness to time-space trade-offs in proof complexity. In Proceed-

ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,

NY, USA, May 19 - 22, 2012, pages 233–248, 2012.

BIBLIOGRAPHY 71

[33] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size.
Random Struct. Algorithms, 4(2):121–134, 1993.

[34] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n − o(n) for boolean
circuits. In Mathematical Foundations of Computer Science 2002, 27th International

Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings, pages 353–
364, 2002.

[35] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

[36] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information

and Control, 55(1-3):40–56, 1982.

[37] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. SIAM J. Discrete Math., 3(2):255–265, 1990.

[38] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth

Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21,

1993, pages 102–111, 1993.

[39] Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles
by juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In Proceed-

ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

Montreal, QC, Canada, June 19-23, 2017, pages 590–603, 2017.

[40] Jan Krajı́cek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997.

[41] O.B. Lupanov. A method of circuit synthesis. Izvesitya ZUV, 1:120–140, 1958. (In
Russian).

[42] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families IV:
bipartite ramanujan graphs of all sizes. In Venkatesan Guruswami, editor, IEEE 56th

Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,

USA, 17-20 October, 2015, pages 1358–1377. IEEE Computer Society, 2015.

[43] E.I. Nechiporuk. On the complexity of schemes in some bases containing nontrivial
elements with zero weights. Problemy Kibernetiki, 8:123–160, 1962.

[44] E.I. Nechiporuk. On a boolean function. Soviet Math Dokl., 7(4):999–1000, 1966.

BIBLIOGRAPHY 72

[45] Igor C. Oliveira. Unconditional lower bounds in complexity theory. PhD thesis, Columbia
University, 2015.

[46] Mike Paterson and Uri Zwick. Shrinkage of de˜morgan formulae under restriction. In
32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,

1-4 October 1991, pages 324–333, 1991.

[47] Nicholas Pippenger. The complexity of monotone boolean functions. Mathematical Sys-

tems Theory, 11:289–316, 1978.

[48] Aaron Potechin. Bounds on monotone switching networks for directed connectivity. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, Octo-

ber 23-26, 2010, Las Vegas, Nevada, USA, pages 553–562, 2010.

[49] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinator-

ica, 19(3):403–435, 1999.

[50] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,

1990, Baltimore, Maryland, USA, pages 287–292, 1990.

[51] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. J.

ACM, 39(3):736–744, 1992.

[52] A. A. Razborov. Lower bounds on the size of switching-and-rectifier networks for sym-
metric boolean functions. Mathematical Notes of the Academy of Sciences of the USSR,
48(6):7991, 1990.

[53] A. A. Razborov. On submodular complexity measures. In Proceedings of the London

Mathematical Society Symposium on Boolean Function Complexity, pages 76–83, New
York, NY, USA, 1992. Cambridge University Press.

[54] Alexander A. Razborov. Lower bounds for the monotone complexity of some boolean
functions. Soviet Math. Dokl., 31:354–357, 1985.

[55] Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds
in computational complexity. Combinatorica, 10(1):81–93, 1990.

[56] Alexander A. Razborov. Lower bounds for propositional proofs and independence results
in bounded arithmetic. In Automata, Languages and Programming, 23rd International

Colloquium, ICALP96, Paderborn, Germany, 8-12 July 1996, Proceedings, pages 48–62,
1996.

BIBLIOGRAPHY 73

[57] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational

Complexity, 7(4):291–324, 1998.

[58] Benjamin Rossman. Correlation bounds against monotone NC1. In David Zuckerman, ed-
itor, 30th Conference on Computational Complexity, CCC 2015, June 17-19, 2015, Port-

land, Oregon, USA, volume 33 of LIPIcs, pages 392–411. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[59] Claude Shannon. The synthesis of two-terminal switching circuits. Bell System Technical

Journal, 28(1):59–98, 1949.

[60] Claude Shannon and John Riordan. The number of two-terminal series parallel networks.
Journal of Mathematical Physics, 21:83–93, 1942.

[61] Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000,
2011.

[62] Phillip M Spira. On time-hardware complexity tradeoffs for boolean functions. In Fourth

Hawaii Symposium on System Sciences, pages 525–527, 1971.

[63] B.A. Subbotovskaya. On realizations of linear functions by formulas using +, ., -. Soviet

Math Dokl., 2:323–336, 1961.

[64] A. Subramanian. The computational complexity of the circuit value and network stability

problems. PhD thesis, Stanford University, 1990.

[65] Avi Wigderson. ⊕L/poly = NL/poly. http://www.math.ias.edu/˜avi/

PUBLICATIONS/MYPAPERS/W94/proc.pdf. Accessed: 2017-09-30.

[66] S.V. Yablonskii and V.P. Kozyrev. Mathematical problems of cybernetics. Information

Materials of Scientific Council of Akad. Nauk SSSR on Complex Problem “Kibernetika”,
19a:3–15, 1968.

http://www.math.ias.edu/~ avi/PUBLICATIONS/MYPAPERS/W94/proc.pdf
http://www.math.ias.edu/~ avi/PUBLICATIONS/MYPAPERS/W94/proc.pdf

	Acknowledgements
	Contents
	Introduction
	Complexity Theory
	Boolean Circuits
	Boolean Formulas
	Switching Networks
	Span Programs
	Comparator Circuits
	Our Contribution.

	Preliminaries
	Boolean Functions
	Karchmer-Wigderson Games
	Monotone Karchmer-Wigderson and Rectangle Covers
	Razborov's Rank Measure
	Algebraic Tiling Number

	Pattern Matrices and the Rank Measure
	Multilinear Polynomials and Pattern Matrices
	CNF-Search Problems and Canonical Rectangle Covers
	Lifting Algebraic Gaps to Razborov's Rank Measure (Real Case)

	Algebraic Gaps and Nullstellensatz
	Nullstellensatz Refutations
	Algebraic Gaps: A General Definition
	Algebraic Gaps = Nullstellensatz (Characteristic 2 Case)
	Algebraic Gaps = Nullstellensatz (General Case)

	Main Lifting Theorems
	Lifting Polynomial Degree to Rank
	Constructing Good Gadgets
	Lifting Algebraic Gaps to Razborov's Rank Measure
	Lifting Nullstellensatz to Algebraic Tiling

	Applications
	Canonical Rectangle Covers and Monotone CSP-SAT
	Induction and The ST-Connectivity Problem
	Pebbling Tautologies and The Generation Problem
	Counting Principles and Strongly Exponential Lower Bounds

	Conclusion
	Bibliography
	Bibliography

