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Boolean Circuits

Basic model for computing boolean
functions f:{0,1}* — {0,1}

Assume fan-in 2, and a basis
of AND, OR, NOT gates.

Central Question.
What boolean functions are hard to compute?




Boolean Circuits

Every f:{0,1}" — {0,1} has a circuit of size O(n2").
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Theorem. [Lupanov 58] Every boolean function on n bits can
be computed by a circuit with (1 + 0(1))% gates (1)




Boolean Circuits

Theorem. [Lupanov 58] Every boolean function on n bits can
be computed by a circuit with (1 + 0(1))% gates (1)

Theorem. [Shannon 1949] For every n, all but an exponentially
small fraction of boolean functions on n bits require circuits with

0O (2) gates.

n

Proof. Simple counting argument (non-constructive).
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Boolean Circuits (Lower Bounds)

Do we have any explicit examples of hard boolean functions?

NO!
Complexity Circuit Type Strongest Lower Bound | Strongest Lower Bounds
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Monotone Circuit Complexity

A circuit is monotone if it does not use NOT gates.

A function f:{0,1}* — {0,1} is monotone if
v <y = f(z) < f(y)

Monotone circuits have a number of
applications in cryptography, proof TT Ty Ty T3z Ty I3
complexity, communication theory ....
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Monotone Boolean Circuits (Lower Bounds)

Do we have any explicit examples of hard boolean functions?

YES!
Complexity Circuit Type Strongest Lower Bound | Strongest Lower Bounds
Measure (MONOTONE) (Explicit) (Non-Explicit)
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Result

Main Theorem. There is a monotone boolean function f
computable in NP (CSP-SAT) such that every monotone

formula,

switching network,
real span program, or
comparator circuit

> W N

computing f requires size 2*" for some universal constant
a > 0.






The Proof (A Flavor)

Columns labelled with y € f71(0)

Rows
labelled
with
ze f7(1)

Let f:{0. 1} = {0.1} bea
monotone boolean function.
KW-Search®™(f) C f71(1) x £710) x [N]

Input: (z,y) € f71(1) x f710)
Output: ic[N] 2, =1,y;, =0
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Let f:{0. 1} = {0.1} bea
monotone boolean function.
KW-Search®™(f) C f71(1) x £710) x [N]

Input: (z,y) € f71(1) x f710)
Output: ic[N] 2, =1,y;, =0




X1 XQ-X3IX4

Columns labelled with y € f71(0)

Let f:{0,1}" —»{0,1} bea
monotone boolean function.

Rows

labelled

with KW-Search*(f) C f~'(1) x f7(0) x [N]
e (1) Input: (z,y) € f74(1) x f740)

Output: ic[N] 2, =1,y;, =0

Theme: Complexity of KW-Search(f) ~ Circuit Complexity of f




Example: Formulas @ =AND @=0OR

Columns labelled with y € f71(0)

Rows
labelled

with
ze f7(1)

I To To I3 r3 T4

Theme: Complexity of KW-Search(f) ~ Circuit Complexity of f



Example: Formulas @ =AND @=0OR

Columns labelled with y € f7(0)

Rows
labelled

with
ze f7(1)

I o To T3 rs X4

Lemma. [Khrapchenko 71] Formula for f: {0,1}" — {0,1} with s
leaves yields a partition of f7'(1) x £7'(0) into s mono. rectangles.




Let x(f) denote the minimum number of rectangles in any
monochromatic partition of (1) x f7(0)
Columns labelled with y € f71(0)

Idea [Razb. 90]: Use rank to
Rows lower bound x(f)!
labelled
with

ze f7(1)




Let x(f) denote the minimum number of rectangles in any
monochromatic partition of (1) x f7(0)
Columns labelled with y € £7(0)

A x Idea [Razb. 90]: Use rank to
Rows A lower bound x(f)!
labelled
With Let A be any |f~ ()] x [f71(0)]
re (1) A, matrix over a field F.
X2 x(f)

AZA




Let x(f) denote the minimum number of rectangles in any

monochromatic partition of (1) x f7(0) x(f)
Columns labelled with y e f71(0) A= ;Ai
A x

rank(A) < x(f) maxrank(A;)
Rows @
labelled

with
ze f7(1)



Let x(f) denote the minimum number of rectangles in any

monochromatic partition of f~'(1) x f7'(0) x(f)
Columns labelled with y e f71(0) A= ;Ai
A x

rank(A) < x(f) max rank(A;)
< X(f) maxrank(4 | X)

ie[n]

Rows

labelled
with

1
ze fH(1) Rearranging,
W) > rank(A)

max rank(A [ X;)

i€[n]




Rank Measure

Theorem [Razb. 90]. For any monotone boolean function f and
any f'(1) x f71(0) matrix A over any field, the quantity
B rank(A)
Half) = max rank(A [ X;)

ie[n]

is a lower bound on x(f) (and the monotone formula size of f).

Theorem [G. 01, RPRC. 16]. pa(f) is also a lower bound on
monotone switching networks, monotone span programs, and
monotone comparator circuits computing f.



Rank Measure

Theorem [Razb. 90]. For any monotone boolean function f and
any f'(1) x f71(0) matrix A over any field, the quantity
B rank(A)
Half) = max rank(A [ X;)

ie[n]

is a lower bound on x(f) (and the monotone formula size of f).

Main Theorem (Restated). There is an explicit function f
computable in NP and a matrix A such that u4(f) > 2%™




Proving Lower Bounds on fi4( f)
Theorem [Razb. 90] There is a monotone boolean function
f:1{0,1}" — {0,1} in NP and a 0/1 matrix A satisfying

palf) 2 noosm
[RPRC 16, PR 17] “Lifting theorem” to prove lower bounds
against za(f)

1. Reduce lower bounds on u4( f)to query complexity lower
bounds for a search problem Search(C) related to KW-Search™(f)
2. Prove strong query complexity lower bounds for Search(C)



Search Problems and Algebraic Gaps

C=CiANCyN...NC,, is an unsatisfiable k-CNF with variables z.

Search(C):= given assignment to z, output index of
falsified clause.
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Algebraic Gap Complexity

Ex. Cﬂfl/\l'g/\/\l'n/\(vxz)

1=1

Certificate = minimal partial restriction falsifying a clause



Algebraic Gap Complexity i
EX. C=T,AToA- AT, A (\/az@)
1=1

Cert(C) r1=1 29 =1 Ty =1 x1=0,290=0,---,2p =0

Certificate = minimal partial restriction falsifying a clause



Algebraic Gap Complexity i
EX. C=T,AToA- AT, A (\/az@)
1=1
CGI’t(C) r1=1 29 =1 zn=1 x1=0,29=0,--- .25, =0

Algebraic Gap Complexity. Find a polynomial p: {0,1}" = R

so that gap,(C) = deg(p) — Joax deg(p | m)iS maximized.




Algebraic Gap Complexity

7

n
Ex. C(L’l/\ﬂfg/\/\iﬁ'n/\( CIZ’@)
=1

CGI’t(C) r1=1 29 =1 zn=1 x1=0,29=0,--- .25, =0

Algebraic Gap Complexity. Find a polynomial p: {0,1}" = R

so that gap,(C) = deg(p) — Joax deg(p | m)iS maximized.

p=0R, =— deg(OR,)=n and Iél&i((c) deg(OR,) =0
mcler




Algebraic Gap Complexity vs. Rank Measure

Algebraic Gap Complexity. Given Search(C), find polynomial

p:{0,1}" = R SO that gap,(C) = deg(p) — Joax deg(p | 7) IS maximized.

Rank Measure u4(f). Given f:{0,1}" — {0,1}, find matrix A such

that rank(A)
Half) = max rank(A [ X;)

i€[n]

is maximized.




Rank Measure Lifting

Theorem [RPRC 16].
For any unsatisfiable k-CNF C with m clauses there is a
function fec computable in NP with N < m?+!lvariables and a

real matrix A such that
palfe) > Qmer©) > Q(New(©/2k41)




Rank Measure Lifting

Theorem [RPRC 16].
For any unsatisfiable k-CNF C with m clauses there is a
function fec computable in NP with N < m?+!lvariables and a

real matrix A such that
palfe) = QmsP©) > Q(NEP©/2k)

[RPRC 16]. C = “pebbling contradiction”, then gap(C) > m/logm
- <Al /2k+1
Yields 2°%¥°) Jower bounds! > (N1
Problem is the number of variables!




Gadget Size Blues

Query Complexity < Circuit Complexity

Decision Tree Depth [RM 99] | Monotone Circuit Depth [RM 99]

Critical Block Sensitivity [HN 12, GP 16] | Avg. Case Monotone Depth [HN 12, GP 16]

Algebraic Gap Complexity [RPRC 16] | (Logarithm of) Rank Measure [RPRC 16]

For decision trees vs. depth, current constructions yield N = w(m)
variables.

For critical block sensitivity, we can take N = O(m) variables, but
best query lower bounds are Q(m/logm).




Rank Measure Lifting

Theorem [RPRC 16].
For any unsatisfiable k-CNF C with m clauses there is a
function fec computable in NP with N < m?+!lvariables and a

real matrix A such that
palfe) > Qmer©) > Q(New(©/2k41)




Rank Measure Lifting (Refined)

Theorem [PR 17].
For any unsatisfiable O(1)-CNF C with m clauses satisfying

gap(C) = Q(m) there is a function fc computable in NP with
N = O(m) variables and a real matrix A such that

palfe) > 28Hm > o0N)



Rank Measure Lifting (Refined)

Theorem [PR 17].

For any unsatisfiable O(1)-CNF C with m clauses satisfying
gap(C) = Q(m) there is a function fc computable in NP with
N = O(m) variables and a real matrix A such that

pa(fe) > 28m) > o8N
Proof. [RPRC 16] KW-Search™(f;) = Search(C o ¢"(x, 1))

Rank of pattern matrix A = [p(¢"(x, y))]z yeanxyn = exp(deg(p))
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Tseitin Principle. Let G be a k-regular graph with an odd number
of vertices.



Proving Large Algebraic Gaps

Algebraic Gap Complexity. Given Search(C), find polynomial

p:{0,1}" = R SO that gap,(C) = deg(p) — Joax deg(p | 7) IS maximized.

Tseitin Principle. Let G be a k-regular graph with an odd number

of vertices. . _
Variables Constraints

Tseiting Zw uwv€E @ Zuw = 1 veV

u~v




Proving Large Algebraic Gaps

Algebraic Gap Complexity. Given Search(C), find polynomial

p:{0,1}" = R SO that gap,(C) = deg(p) — Joax deg(p | 7) IS maximized.

Tseitin Principle. Let G be a k-regular graph with an odd number

of vertices. . .
Variables Constraints

T'seiting Zyww  wv € E @ 2w =1 wveEV
u~
Theorem. gap(Tseiting) > Expansion(G) - m/3d
Proof. Reduction to resolution width of Tseiting




Rank Measure Lifting

Theorem [PR 17]. For any unsatisfiable O(1)-CNF C with m
clauses satisfying gap(C) = 2(m) there is a function fc¢
computable in NP with N = O(m) variables and a real matrix A

such that
palfe) > 254m) > o)

Theorem. gap(Tseiting) > Expansion(G) - m/3d

Choose G to be a strong constant-degree expander and the
main theorem is proved!




Conclusion

Prove the first strongly exponential lower bounds for any
explicit function, asymptotically matching non-explicit lower
bounds from counting in the monotone setting.

Can we sharpen it further?

Further applications of the framework? (In particular, a deeper
understanding of the algebraic gap complexity and other
exotic query complexity measures for search problems.)



Thanks!



