Strongly Exponential Lower Bounds for Monotone Computation

Toniann Pitassi and **Robert Robere**Department of Computer Science
University of Toronto

STOC 2017 Montréal, Canada

$$\Lambda = AND \quad V = OR$$

Boolean Circuits

Basic model for computing boolean functions $f: \{0,1\}^n \to \{0,1\}$

Assume fan-in 2, and a basis of AND, OR, NOT gates.

Central Question.

What boolean functions are hard to compute?

Boolean Circuits

Every $f: \{0,1\}^n \to \{0,1\}$ has a circuit of size $O(n2^n)$.

x	y	f(x,y)
0	0	1
0	1	0
1	0	0
1	1	1

Theorem. [Lupanov 58] Every boolean function on n bits can be computed by a circuit with $(1 + o(1)) \frac{2^n}{n}$ gates (!)

Boolean Circuits

Theorem. [Lupanov 58] Every boolean function on n bits can be computed by a circuit with $(1 + o(1))\frac{2^n}{n}$ gates (!)

Theorem. [Shannon 1949] For every n, all but an exponentially small fraction of boolean functions on n bits require circuits with $\Omega\left(\frac{2^n}{n}\right)$ gates.

Proof. Simple counting argument (non-constructive).

Do we have any **explicit** examples of hard boolean functions?

Do we have any **explicit** examples of hard boolean functions?

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)
Р	Circuits		$2^{n}/n$ [S. 49

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type	Strongest Low (Explicit)			Bounds
Р	Circuits	5n - o(n)	[IM. 02]	$2^n/n$	[S. 49]

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type	Strongest Lower Bound (Explicit)		Strongest Lower E (Non-Explicit)	Bounds
Р	Circuits	5n - o(n)	[IM. 02]	$2^n/n$	[S. 49]
NC^1	Formula				

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)
Р	Circuits	5n-o(n) [IM. 02]	$2^n/n$ [S. 49]
NC^1	Formula		$2^n/\log n$ [RS. 42]

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type	Strongest Low (Explicit)	er Bound	Strongest Lower B (Non-Explicit)	ounds
Р	Circuits	5n - o(n)	[IM. 02]	$2^n/n$	[S. 49]
NC^1	Formula	$n^{3-o(1)}$	[H. 98]	$2^n/\log n$	[RS. 42]

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type	Strongest Low (Explicit)	er Bound	_	jest Lower B Explicit)	ounds
Р	Circuits	5n - o(n)	[IM. 02]		$2^n/n$	[S. 49]
NC^1	Formula	$n^{3-o(1)}$	[H. 98]		$2^n/\log n$	[RS. 42]
L	Switching Networks	$n^2/\log n$	[N. 66]		$2^n/n$	[S. 49]
$Mod_p \; L$	Span Programs	$n \log n$	[KW. 91]	GF(2)	$\sqrt{2^{n+1}}$	[N.62]
CC	Comparator Circuits	$n\log n$ [KL	MPSS. 95]		$2^n/n$	[S. 49]

Monotone Circuit Complexity

A circuit is *monotone* if it does not use NOT gates.

Monotone Circuit Complexity

A circuit is *monotone* if it does not use NOT gates.

A function $f: \{0,1\}^n \to \{0,1\}$ is monotone if $x \le y \implies f(x) \le f(y)$

Monotone Circuit Complexity

A circuit is *monotone* if it does not use NOT gates.

A function $f: \{0,1\}^n \to \{0,1\}$ is monotone if $x \le y \implies f(x) \le f(y)$

Monotone circuits have a number of applications in cryptography, proof complexity, communication theory

Do we have any **explicit** examples of hard boolean functions?

Do we have any **explicit** examples of hard boolean functions?

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type (MONOTONE)	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)
mP	Circuits		$2^n/n^{3/2}$ [U, P 76]

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type (MONOTONE)	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)
mP	Circuits	$2^{\Omega((n/\log n)^{1/3})}$ [HR 01]	$2^n/n^{3/2}$ [U, P 76]

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type (MONOTONE)	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)
mP	Circuits	$2^{\Omega((n/\log n)^{1/3})}$ [HR 01]	$2^n/n^{3/2}$ [U, P 76]
mNC^1	Formula	$2^{\Omega(n/\log n)}$ [GP 14]	$2^n/\sqrt{n}\log n$

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type (MONOTONE)	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)
mP	Circuits	$2^{\Omega((n/\log n)^{1/3})}$ [HR 01]	$2^n/n^{3/2}$ [U, P 76]
mNC^1	Formula	$2^{\Omega(n/\log n)}$ [GP 14]	$2^n/\sqrt{n}\log n$
mL	Switching Networks	$2^{\Omega(\sqrt{n/\log n})}$ [GP 14]	$2^n/n^{3/2}$ [U, P 76]

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type (MONOTONE)	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)
mP	Circuits	$2^{\Omega((n/\log n)^{1/3})}$ [HR 01]	$2^n/n^{3/2}$ [U, P 76]
mNC^1	Formula	$2^{\Omega(n/\log n)}$ [GP 14]	$2^n/\sqrt{n}\log n$
mL	Switching Networks	$2^{\Omega(\sqrt{n/\log n})}$ [GP 14]	$2^n/n^{3/2}$ [U, P 76]
$mSPAN_{\mathbb{R}}$	Real Span Programs	$2^{\Omega(n^{1/7})}$ [RPRC 16]	
mCC	Comparator Circuits	$2^{\Omega(n^{1/7})}$ [RPRC 16]	$2^n/n^{3/2}$ [U, P 76]

Do we have any **explicit** examples of hard boolean functions?

Complexity Measure	Circuit Type (MONOTONE)	Strongest Lower Bound (Explicit)	Strongest Lower Bounds (Non-Explicit)	
mP	Circuits	$2^{\Omega((n/\log n)^{1/3})}$ [HR 01]	$2^n/n^{3/2}$ [U, P 76]	
mNC^1	Formula	$2^{lpha n}$ [PR 17]	$2^n/\sqrt{n}\log n$	
mL	Switching Networks	$2^{lpha n}$ [PR 17]	$2^n/n^{3/2}$ [U, P 76]	
$mSPAN_{\mathbb{R}}$	Real Span Programs	$2^{lpha n}$ [PR 17]		
mCC	Comparator Circuits	$2^{lpha n}$ [PR 17]	$2^n/n^{3/2}$ [U, P 76]	

Result

Main Theorem. There is a monotone boolean function f computable in **NP** (CSP-SAT) such that every monotone

- 1. formula,
- 2. switching network,
- 3. real span program, or
- 4. comparator circuit

computing f requires size $2^{\alpha n}$ for some universal constant $\alpha > 0$.

The Proof (A Flavor)

Columns labelled with $y \in f^{-1}(0)$

Rows labelled with $x \in f^{-1}(1)$

 $f^{-1}(1) \times f^{-1}(0)$

Let $f: \{0,1\}^N \to \{0,1\}$ be a monotone boolean function.

KW-Search⁺ $(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [N]$ **Input:** $(x,y) \in f^{-1}(1) \times f^{-1}(0)$

Output: $i \in [N]$ $x_i = 1, y_i = 0$

$$X_1 \quad X_2 \quad X_3 \quad X_4 \quad$$

Columns labelled with $y \in f^{-1}(0)$

Rows labelled with $x \in f^{-1}(1)$ X_2 X_3

Let $f: \{0,1\}^N \to \{0,1\}$ be a monotone boolean function.

 $\mathsf{KW}\text{-}\mathsf{Search}^+(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [N]$

Output: $i \in [N]$ $x_i = 1, y_i = 0$

Input: $(x,y) \in f^{-1}(1) \times f^{-1}(0)$

$$X_1 \quad X_2 \quad X_3 \quad X_4 \quad$$

Columns labelled with $y \in f^{-1}(0)$

Let $f: \{0,1\}^N \to \{0,1\}$ be a monotone boolean function.

KW-Search⁺ $(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [N]$ Input: $(x,y) \in f^{-1}(1) \times f^{-1}(0)$ Output: $i \in [N]$ $x_i = 1, y_i = 0$

Theme: Complexity of KW-Search $(f) \approx \text{Circuit Complexity of } f$

Example: Formulas

$$\Lambda = AND \quad V = OR$$

Columns labelled with $y \in f^{-1}(0)$

Rows labelled with $x \in f^{-1}(1)$

Theme: Complexity of KW-Search $(f) \approx \text{Circuit Complexity of } f$

Example: Formulas

Columns labelled with $y \in f^{-1}(0)$

Rows labelled with $x \in f^{-1}(1)$

Lemma. [Khrapchenko 71] Formula for $f: \{0,1\}^n \to \{0,1\}$ with **s** leaves yields a partition of $f^{-1}(1) \times f^{-1}(0)$ into **s** mono. rectangles.

Let $\chi(f)$ denote the minimum number of rectangles in any monochromatic partition of $f^{-1}(1) \times f^{-1}(0)$

Columns labelled with $y \in f^{-1}(0)$

Rows labelled with $x \in f^{-1}(1)$

Idea [Razb. 90]: Use rank to lower bound $\chi(f)$!

Let $\chi(f)$ denote the minimum number of rectangles in any monochromatic partition of $f^{-1}(1) \times f^{-1}(0)$

Columns labelled with $y \in f^{-1}(0)$

A	7
Rows	
labelled	
with	
$x \in f^{-1}(1)$	
	~

X_1	X_3	X_3
A_1	A_2	A_3
	_	2
A_4	A_5	A_6
X_2	X_2	X_4

Idea [Razb. 90]: Use rank to lower bound $\chi(f)$!

Let A be any $|f^{-1}(1)| \times |f^{-1}(0)|$ matrix over a field **F**.

$$A = \sum_{i=1}^{\chi(f)} A_i$$

Let $\chi(f)$ denote the minimum number of rectangles in any monochromatic partition of $f^{-1}(1) \times f^{-1}(0)$ $A = \sum_{i=1}^{\chi(f)} A_i$

Columns labelled with $y \in f^{-1}(0)$

A	X_1	X_3	X_3
Rows	A_1	A_2	A_3
labelled	1	1 1 2	- - 0
with			
$x \in f^{-1}(1)$	A_4	A_5	A_6
	X_2	X_2	X_4

 $\operatorname{rank}(A) \leq \chi(f) \max_{i} \operatorname{rank}(A_i)$

Let $\chi(f)$ denote the minimum number of rectangles in any monochromatic partition of $f^{-1}(1) \times f^{-1}(0)$ $A = \sum_{i=1}^{\chi(f)} A_i$

Columns labelled with $y \in f^{-1}(0)$

 $\operatorname{rank}(A) \leq \chi(f) \max_{i} \operatorname{rank}(A_i)$ $\leq \chi(f) \max_{i \in [n]} \operatorname{rank}(A \upharpoonright X_i)$

Rearranging,
$$\chi(f) \ge \frac{\operatorname{rank}(A)}{\max_{i \in [n]} \operatorname{rank}(A \upharpoonright X_i)}$$

Rank Measure

Theorem [Razb. 90]. For any monotone boolean function f and any $f^{-1}(1) \times f^{-1}(0)$ matrix A over any field, the quantity

$$\mu_A(f) = \frac{\operatorname{rank}(A)}{\max_{i \in [n]} \operatorname{rank}(A \upharpoonright X_i)}$$

is a lower bound on $\chi(f)$ (and the monotone formula size of f).

Theorem [G. 01, RPRC. 16]. $\mu_A(f)$ is also a lower bound on monotone switching networks, monotone span programs, and monotone comparator circuits computing f.

Rank Measure

Theorem [Razb. 90]. For any monotone boolean function f and any $f^{-1}(1) \times f^{-1}(0)$ matrix A over any field, the quantity

$$\mu_A(f) = \frac{\operatorname{rank}(A)}{\max_{i \in [n]} \operatorname{rank}(A \upharpoonright X_i)}$$

is a lower bound on $\chi(f)$ (and the monotone formula size of f).

Main Theorem (Restated). There is an explicit function f computable in NP and a matrix A such that $\mu_A(f) \geq 2^{\alpha n}$.

Proving Lower Bounds on $\mu_A(f)$

Theorem [Razb. 90] There is a monotone boolean function $f: \{0,1\}^n \to \{0,1\}$ in NP and a 0/1 matrix A satisfying

$$\mu_A(f) \ge n^{\Omega(\log n)}$$

[RPRC 16, PR 17] "Lifting theorem" to prove lower bounds against $\mu_A(f)$

- 1. Reduce lower bounds on $\mu_A(f)$ to query complexity lower bounds for a search problem $\operatorname{Search}(\mathcal{C})$ related to KW-Search $^+(f)$
- **2.** Prove strong query complexity lower bounds for $Search(\mathcal{C})$

Search Problems and Algebraic Gaps

 $C = C_1 \wedge C_2 \wedge \ldots \wedge C_m$ is an unsatisfiable **k**-CNF with variables **z**.

Search(C):= given assignment to **z**, output index of falsified clause.

Ex.
$$\mathcal{C} = \overline{x}_1 \wedge \overline{x}_2 \wedge \cdots \wedge \overline{x}_n \wedge \left(\bigvee_{i=1}^n x_i\right)$$

Ex.
$$\mathcal{C}=\overline{x}_1\wedge\overline{x}_2\wedge\cdots\wedge\overline{x}_n\wedge\left(\bigvee_{i=1}^nx_i\right)$$

Certificate = minimal partial restriction falsifying a clause

Ex.
$$\mathcal{C}=\overline{x}_1\wedge\overline{x}_2\wedge\cdots\wedge\overline{x}_n\wedge\left(\bigvee_{i=1}^nx_i\right)$$

$$Cert(C)$$
 $x_1 = 1$ $x_2 = 1$ $x_n = 1$ $x_1 = 0, x_2 = 0, \dots, x_n = 0$

Certificate = minimal partial restriction falsifying a clause

Ex.
$$\mathcal{C} = \overline{x}_1 \wedge \overline{x}_2 \wedge \cdots \wedge \overline{x}_n \wedge \left(\bigvee_{i=1}^n x_i\right)$$

$$Cert(C)$$
 $x_1 = 1$ $x_2 = 1$ $x_n = 1$ $x_1 = 0, x_2 = 0, \dots, x_n = 0$

Algebraic Gap Complexity. Find a polynomial $p: \{0,1\}^n \to \mathbb{R}$

so that $gap_p(\mathcal{C}) = deg(p) - \max_{\pi \in Cert(\mathcal{C})} deg(p \upharpoonright \pi)$ is maximized.

Ex.
$$\mathcal{C} = \overline{x}_1 \wedge \overline{x}_2 \wedge \cdots \wedge \overline{x}_n \wedge \left(\bigvee_{i=1}^n x_i\right)$$

$$Cert(C)$$
 $x_1 = 1$ $x_2 = 1$ $x_n = 1$ $x_1 = 0, x_2 = 0, \dots, x_n = 0$

Algebraic Gap Complexity. Find a polynomial $p: \{0,1\}^n \to \mathbb{R}$

so that
$$\operatorname{gap}_p(\mathcal{C}) = \operatorname{deg}(p) - \max_{\pi \in \operatorname{Cert}(\mathcal{C})} \operatorname{deg}(p \upharpoonright \pi)$$
 is maximized.

$$p = OR_n \implies \deg(OR_n) = n \text{ and } \max_{\pi \in \operatorname{Cert}(\mathcal{C})} \deg(OR_n) = 0$$

Algebraic Gap Complexity vs. Rank Measure

Algebraic Gap Complexity. Given $\operatorname{Search}(\mathcal{C})$, find polynomial $p:\{0,1\}^n \to \mathbb{R}$ so that $\operatorname{gap}_p(\mathcal{C}) = \operatorname{deg}(p) - \max_{\pi \in \operatorname{Cert}(\mathcal{C})} \operatorname{deg}(p \upharpoonright \pi)$ is maximized.

Rank Measure $\mu_A(f)$. Given $f:\{0,1\}^N \to \{0,1\}$, find matrix A such that $\mu_A(f) = \frac{\operatorname{rank}(A)}{\max \operatorname{rank}(A \upharpoonright X_i)}$

is maximized.

Rank Measure Lifting

Theorem [RPRC 16].

For any unsatisfiable **k**-CNF $\mathcal C$ with **m** clauses there is a function $f_{\mathcal C}$ computable in NP with $N \leq m^{2k+1}$ variables and a real matrix A such that

$$\mu_A(f_{\mathcal{C}}) \ge \Omega(m^{\operatorname{gap}(\mathcal{C})}) \ge \Omega(N^{\operatorname{gap}(\mathcal{C})/2k+1})$$

Rank Measure Lifting

Theorem [RPRC 16].

For any unsatisfiable **k**-CNF $\mathcal C$ with **m** clauses there is a function $f_{\mathcal C}$ computable in NP with $N \leq m^{2k+1}$ variables and a real matrix A such that

$$\mu_A(f_{\mathcal{C}}) \ge \Omega(m^{\operatorname{gap}(\mathcal{C})}) \ge \Omega(N^{\operatorname{gap}(\mathcal{C})/2k+1})$$

[RPRC 16].
$$\mathcal{C}$$
 = "pebbling contradiction", then $\mathrm{gap}(\mathcal{C}) \geq m/\log m$ Yields $2^{\Omega(N^{\varepsilon})}$ lower bounds! $\geq \tilde{\Omega}(N^{1/2k+1})$

Problem is the number of variables!

Gadget Size Blues

Query Complexity	<	Circuit Complexity
Decision Tree Depth	[RM 99]	Monotone Circuit Depth [RM 99]
Critical Block Sensitivity [HN	N 12, GP 16]	Avg. Case Monotone Depth [HN 12, GP 16]
Algebraic Gap Complexity	[RPRC 16]	(Logarithm of) Rank Measure [RPRC 16]

For decision trees vs. depth, current constructions yield $N=\omega(m)$ variables.

For critical block sensitivity, we can take N = O(m) variables, but best query lower bounds are $\Omega(m/\log m)$.

Rank Measure Lifting

Theorem [RPRC 16].

For any unsatisfiable **k**-CNF $\mathcal C$ with **m** clauses there is a function $f_{\mathcal C}$ computable in NP with $N \leq m^{2k+1}$ variables and a real matrix A such that

$$\mu_A(f_{\mathcal{C}}) \ge \Omega(m^{\operatorname{gap}(\mathcal{C})}) \ge \Omega(N^{\operatorname{gap}(\mathcal{C})/2k+1})$$

Rank Measure Lifting (Refined)

Theorem [PR 17].

For any unsatisfiable O(1)-CNF $\mathcal C$ with $\mathbf m$ clauses satisfying $\mathrm{gap}(\mathcal C)=\Omega(m)$ there is a function $f_{\mathcal C}$ computable in NP with N=O(m) variables and a real matrix $\mathbf A$ such that

$$\mu_A(f_{\mathcal{C}}) \ge 2^{\Omega(m)} \ge 2^{\Omega(N)}$$

Rank Measure Lifting (Refined)

Theorem [PR 17].

For any unsatisfiable O(1)-CNF $\mathcal C$ with $\mathbf m$ clauses satisfying $\mathrm{gap}(\mathcal C)=\Omega(m)$ there is a function $f_{\mathcal C}$ computable in NP with N=O(m) variables and a real matrix A such that

$$\mu_A(f_{\mathcal{C}}) \ge 2^{\Omega(m)} \ge 2^{\Omega(N)}$$

Proof. [RPRC 16] KW-Search⁺ $(f_{\mathcal{C}}) \equiv \operatorname{Search}(\mathcal{C} \circ g^n(x,y))$

Rank of pattern matrix $A = [p(g^n(x,y))]_{x,y \in \mathcal{X}^n \times \mathcal{Y}^n} \approx \exp(\deg(p))$

Algebraic Gap Complexity. Given Search(C), find polynomial

$$p:\{0,1\}^n \to \mathbb{R}$$
 so that $\operatorname{gap}_p(\mathcal{C}) = \operatorname{deg}(p) - \max_{\pi \in \operatorname{Cert}(\mathcal{C})} \operatorname{deg}(p \upharpoonright \pi)$ is maximized.

Algebraic Gap Complexity. Given Search(C), find polynomial

 $p:\{0,1\}^n \to \mathbb{R}$ so that $\operatorname{gap}_p(\mathcal{C}) = \operatorname{deg}(p) - \max_{\pi \in \operatorname{Cert}(\mathcal{C})} \operatorname{deg}(p \upharpoonright \pi)$ is maximized.

Tseitin Principle. Let **G** be a k-regular graph with an odd number of vertices.

Algebraic Gap Complexity. Given $Search(\mathcal{C})$, find polynomial

$$p:\{0,1\}^n \to \mathbb{R}$$
 so that $\operatorname{gap}_p(\mathcal{C}) = \operatorname{deg}(p) - \max_{\pi \in \operatorname{Cert}(\mathcal{C})} \operatorname{deg}(p \upharpoonright \pi)$ is maximized.

Tseitin Principle. Let **G** be a k-regular graph with an odd number of vertices.

Variables

Constraints

 $u\sim v$

 $Tseitin_G$

 $z_{uv} \quad uv \in E$

 $+ z_{uv} = 1 \qquad v \in V$

Algebraic Gap Complexity. Given $\operatorname{Search}(\mathcal{C})$, find polynomial $p:\{0,1\}^n \to \mathbb{R}$ so that $\operatorname{gap}_p(\mathcal{C}) = \operatorname{deg}(p) - \max_{\pi \in \operatorname{Cert}(\mathcal{C})} \operatorname{deg}(p \upharpoonright \pi)$ is maximized.

Tseitin Principle. Let **G** be a k-regular graph with an odd number of vertices.

Tseitin $_G$ z_{uv} $uv \in E$ Constraints $\bigoplus_{u \sim v} z_{uv} = 1 \qquad v \in V$

Theorem. gap(Tseitin_G) \geq Expansion(G) \cdot m/3d **Proof.** Reduction to resolution width of Tseitin_G

Rank Measure Lifting

Theorem [PR 17]. For any unsatisfiable **O(1)**-CNF $\mathcal C$ with **m** clauses **satisfying** $\mathrm{gap}(\mathcal C)=\Omega(m)$ there is a function $f_{\mathcal C}$ computable in NP with N=O(m) variables and a real matrix A such that

$$\mu_A(f_{\mathcal{C}}) \ge 2^{\Omega(m)} \ge 2^{\Omega(N)}$$

Theorem. gap(Tseitin_G) \geq Expansion(G) \cdot m/3d

Choose G to be a strong constant-degree expander and the main theorem is proved!

Conclusion

Prove the first strongly exponential lower bounds for any explicit function, asymptotically matching non-explicit lower bounds from counting in the monotone setting.

Can we sharpen it further?

Further applications of the framework? (In particular, a deeper understanding of the **algebraic gap complexity** and other exotic query complexity measures for search problems.)

Thanks!