
AVERAGE CASE LOWER BOUNDS FOR MONOTONE SWITCHING NETWORKS

by

Robert Robere

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c© Copyright 2013 by Robert Robere

Abstract

Average Case Lower Bounds for Monotone Switching Networks

Robert Robere

Master of Science

Graduate Department of Computer Science

University of Toronto

2013

An approximate computation of a function f : {0, 1}n → {0, 1} by a computaional model M is a

computation in which M computes f correctly on the majority of the inputs (rather than on all inputs).

Lower bounds for approximate computations are also known as average case hardness results. We

obtain the first average case monotone depth lower bounds for a function in monotone P, tolerating

errors that are asymptotically the best possible for monotone circuits. Specifically, we prove average

case exponential lower bounds on the size of monotone switching networks for the GEN function. As a

corollary, we establish that for every i, there are functions computed with no error in monotone NCi+1,

but that cannot be computed without large error by monotone circuits in NCi.

The work in this paper is joint with Yuval Filmus, Toniann Pitassi and Stephen Cook.

ii

Contents

1 Introduction 1

2 Preliminaries and Main Results 4

2.1 The GEN problem . 5

2.2 Vectors and Vector Spaces . 7

2.3 Switching Networks . 8

2.4 Reversible Pebbling for GEN . 10

2.5 Statement of Main Results . 12

2.6 On Randomized Karchmer-Wigderson . 14

3 Simplified Lower Bounds for Exact Computation 19

3.1 Overview of Proof . 19

3.2 Construction of Nice Vectors . 22

3.2.1 Universal Pebbling Networks . 26

3.2.2 Dual Basis . 28

3.2.3 Nice Vector Construction . 29

3.2.4 Trimming the Nice Vectors . 32

3.3 Exponential Lower Bounds for Monotone Switching Networks 35

4 Average Case Lower Bounds 37

4.1 Warmup . 40

4.2 Tensor Square . 43

4.3 Exponential Lower Bounds for Monotone Switching Networks with Errors 46

iii

Bibliography 47

A Relating Monotone Switching Network Size to Monotone Circuit Depth 51

B More on Randomized Karchmer-Wigderson 53

iv

Chapter 1

Introduction

An approximate computation of a function f : {0, 1}n → {0, 1} by a circuit or switching network M is

a computation in whichM computes f correctly on the majority of the inputs (rather than on all inputs).

More generally, an approximate computation of f with respect to a distribution D is a computation that

computes f correctly on all but an ε < 1/2 fraction of the inputs with respect to D. Lower bounds

for approximate computation are also known as average case hardness, or correlation bounds. Besides

being interesting in their own right, lower bounds for approximate computation have proved useful

in many subareas of complexity theory such as cryptography and derandomization. For an excellent

survey, see [5].

In this paper, we study the average case hardness of monotone circuits and monotone switching

networks (we note here that our results appear in [11]). The first superpolynomial lower bounds on

monotone circuit size is the celebrated result due to Razborov [24], who showed that the clique function

requires exponential-size monotone circuits, and thus also requires large monotone depth. His result

was improved and generalized by many authors to obtain other exponential lower bounds for monotone

circuits (for example [1, 2, 4, 14, 15]). All of these bounds are average case lower bounds for functions

that lie outside of monotone P. The best known average case lower bound for an explicit function is for

Andreev’s polynomial problem, which is (1/2− 1/n1/6)-hard for subexponential-size circuits (follows

from [4]); that means that there is a subexponential function f(n) such that every circuit of size at most

f(n) differs from Andreev’s polynomial problem on at least a (1/2− 1/n1/6)-fraction of the inputs.

Beginning in 1990, lower bound research was aimed at proving monotone size/depth tradeoffs for

efficient functions that lie inside monotone P. The first such result, due to Karchmer and Wigder-

1

CHAPTER 1. INTRODUCTION 2

son [18], established a beautiful equivalence between (monotone) circuit depth and the (monotone)

communication complexity of a related communication game. They used this framework to prove that

the NL-complete directed connectivity problem requires Ω(log2 n) monotone circuit depth, thus prov-

ing that monotone NL (and thus also monotone NC2) is not contained in monotone NC1. Subsequently

Grigni and Sipser [13] used the communication complexity framework to separate monotone logarith-

mic depth from monotone logarithmic space. Raz and McKenzie [22] generalized and improved these

lower bounds by defining an important problem called the GEN problem, and proved tight lower bounds

on the monotone circuit depth of this problem. As corollaries, they separated monotone NCi from mono-

tone NCi+1 for all i, and also proved that monotone NC is a strict subset of monotone P. Unlike the

earlier results (for functions lying outside of P), the communication-complexity-based method devel-

oped in these papers seems to work only for exact computations.

Departing from the communication game methodology from the 1990’s, Potechin [21] recently in-

troduced a new Fourier-analytic framework for proving lower bounds for monotone switching networks.

Potechin was able to prove using his framework a nΩ(logn) size lower bound for monotone switching

networks for the directed connectivity problem. (A lower bound of 2Ω(t) on the size of monotone

switching networks implies a lower bound of Ω(t) on the depth of monotone circuits, and thus the result

on monotone switching networks is stronger.) Recently, Chan and Potechin [8] improved on [21] by

establishing a nΩ(h) size lower bound for monotone switching networks for the GEN function, and also

for the clique function. Thus, they generalized most of the lower bounds due to Raz and McKenzie to

monotone switching networks. However, again their lower bounds apply only for monotone switching

networks that compute the function correctly on every input.

In this paper we obtain the first average case lower bounds on the size of monotone switching

networks (and thus also the first such lower bounds on the depth of monotone circuits) for functions

inside monotone P. We prove our lower bounds by generalizing the Fourier-analytic technique due to

Chan and Potechin. In the process we first give a new presentation of the original method, which is

simplified and more intuitive. Then we show how to generalize the method in the presence of errors,

which involves handling several nontrivial obstacles.

We show that GEN is (1/2 − 1/n1/3−ε)-hard for subexponential-size circuits (under a specific

distribution), and that directed connectivity is (1/2 − 1/n1/2−ε)-hard for nO(logn)-size circuits (also

under a specific distribution). The latter result is almost optimal since no monotone function is (1/2 −

CHAPTER 1. INTRODUCTION 3

log n/
√
n)-hard even for O(n log n)-size circuits [20], though this result is under the uniform distri-

bution. A related result shows that for every ε there is a function that is (1/2 − 1/n1/2−ε)-hard for

subexponential-size circuits [17]. However, the function in [17] results from amplifying a non-explicit

random function, while our functions are explicit and computable in polynomial time.

As a corollary to the above theorem, we separate the levels of the NC hierarchy, as well as monotone

C from monotone P, in the average case setting. That is, we prove that for all i, there are monotone

functions that can be computed exactly in monotone NCi+1 but such that any NCi circuit computing the

same function must have large error. And similarly, there are functions in monotone P but such that any

monotone NC circuit must have large error.

This leaves open the question of whether or not the original communication-complexity-based ap-

proach due to Karchmer and Wigderson can also be generalized to handle errors. This is a very interest-

ing question, since if this is the case, then average case monotone depth lower bounds would translate

to probabilistic communication complexity lower bounds for search problems. Developing communi-

cation complexity lower bound techniques for search problems is an important open problem because

such lower bounds have applications in proof complexity, and imply integrality gaps for matrix-cut

algorithms (See [3, 16].) We show as a corollary of our main lower bound that the communication

complexity approach does not generalize to the case of circuits that make mistakes.

The outline for the rest of the paper is as follows. In Chapter 2 we give background informa-

tion on switching networks, the GEN function, and Fourier analysis, as well as state our main results

(Section 2.5). Then, before proving the lower bound itself, in Section 2.6 we discuss implications for

randomized counterparts of the Karchmer-Wigderson construction. In Chapter 3 we give an exponential

lower bound for monotone, deterministic switching networks, and Chapter 4 extends it to average case

lower bounds. Two appendices describe a reduction from monotone circuits to monotone switching

networks (Appendix A) and more intuition for our result on randomized Karchmer-Wigderson games

(Appendix B).

Chapter 2

Preliminaries and Main Results

In this chapter we give definitions that will be useful throughout the entire course of the paper. If n is

a positive integer then we define the set [n] = {1, 2, . . . , n}, and for integers i, j with i < j we define

the set [i, j] = {i, i + 1, . . . , j} If S is a subset of some universe U , we define S = U \ S to be the

complement of S. As usual, we use ∪ to denote the union, ∩ to denote the intersection, and4 to denote

the symmetric difference of two sets. IfN andm are positive integers, we denote by
(

[N]
m

)
the collection

of all subsets of [N] of size m. The notation 1 denotes the vector all of whose entries are 1 (the length

of the vector will always be clear from the context). We are interested in studying the space complexity

of Boolean functions f : {0, 1}n → {0, 1}. For an input x ∈ {0, 1}n, we denote the ith index of x by

xi. For a pair of inputs x, y ∈ {0, 1}n, we write x ≤ y if xi ≤ yi for all i. A boolean function f is

monotone if f(x) ≤ f(y) whenever x ≤ y.

Assume f : {0, 1}n → {0, 1} is a monotone boolean function. An input x ∈ {0, 1}n is called

a maxterm of f if f(x) = 0 and f(x′) = 1 for the input x′ obtained by flipping any 0 in x to a

1. Similarly, an input x ∈ {0, 1}n is called a minterm if f(x) = 1 and f(x′) = 0 for the input x′

obtained by flipping any 1 in x to a 0. Note that maxterms and minterms are named because they are the

maximally unsatisfiable and minimally satisfiable instances of the boolean function. If f is a boolean

function and f(x) = 1 we will call x an accepting instance of f , otherwise it is a rejecting instance.

If P (x) is a boolean condition depending on an input x, then we write [P (x)] to denote the boolean

function associated with that condition. For example, if V is a fixed set, we denote by [U ⊆ V] the

function P (U) which is 1 if U ⊆ V and 0 otherwise.

4

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 5

2.1 The GEN problem

We will prove lower bounds for the GEN function, originally defined by Raz and McKenzie [22].

Definition 2.1. Let N ∈ N, and let L ⊆ [N]3 be a collection of triples on [N] called literals. For a

subset S ⊆ [N], the set of points generated from S by L is defined recursively as follows: every point

in S is generated from S, and if i, j are generated from S and (i, j, k) ∈ L, then k is also generated

from S. (If L were a collection of pairs instead of a collection of triples, then we could interpret L as

a directed graph, and then the set of points generated from S is simply the set of points reachable from

S.)

The GEN problem is as follows: given a collection of literals L and two distinguished points s, t ∈

[N], is t generated from {s}?

For definiteness, in the reminder of the paper we fix (arbitrarily) s = 1 and t = N .

We assume that every instance of GEN throughout the rest of the paper is defined on the set [N], and

we use s and t to denote the start and target points of the instance. Sometimes we want to distinguish a

particular literal in instances of GEN, so, if ` is a literal appearing in an instance I then we call (I, `) a

pointed instance.

We can naturally associate GEN instances with some graphs. If G is a DAG with a unique source s,

a unique sink t, and in-degree at most 2, then we can form an instance of GEN from G by identifying

the start and target points appropriately, and adding a literal (x, y, z) to the GEN instance if the edges

(x, z), (y, z) are in G. If z is a vertex of in-degree 1, say (x, z) ∈ G, then we add the literal (x, x, z)

instead.

If G does not have a unique source or a unique sink then we can simply add one and connect it to

all of the sources or sinks, which is illustrated in Figure 2.3.

The problem GEN is monotone: if we have an instance of GEN given by a set of literals L, and L

is an accepting input for GEN, then adding any literal l 6∈ L to L will not make L a rejecting input.

Moreover, it can be computed in monotone P (we leave the proof as an easy exercise).

Theorem 2.2. GEN is in monotone P .

Let (C,C) be a partition of [N] \ {s, t} into two sets. We call such a set C a cut in the point set [N].

We think of the cut C as always containing s and never containing t, and so we define Cs = C ∪ {s}.

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 6

s

t

Figure 2.1: A pyramid graph and the corresponding GEN instance

Then we can define an instance G(C) of GEN, called a cut instance, as

G(C) = [N]3 \ {(x, y, z) ∈ N3 | x, y ∈ Cs, z ∈ Cs}.

If G(C) is a cut instance and ` = (x, y, z) is a literal with x, y ∈ Cs and z ∈ Cs then we say that `

crosses C.

It might seem more natural to defineC as a subset of [N] containing s and not containing t. However,

from the point of view of Fourier analysis, it is more convenient to remove both “constant” vertices s, t

from the equations.

The set of cut instances is exactly the set of maxterms of GEN.

Proposition 2.3. Let L be an instance of GEN. Then L is rejecting if and only if there exists a cut

C ⊆ [N] such that L ⊆ G(C).

Proof. Assume that L is accepting. Then if there existed a cut C ⊆ [N] with L ⊆ G(C), it follows that

L would be rejecting from the monotonicity of GEN and the fact that G(C) is a maxterm, which is a

contradiction. Similarly, if L is rejecting, then there exists a maxterm G(C) such that L ⊆ G(C), and

so for this cut instance there cannot exist a literal ` ∈ L with ` 6∈ G(C).

Let C be the collection of subsets of [N] \ {s, t}, and note that every set C ∈ C can be identified

with a cut (and therefore a cut instance). We also note that |C| = 2N−2.

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 7

2.2 Vectors and Vector Spaces

In this section we recall some definitions from linear algebra. Consider the set of all cuts C on the point

set [N] of GEN. A cut vector is a function f : C → R, which we think of as a real-valued vector indexed

by cuts C ∈ C. We define an inner product on the space of cut vectors by

〈f, g〉 =
1

|C|
∑
C∈C

f(C)g(C)

for any two cut vectors f, g. Two cut vectors f, g are orthogonal if 〈f, g〉 = 0, and a set of vectors V is

orthogonal if every pair of vectors in V is orthogonal. Using this inner product, we define the magnitude

of a cut vector f to be ||f || =
√
〈f, f〉.

We will also need some tools from Fourier analysis. Given a cut U ∈ C, define the cut vector

χU : C → R by

χU (C) = (−1)|U∩C|.

We have the following proposition regarding these vectors:

Proposition 2.4. The collection of vectors {χU}U∈C is orthonormal.

Proof. If U and V are two sets with U = V , then

〈χU , χV 〉 =
1

|C|
∑
C∈C

χU (C)χV (C) =
1

|C|
∑
C∈C

χU (C)2 =
1

|C|
∑
C∈C

(−1)2|U∩C| =
1

|C|
∑
C∈C

1|U∩C| =
C
C

= 1.

So, let U and V be two vectors with U 6= V . Then

〈χU , χV 〉 =
1

|C|
∑
C∈C

χU (C)χV (C) =
1

|C|
∑
C∈C

(−1)|U∩C|(−1)|V ∩C|

=
1

|C|
∑
C∈C

(−1)|U∩C|+|V ∩C| =
1

|C|
∑
C∈C

(−1)|(U4V)∩C|,

where the last equality follows since each element in U ∩V ∩C is counted twice. Since U 4V 6= ∅ by

assumption, it follows by cancellation that

1

|C|
∑
C∈C

(−1)|(U4V)∩C| = 0

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 8

and the proof is complete.

This particular collection of vectors forms a basis for the vector space of cut vectors known as the

Fourier basis. It follows that we can write any cut vector f : C → R as f =
∑

C∈C〈f, χC〉χC , where

〈f, χC〉 is called the Fourier coefficient at C. Following convention, we will denote 〈f, χC〉 by f̂(C).

We need some useful properties of the Fourier transform. First recall Parseval’s Theorem: let f be

any cut vector, then

〈f, f〉 =
∑
C∈C

f̂(C)2, (2.1)

Parseval’s theorem also holds in a more general setting: If B is an orthonormal set of cut vectors then

〈f, f〉 ≥
∑
φ∈B
|〈f, φ〉|2. (2.2)

2.3 Switching Networks

In this section we introduce switching networks, which are a computation model used to capture space-

bounded computation.

Definition 2.5. Let X = {x1, . . . , xn} be a set of input variables. A monotone switching network

M on the variables X is specified as follows. There is an underlying graph undirected G = (V,E)

whose nodes are called states and whose edges are called wires, with a distinguished start state s and a

distinguished target state t. The wires of M are labelled with variables from X .

Given an input x : X → {0, 1} (or an assignment of the variables), the switching network responds

as follows. Let e be a wire in the switching network, and let xi be the variable labelling e. The edge e

is alive if xi = 1, and it is dead if xi = 0.

We say that M accepts an input x if there exists a path from s to t using only wires which are

alive under x. If no such path exists, then M rejects x. The Boolean function computed by M is

f(x) = [M accepts x].

Throughout the paper we follow the convention used in the previous definition and use bold face to

denote objects in switching networks.

We briefly mention some computation models extending monotone switching networks. If the un-

derlying graph G is directed, then instead of a switching network we have a switching-and-rectifier

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 9

network. A non-monotone switching network can have negated literals on the wires. All switching

networks considered in this paper are monotone and undirected.

Monotone switching networks and monotone circuits are connected by the following result essen-

tially proved by Borodin [6]: a monotone circuit of depth d can be simulated by a monotone switching

network of size 2d, and a monotone switching network of size s can be simulated by a monotone circuit

of depth O(log2 s). (The result holds also for non-monotone switching networks and non-monotone

circuits.) See Appendix A for a proof sketch.

A switching network for GEN is a switching network whose input is an instance of GEN. Such

a switching network is complete if it accepts all yes instances of GEN. It is sound if it rejects all no

instances of GEN. A switching network which is both complete and sound computes the GEN function.

Let M be a switching network for GEN. We can naturally identify each state u in the switching

network M with a reachability vector Ru : C → {0, 1} defined by

Ru(C) :=

1 if u is reachable on input G(C),

0 otherwise.

Here are some basic properties of the reachability vectors.

Theorem 2.6. Let M be a switching network with start state s and target state t.

1. Rs ≡ 1.

2. If M is sound then Rt ≡ 0.

3. If u and v are two states connected by a wire labelled ` and C is a cut with ` ∈ G(C) then

Ru(C) = Rv(C).

Proof. By the above definition, if s is the start state of the network M then we haveRs(C) = 1 for every

cut C since the state s is reachable on every instance. Similarly, it should be clear from the definition of

the reachability vectors that the switching network M is sound only if Rt(C) = 0 for each cut C since

the collection of instances {G(C) | C ∈ C} are exactly the maxterms of GEN by Proposition 2.3.

Finally, we show that if u and v are two states in M connected by a wire labelled with `, and if C is

a cut with ` ∈ G(C), then Ru(C) = Rv(C). For observe that if ` ∈ G(C) then the wire labelled with

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 10

` connecting u and v will be alive during the computation of M on G(C), and so the state u will be

reachable if and only if the state v is.

2.4 Reversible Pebbling for GEN

Next we discuss the reversible pebbling game on graphs, which is a space-efficient way to perform

reachability tests on graphs. The particular form of this test gives an algorithm for GEN by applying it

to the underlying graph of a GEN instance.

Definition 2.7. Let G = (V,E) be a directed acyclic graph (DAG) with a unique source s and a unique

sink t. For a node v ∈ V , let P (v) = {u ∈ V : (u, v) ∈ E} be the set of all incoming neighbors

of v. We define the reversible pebbling game as follows. A pebble configuration is a subset S ⊆ V

of “pebbled” vertices. For every x ∈ V such that P (x) ⊆ S, a legal pebbling move consists of either

pebbling or unpebbling x, see Figure 2.2. Since s is a source, P (s) = ∅, and so we can always pebble

or unpebble it.

u

vu

v

x x

x
Figure 2.2: Legal pebbling moves involving x; the corresponding pebbling configurations are u and v

The goal of the reversible pebbling game is to place a pebble on t, using only legal pebbling moves,

starting with the empty configuration, while minimizing the total number of pebbles used simultane-

ously. Formally, we want to find a sequence of pebbling configurations S0 = ∅, S1, . . . , Sn such that

t ∈ Sn, and for each i ∈ {0, . . . , n− 1}, the configuration Si+1 is reachable from configuration Si by a

legal pebbling move. We call such a sequence a valid pebbling sequence forG. The pebbling cost of the

sequence is max(|S0|, . . . , |Sn|). The reversible pebbling number of a DAG G is the minimal pebbling

cost of a valid pebbling sequence for G.

Dymond and Tompa [10] showed that the reversible pebbling number of any graph with n vertices

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 11

Figure 2.3: Reversible Pebbling Moves on the Pyramid

and in-degree 2 is O(n/ log n). Gilbert and Tarjan [12] constructed matching graphs (see also Nord-

ström’s excellent survey [19]).

Theorem 2.8. There is an explicit family of DAGs Gn with in-degree 2 such that Gn has n vertices and

reversible pebbling number Ω(n/ log n).

In fact, the graphs Gn have black-white pebbling number Ω(n/ log n). For more on reversible

pebbling and its applications, see [7].

Pyramid graphs are graphs withO(h2) nodes and reversible pebbling number Θ(h) for each positive

integer h.

Definition 2.9. A directed graph P = (V,E) is a pyramid graph with h levels if V is partitioned into

h subsets, V1, V2, . . . , Vh (called levels), where Vi has i vertices. Let Vi = {vi1, vi2, . . . , vii}. For

each i ∈ [h − 1], if vij and vi,j+1 are a pair of adjacent vertices in layer Vi, then there are edges

(vij , vi+1,j−i−1) and (vi,j+1, vi+1,j−i−1).

Cook [9] calculated the pebbling number of pyramids.

Theorem 2.10. Let P be any pyramid graph with h levels. The reversible pebbling number of P is

Θ(h).

Another useful class of graphs are path graphs.

Definition 2.11. A directed graph P = (V,E) is a directed path of length n if V = {v1, . . . , vn} and

E = {(v1, v2), . . . , (vn−1, vn)}.

Potechin [21] computed the reversible pebbling number of directed paths. In hindsight, the same

computation appears in Raz and McKenzie [22]; they computed a different statistic of the graph, which

was shown to equal the reversible pebbling number by Chan [7].

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 12

Theorem 2.12. The reversible pebbling number of a directed path of length n is Θ(log n).

Every DAG with in-degree at most 2 naturally defines a minterm of GEN which we call a graph

instance.

Definition 2.13. LetG be a DAG with in-degree at most 2 and a single sink t, and suppose the vertex set

of G is a subset of [N] not containing s. The GEN instance corresponding to G contains the following

triples: for each source x, the triple (s, s, x); for each vertex z with inbound neighborhood {x}, the triple

(x, x, z); for each vertex z with inbound neighborhood {x, y}, the triple (x, y, z). Such an instance is

called a graph instance isomorphic to G. The underlying vertex set consists of the vertex set of G with

the vertex t removed.

For a graph G, the function G − GEN is the monotone function whose minterms are all graph

instances isomorphic to G.

Raz and McKenzie [22] proved the following result.

Theorem 2.14. For each DAG G there is a polynomial size monotone circuit of depth Θ(h logN) for

G− GEN, where h is the reversible pebbling number of G.

Their main contribution was to prove a matching lower bound on circuit depth, for m = NO(1).

2.5 Statement of Main Results

In this paper we prove lower bounds for monotone switching networks computing GEN. Our first

contribution is a simplified proof of the following theorem [8] which gives an exponential lower bound

for deterministic monotone switching networks.

Theorem 2.15. LetN,m, h be positive integers, and letG be a DAG onm+1 vertices with in-degree at

most 2 and reversible pebbling number at least h+ 2. Any sound monotone switching network for GEN

which accepts all graph instances isomorphic to G must have at least Ω(hN/m2)h/3/O(m) states.

Corollary 2.16. For any ε > 0, any monotone switching network which computes GEN must have at

least 2Ω(εN1−ε) states.

Proof. Apply the theorem with m = N1−ε and a DAG G with reversible pebbling number h =

Θ(m/ logm), given by Theorem 2.8.

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 13

We also consider monotone switching networks which are allowed to make errors. Let D be any

distribution on instances of GEN. We say that a monotone switching network M computes GEN with

error ε if the function computed by M differs from GEN on an ε-fraction of inputs (with respect to D).

The distributions D we use are parametrized by DAGs. For any DAG G with in-degree at most 2

we define DG to be the distribution on instances of GEN which with probability 1/2 chooses G(C) for

a uniformly random cut C ∈ C, and with probability 1/2 chooses a uniformly random graph instance

isomorphic to G.

Our major result in this paper is a strong extension of Theorem 2.15 for switching networks com-

puting GEN with error close to 1/2.

Theorem 2.17. Let α be a real number in the range 0 < α < 1. Let m,h,N be positive integers

satisfying 324m2 ≤ Nα, and let G be a DAG with m+ 1 vertices, in-degree 2 and reversible pebbling

number at least h+ 2.

Any monotone switching network which computes GEN on [N + 2] with error ε ≤ 1/2 − 1/N1−α

must have at least Ω(hN/m2)h/3/O(mN) states.

Corollary 2.18. For any α in the range 0 < α < 1, any monotone switching network computing GEN

with error at most 1/2− 1/N1−α must have at least 2Ω(αNα/2) states.

Proof. Apply the theorem with m = Nα/2/324 and a DAG G with reversible pebbling number h =

Θ(m/ logm), given by Theorem 2.8.

Using this theorem, we get the following corollary separating NCi and NCi+1 in the presence of

errors. Recall from Theorem 2.10 that the pyramid graph with height h has reversible pebbling number

Θ(h) and m = h(h+ 1)/2 nodes.

Theorem 2.19. Let 0 < δ < 1/3 be any real constant. For each positive integer i there exists a

language L which is computable in monotone NCi+1, but there is no sequence of circuits in monotone

NCi which computes L on inputs of length k with error ε ≤ 1/2− 1/k1/3−δ.

Proof. For each N , let LN3 ⊆ {0, 1}N3
be G− GEN, where G is a pyramid of height h = logiN , and

let L =
⋃
N>0 LN3 . Theorem 2.14 shows that for each N there exists a polynomial size circuit of depth

O(h logN) = O(logi+1N) computing LN3 , and so L is in monotone NCi+1.

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 14

On the other hand, any monotone circuit C with bounded fan-in and depth d can be simulated by

a monotone switching network with 2d states. Therefore Theorem 2.17 (with α = 3δ) implies that for

large enough N , any monotone circuit computing LN3 with ε ≤ 1/2 − 1/N1−3δ ≤ 1/2 − 1/k1/3−δ

error must have depth Ω(h logN) = Ω(logi+1N).

Similarly, we can separate monotone NC from monotone P.

Theorem 2.20. Let 0 < δ < 1/3 be any real constant. There exists a language L which is computable

in monotone P, but there is no sequence of circuits in monotone NC which computes L on inputs of

length k with error ε ≤ 1/2− 1/k1/3−δ.

Proof. The proof is similar to the proof of the previous theorem. Instead of choosing h = logiN ,

choose h = N1/100.

We also get the following result for directed connectivity which approaches the optimal result men-

tioned in the introduction (albeit with a different input distribution).

Theorem 2.21. Let 0 < δ < 1/2 be any real constant. For k = N2, let f be the function whose input

is a directed graph on N vertices, and f(G) = 1 if in the graph G, the vertex N is reachable from the

vertex 1. There exists a distribution D on directed graphs such that any monotone switching network

computing f with error ε < 1/2− 1/k1/2−δ (with respect to D) contains at least NΩ(logN) states.

Proof. We can reduce f to GEN by replacing each edge (u, v) in the input graph by a triple (u, u, v).

The resulting instance is accepted by GEN iff t := N is reachable from s := 1 in the input graph.

Given N , letGN be the directed path of length N1/100. Theorem 2.12 shows that GN has reversible

pebbling number Θ(logN). Applying Theorem 2.17 (with α = 2δ) yields a lower bound of NΘ(logN)

on the size of monotone switching networks computing f with error ε < 1/2 − 1/N2δ = 1/2 − 1/kδ

with respect to the distribution DGN .

2.6 On Randomized Karchmer-Wigderson

For a Boolean function f : {0, 1}n → {0, 1} letRf ⊆ {0, 1}2n×[n] be the following relation associated

with f . If α ∈ f−1(1) and β ∈ f−1(0), then Rf (α, β, i) holds if and only if α(xi) 6= β(xi). Intuitively,

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 15

if α is a 1 of the function and β is a 0 of the function, then i is an index where α and β differ. Similarly,

if f is a monotone Boolean function, then Rmf (α, β, i) if and only if α(xi) = 1 and β(xi) = 0.

Karchmer and Wigderson [18] proved that for any Boolean function, the minimum depth of any

circuit computing f is equivalent to the communication complexity of Rf , and similarly for any mono-

tone Boolean function, the minimum monotone circuit depth for f is equivalent to the communication

complexity of Rmf .

We are interested in whether there is an analog of the Karchmer-Wigderson result in the case of

circuits and communication complexity protocols that make errors. That is, is it true that for any Boolean

function f , the minimum depth of any circuit that computes f correctly on most inputs over a distribution

D, is related to the communication complexity for Rf with respect to D? And similarly is monotone

circuit depth related to communication complexity in the average case setting?

Such a connection would be very nice for several reasons. First, a communication complexity ap-

proach to proving average case circuit lower bounds is appealing. Secondly, proving lower bounds on

the average case communication complexity of relations is an important problem as it is related to prov-

ing lower bounds in proof complexity. In particular, average case communication complexity lower

bounds for relations associated with unsatisfiable formulas imply lower bounds for several proof sys-

tems, including the cutting planes and Lová sz-Schrijver systems [3, 16]. Thus an analog of Karchmer-

Wigderson in the average case setting, together with our new lower bounds for monotone circuits, would

imply a new technique for obtaining average case communication complexity lower bounds for search

problems.

In the forward direction, it is not hard to see that if C is a circuit that computes f correctly on all

but an ε fraction of inputs, then there is a communication complexity protocol for Rf (or for Rmf in the

case where C is a monotone circuit) with low error. If the circuit C on inputs α and β yields the correct

answer, then the Karchmer-Wigderson protocol will be correct on the pair α, β.

However, the reverse direction is not so clear. Raz and Wigderson [23] showed that in the non-

monotone case, the Karchmer-Wigderson connection is false. To see this, we note that given inputs α, β,

there is an O(log2 n) randomized protocol that finds a bit i such that αi 6= βi, or that determines that

α = β. (Recursively apply the randomized equality testing protocol on the left/right halves of the inputs

in order to find a bit where the strings are different, if such an index exists; a more efficient protocol

along similar lines has complexity O(log n).) Using this protocol, it follows that for every Boolean

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 16

function, Rf has an efficient randomized protocol. Now by Yao’s theorem, this implies that for every

function f and every distribution D, there is an efficient protocol for Rf with low error with respect to

D. On the other hand, by a counting argument, almost all Boolean functions require exponential-size

circuits even to approximate.

The intuitive reason that the Karchmer-Wigderson reduction works only in the direction circuits to

protocols is that protocols are cooperative while circuits are, in some sense, competitive. We make this

argument more precise in Appendix B.

In the monotone case, it is not as easy to rule out an equivalence between randomized monotone

circuit depth for f and randomized communication complexity for Rmf . The above argument for the

non-monotone case breaks down here because the communication problem of finding an input i such

that αi > βi, given the promise that such an i exists, is equivalent to the promise set disjointness

problem where Alice and Bob are given two sets with the promise that they are not disjoint, and they

should output an element that is in both sets. Promise set disjointness is as hard as set disjointness by

the following reduction. Given an efficient protocol for promise set disjointness, and given an instance

α, β of Rmf where |α| = |β| = n, the players create strings α′, β′ of length n + 1 by selecting an

index i ∈ [n + 1] randomly, and inserting a 1 in position i into both α and β. If α and β were disjoint,

running a protocol for promise disjointness on α′ and β′ is guaranteed to return the index of the planted

1. Otherwise, the promise disjointness protocol should return a different index (not the planted one)

with probability at least 1/2. Repeating logarithmically many times yields a protocol that solves set

disjointness with low error.

We will now prove that the Karchmer-Wigderson equivalence is also false in the monotone case.

Theorem 2.22. The monotone Karchmer-Wigderson reduction does not hold in the average-case setting.

That is, there is a monotone function f : {0, 1}n → {0, 1}, a distribution D and an ε satisfying 0 < ε <

1/2, such that there is an efficient protocol for Rmf with error at most ε with respect to D but such that

any subexponential-size monotone circuit for f of depth nε has error greater than ε with respect to D.

Proof. We will consider the GEN problem on a universe of size N . Our distribution will consist of a

distribution of minterms and maxterms. The minterms will be pyramids of size n, and the maxterms

will be all cuts. We give an efficient randomized protocol for solving Rmf on the uniform distribution

over minterms and maxterms. A random pyramid P is generated by choosing m points uniformly at

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 17

random from [N] and constructing the pyramid triples arbitrarily. (For example, pick a permutation of

the m points, and let this define the pyramid triple.) Add the triples (s, s, vi) for all 1 ≤ i ≤ h, where

vi, i ∈ [h] are the elements at the bottom of the pyramid, and add the triple (u, u, t), where u is the

element at the top of the pyramid. A random cut C is generated by choosing each i ∈ [N] to be on the

s-side with probability 1/2, and otherwise on the t-side. The instance corresponding to C is obtained by

adding all triples except for those triples that “cross the cut” – that is, the triples (i, j, k) where i, j ∈ C

and k ∈ C.

Now consider the following protocol for solving Rmf . On input P for Alice, Alice deterministically

selects a set of logm disjoint triples (i, j, k) in P and sends them to Bob. Then Bob checks whether

or not any of these triples crosses his cut, and if so he outputs one of these triples, and otherwise the

protocol fails, and Bob outputs an arbitrary triple.

We will call a cut C bad for P if the above algorithm fails. For each P , we will upper bound the

fraction of cuts that are bad for P . If (i, j, k) is a triple appearing in P , then the probability over all cuts

C that (i, j, k) does not cross C is at most 1/8 (since it is the probability that i, j lie on the s-side, and

k lies on the t-side). Since we have logm disjoint triples, the probability that none of them cross C is

at most 1/m. Overall, our protocol has communication complexity O(log2m) and solves Rmf over our

distribution of instances with probability at least 1− 1/m.

On the other hand, by our main lower bound (cf. Corollary 2.16), any small monotone circuit for

solving GEN errs with superconstant probability over this same distribution of instances.

We note that the hard examples that were previously known to be hard for monotone circuits with

errors, such as clique/coclique, are not good candidates for the above separation. To see this note that

if yes instances are k-cliques and no instances are k − 1 colorings, then the clique player needs to send

about
√
k vertices in order to have a good chance of finding a repeated color, and thus the protocol is

not efficient in the regime where clique/coclique is exponentially hard (for k = nε).

We also note that our result implies that the proof technique of [22] does not generalize to prove av-

erage case lower bounds for monotone circuits. This leaves the interesting open question of establishing

a new connection between randomized circuit depth and communication complexity. One possibility

is to consider randomized protocols for Rf or Rmf which succeed with high probability on all pairs of

CHAPTER 2. PRELIMINARIES AND MAIN RESULTS 18

inputs (the randomized counterpart of the protocol in the proof of Theorem 2.22 fails in some extreme

cases), and connect them to some “distribution-less” notion of randomized circuits.

Chapter 3

Simplified Lower Bounds for Exact

Computation

In this section we give a simplified proof of the main theorem from [8], which we restate here1.

Theorem 2.15. LetN,m, h be positive integers, and letG be a DAG onm+1 vertices with in-degree at

most 2 and reversible pebbling number at least h+ 2. Any sound monotone switching network for GEN

which accepts all graph instances isomorphic to G must have at least Ω(hN/m2)h/3/O(m) states.

3.1 Overview of Proof

We focus on a set of minterms and maxterm over a ground set of size N . The minterms are height h,

size m pyramids2, where m = O(N1/3), and the maxterms are cuts, given by a subset C of the vertices

containing s and not containing t. The instance G(C) corresponding to C contains all triples except for

(i, j, k) where i and j are in C and k is not in C. Our minterms will consist of a special exponential-

sized family of pyramid instances, P , with the property that their pairwise intersection is at most h, and

our maxterms, C, will consist of all cuts. Given a monotone switching network (M, s, t) solving GEN

over [N], for each state v we define its reachability function Rv : C → {0, 1} given by Rv(C) = 1 if v

is reachable from s in the instance G(C), and otherwise Rv(C) = 0.

1The result proved in [8] is stated only for pyramids, but as noted in [7], the proof works for any DAG with in-degree at
most 2 once we replace h with the reversible pebbling number of the graph.

2Our proof is presented more generally for any fixed graph of size roughly N ε but for simplicity of the proof overview, we
will restrict attention to pyramid yes instances.

19

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 20

At the highest level, the proof is a bottleneck counting argument. For each pyramid P ∈ P , we will

construct a function gP from the set C of all cuts to the reals. This function will satisfy three properties.

(1) For every P ∈ P there is a “complex” state vP in the switching network such that 〈gP , RvP 〉 =

Ω(1/|M|).

(2) gP only depends on coordinates from P , and gP has zero correlation with any function which

depends on at most h coordinates.

(3) Finally, ‖gP ‖ is upper-bounded by mO(h).

The first property tells us that for every pyramid P ∈ P , there is a complex state vP in the network

that is specialized for P . The second property, together with the fact that the P ’s in P are pairwise

disjoint, will imply that the functions {gP : P ∈ P} are orthogonal, and thus we have

1 = 〈Rv, Rv〉 ≥
∑
P∈P
|〈Rv,

gP
‖gP ‖

〉|2 =
1

mO(h)

∑
P∈P
〈gP , Rv〉2.

By the third property, ‖gP ‖ is small, and thus it follows that no state v cannot be complex for more

than N2mO(h) different P ’s (since otherwise, the quantity on the right side of the above equation would

be greater than 1.) This together with the fact that |P| is very large, so that |P|/(N2mO(h)) is still

exponentially large, imply our lower bound.

It remains to construct these magical functions gP . For the rest of this overview, fix a particular

pyramid P . How can we show that some state in the switching network is highly specific to P ? We

will use the original Karchmer-Wigderson intuition which tells us that in order for a monotone circuit

to compute GEN correctly (specifically, to output “1” on P and “0” on all cuts), it must for every cut

C produce a witness literal l ∈ P that is not in G(C). And (intuitively) because different literals

must be used as witnesses for different cuts, this should imply that a non-trivial amount of information

must be remembered in order to output a good witness. This intuition also occurs in many information

complexity lower bounds.

The above discussion motivates studying progress (with respect to our fixed pyramid P , and all

cuts), by studying progress of the associated search problem. To this end, for each pyramid P ∈ P and

literal ` ∈ P , we will consider `-nice functions gP,l, where `-nice means that gP,`(C) = 0 whenever

G(C)(`) = 1. We will think of an `-nice function gP,` as a “pseudo” probability distribution over

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 21

no instances (cuts) that puts zero mass on all cuts C such that G(C)(`) = 1. (gP,` is not an actual

distribution since it attains both positive and negative values.) For a state u in the switching network,

the inner product 〈Ru, gP,`〉 will be our measure of progress of the GEN function with respect to the

pyramid P , on no instances where the witness cannot be `. In order for gP,` to behave like a distribution,

we will require that 〈gP,`, 1〉 = 1

Because Rs accepts all cuts, it follows that 〈Rs, gP,`〉 = 1, which we interpret as saying that at the

start state, we have made no progress on rejecting the pseudo-distribution defined by gP,`. Similarly,

because Rt rejects all cuts, it follows that 〈Rt, gP,`〉 = 0, which we interpret as saying that at the final

state, we have made full progress since we have successfully rejected the entire pseudo-distribution

defined by gP,`.

For our yes instance P and some literal ` ∈ P , let p = s,u1,u2, . . . ,uq, t be an accepting computa-

tion path on P . If we trace the corresponding inner products along the path, 〈Rs, gP,`〉, 〈Ru1 , gP,`〉, . . . ,

〈Rt, gP,`〉, they will start with value 1 and go down to 0. Now if u and v are adjacent states in the switch-

ing network connected by the literal `, then progress at u with respect to gP,` is the same as progress at

v with respect to gP,`. This is because the pseudo-distribution defined by gP,` ignores inputs where `

crosses the cut (they have zero “probability”), and all other cuts reach u iff they reach v.

This allows us to invoke a crucial lemma that we call the gap lemma, which states the following.

Fix an accepting path p for the yes instance P . Then since for every ` ∈ P , 〈gP,`, Rs〉 = 1 and

〈gP,`, Rt〉 = 0, and for every pair of adjacent states ui and ui+1 along the path, one of these inner

products doesn’t change, then there must exist some node v on the path and two literals `1, `2 ∈ P such

that |〈gP,`1 , Rv〉 − 〈gP,`2 , Rv〉| ≥ 1/|M |. Thus the gap lemma for P implies that this state v behaves

significantly differently on the two pseudo-distributions gP,`1 and gP,`2 of cuts, and therefore this node

can distinguish between these two pseudo-distributions. We will let gP = gP,`1 − gP,`2 be the pseudo-

distribution associated with P . In summary, the gap lemma implies that for every yes instance P , we

have a pseudo-distribution gP and a “complex state” in the switching network which is highly specific

to gP . Thus we have shown property (1) above.

In order to boost the “complex state” argument and get an exponential size lower bound, as explained

earlier, we still need to establish properties (2) and (3). The construction proceeds in two steps: first

we construct functions gP,` satisfying properties (2) but whose norm is too large, and then we fix the

norm. Our construction is the same as in earlier papers, and this is the essential place in the proof where

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 22

the pebbling number of the graph comes into play. (For pyramid graphs, the pebbling number is Θ(h),

where h is the height of the pyramid.) The construction, while natural, is technical and thus we defer its

explanation to Appendix 3.2.

Now we want to generalize the above argument to switching networks that are allowed to make

errors. Several important things go wrong in the above argument. First, the set P of pyramids that we

start with above may not be accepted by the network, and in fact it might even be that none of them are

accepted by the network. Secondly, it is no longer true that 〈gP,`, Rt〉 = 0 as required in order to apply

the gap lemma, because now there may be many cuts which are incorrectly accepted by the switching

network.

The first problem can be easily fixed since if a random pyramid is accepted by the network, then

we can still find a large design consisting of good pyramids, by taking a random permutation of a fixed

design. Solving the second problem is more difficult. In the worst case, it may be that 〈gP,`, Rt〉 6= 0 for

all gP,`, and so the gap lemma cannot be applied at all. To address this issue, we will say that a pyramid

is good for a network if it is both accepted by the network, and if 〈gP,`, Rt〉 is small (say less than 1/2)

for some ` ∈ P . We are able to prove (by estimating the second moment) a good upper bound on the

probability that 〈gP,`, Rt〉 is large, and thus we show that with constant probability, a random pyramid

is good. Then we generalize our gap lemma to obtain an “approximate” gap lemma which essentially

states that as long as the inner products with Rt are not too close to 1, then we can still find a complex

state for P in the network; in fact, it is enough that one inner product is not too close to 1. Using

these two new ingredients, we obtain average case exponential lower bounds for monotone switching

networks for GEN.

3.2 Construction of Nice Vectors

As discussed in the overview, the proof makes use of `-nice vectors, which we proceed to define.

Definition 3.1. Let g : C → R be a cut vector and ` ∈ [N]3. Recall that for each cut C in GEN we

associate a cut instance G(C).

We say that g is `-nice if 〈g,1〉 = 1 and g(C) = 0 whenever ` 6∈ G(C).

In a sense, vectors which are `-nice are “ignorant” of cuts which are crossed by the literal `. This

has the following implication.

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 23

Lemma 3.2. Let ` ∈ [N]3 and let M be a monotone switching network for GEN. If a cut vector g is

`-nice then for any pair of states u,v ∈M connected by a wire labelled ` we have 〈Ru, g〉 = 〈Rv, g〉.

Proof. Suppose u,v ∈M are connected by a wire labelled `. Theorem 2.6 shows thatRu(C) = Rv(C)

whenever ` ∈ G(C). Since g(C) = 0 whenever ` /∈ G(C),

〈Ru, g〉 =
1

|C|
∑
C∈C

`∈G(C)

Ru(C)g(C) =
1

|C|
∑
C∈C

`∈G(C)

Rv(C)g(C) = 〈Rv, g〉.

For each graph instance P of GEN we will come up with `-nice functions gP,` for each ` ∈ P . By

tracing out the inner products of gP,` with reachability vectors along an accepting path for P , we will

be able to come up with a complex state specific to P . To find the complex state, we make use of the

following arithmetic lemma.

Lemma 3.3. Let `,m be integers, and let xt,i be real numbers, where 0 ≤ t ≤ ` and 1 ≤ i ≤ m.

Suppose that for all t < ` there exists i such that xt,i = xt+1,i. Then

max
t,i,j
|xt,i − xt,j | ≥

1

2`
max
i
|x`,i − x0,i|.

Proof. Let i = argmaxi |x`,i − x0,i| and ∆ = |x`,i − x0,i|. Since

|x`,i − x0,i| ≤
∑̀
t=1

|xt,i − xt−1,i|,

there exists t > 0 such that |xt,i − xt−1,i| ≥ ∆/`. Let j be an index such that xt,j = xt−1,j . Then

∆

`
≤ |xt,i − xt−1,i| ≤ |xt,i − xt,j |+ |xt−1,j − xt−1,i|,

and so for some s ∈ {t− 1, t}, |xs,i − xs,j | ≥ ∆/2`.

Lemma 3.4 (Gap Lemma). Let P be any accepting instance of GEN, and let {g`}`∈P be a collection

of vectors indexed by literals in P such that for each ` ∈ P the corresponding vector g` is `-nice. Let

M be any sound monotone switching network computing GEN with n states, let {Ru}u∈M be the set of

reachability vectors for M, and let W be an s to t path in M which accepts P . Then there is a node u

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 24

on W and two literals `1, `2 ∈ P for which

|〈Ru, g`1 − g`2〉| ≥
1

2n
.

Proof. Denote the nodes onW by {u1,u2, . . . ,um}, where u1 = s and um = t. Let xt,` = 〈Rut , g`〉.

Lemma 3.2 implies that for each t < m there exists ` such that xt,` = xt+1,`, namely the literal ` that

labels the edge connecting ut and ut+1. Apply Lemma 3.3 to get a node u and two literals `1, `2 such

that

|〈Ru, g`1〉 − 〈Ru, g`2〉| ≥
1

2m
max
`
|〈Rs, g`〉 − 〈Rt, g`〉|.

Since Rs ≡ 1 and Rt ≡ 0,

|〈Ru, g`1 − g`2〉| ≥
1

2m
max
`
|〈1, g`〉 − 〈0, g`〉| =

1

2m
≥ 1

2n
.

The rest of this section is devoted to constructing the nice vectors which underlie our lower bounds.

We will prove the following theorem.

Theorem 3.5. Let m and h be positive integers. Let P be a graph instance of GEN with vertex set VP

isomorphic to a graph G with m vertices and reversible pebbling number at least h. There exist cut

vectors gP,` for each ` ∈ P with the following properties:

1. For any ` ∈ P , 〈gP,`,1〉 = 1.

2. For any ` ∈ P , gP,` is `-nice.

3. For any ` ∈ P , gP,` depends only on vertices in VP .

4. For any ` ∈ P , ‖gP,`‖2 ≤ (9m)h+1.

5. For any `1, `2 ∈ P and S ∈ C of size |S| ≤ h− 2, ĝP,`1(S) = ĝP,`2(S).

As explained in the proof outline, the construction proceeds in two steps. In the first step, we

construct vectors fP,` satisfying all the required properties other than the bound on the norm. In the

second step we “trim” the vectors fP,` (by intelligently applying a low-pass filter) to vectors gP,` which

satisfy all the required properties.

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 25

The difficult part of the construction is to control the Fourier spectrum of gP,` while guaranteeing

that gP,` is `-nice. In order to control the Fourier spectrum of gP,`, we will construct gP,` as a linear

combination of vectors SC with known Fourier spectrum. In order to guarantee that gP,` is `-nice, we

will find an equivalent condition which involves inner products with a different set of vectors KD. The

two sets of vectors SC ,KD are related by the identity

〈SC ,KD〉 = [C = D].

(In linear algebra parlance, {SC} and {KD} are dual bases.) Since gP,` is a linear combination of the

vectors SC , we will be able to verify that gP,` is `-nice using the equivalent condition.

The construction of these S and K vectors will be performed using a particular switching network

for graph instances of GEN, which we call the universal pebbling network. We think of the universal

pebbling network as executing a pebbling algorithm that is highly specific to instances of GEN with a

particular underlying graph. The K vectors discussed above have a natural relation with the pebbling

configurations appearing in this highly specific pebbling algorithm.

For the rest of this section, we fix a graph instance P whose underlying vertex set is VP . All cut

vectors we define will depend only on vertices in VP , and so we think of them as real functions on the

set CP which consists of all subsets of VP (recall that s, t /∈ VP). A vector f defined on CP corresponds

to the cut vector f ′ given by

f ′(C) = f(C ∩ VP).

Henceforth, cut vector will simply mean a vector defined on CP . We endow these cut vectors with the

inner product

〈f, g〉 =
1

|CP |
∑
C∈CP

f(C)g(C).

It is not difficult to check that ‖f ′‖ = ‖f‖, 〈f ′, g′〉 = 〈f, g〉 and that for C ⊆ VP , f̂ ′(C) = f̂(C). (All

other Fourier coefficients of f ′ vanish since f ′ depends only on VP .)

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 26

3.2.1 Universal Pebbling Networks

We start by describing the cut vectorsKD and the condition involving them which is equivalent to being

`-nice. The cut vectors KD are defined by

KD(C) = [D ⊆ C].

We think ofD as a pebbling configuration on the graphG, and ofKD as a kind of reachability vector. To

make this identification more precise, we define a monotone switching network related to the reversible

pebbling game on G.

Definition 3.6. The universal pebbling network for P is a monotone switching network MP defined as

follows. With every subset of vertices D ⊆ VP ∪ {t} we associate a state D in MP and we think of the

vertices in D ∪ {s} as the “pebbled vertices at D”. The start state of the network is s = ∅, and we add

a dummy target state t.

Given two states D1, D2 in MP and a literal ` = (x, y, z), we connect D1 and D2 with an `-

labelled wire if the corresponding pebble configurations D1 ∪ {s} and D2 ∪ {s} differ by a single

legal pebbling move which either pebbles or unpebbles the vertex z. Additionally, for any pebbling

configuration D which contains the target point t, we connect the corresponding state D to the target

state t by a blank wire (i.e. one that is always alive).

u

vu

v

x x

x

Figure 3.1: Adjacent pebbling configurations and universal switching network states

Figure 3.1 shows two adjacent pebble configurations on the pyramid and the corresponding con-

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 27

nections in the universal pebbling network. The pebbling configurations u and v on the pyramid have

corresponding states in the network, and since they are reachable from one another using the literal x

we connect the corresponding states in the universal pebbling network.

The vectors KD are not quite reachability vectors3, but they satisfy the following crucial property

which is enjoyed by reachability vectors.

Lemma 3.7. Suppose two states D1,D2 of the universal switching network for P are connected by a

wire labelled `. For every cut C such that ` ∈ G(C), KD1(C) = KD2(C).

Proof. Let ` = (x, y, z), and suppose that D2 = D1 ∪ {z}. Suppose C is a cut such that ` ∈ G(C).

If KD2(C) = 1 then clearly KD1(C) = 1, since D2 ⊇ D1. If KD1(C) = 1 then x, y ∈ Cs. Since

` ∈ G(C), this implies that z ∈ Cs, and so KD2(C) = 1.

We are now ready to state the property involving KC which is equivalent to being `-nice.

Lemma 3.8. Let ` ∈ P be any literal and let g be any cut vector. If 〈KD1 , g〉 = 〈KD2 , g〉 for any two

states D1,D2 connected by a wire labelled ` then g is `-nice, and the converse also holds.

Before proving the lemma, we comment that up to the fact that KD is not quite the reachability

vector corresponding to D, the property given by the lemma is the same as being `-nice for the universal

switching network.

Proof. We start by proving the converse. Let ` ∈ P , and suppose that g is `-nice. Let D1,D2 be two

states connected by a wire labelled `. Lemma 3.7 implies that

〈KD1 , g〉 =
∑
C∈CP
`∈G(C)

KD1(C)g(C) =
∑
C∈CP
`∈G(C)

KD2(C)g(C) = 〈KD2 , g〉,

where the first and last equality follows from the fact that g is `-nice.

The other direction is more involved. Let ` = (x, y, z), and let D be any cut such that ` /∈ G(D),

that is x, y ∈ Ds and z /∈ Ds. The two states D and D ∪ {z} are connected by a wire labelled `, and so

3For example, let P be a pyramid with vertices v31, v32, v31, v21, v22, v11, and let C = {v31, v32, v33, v11}. The graph
G(C) doesn’t contain the literals (v31, v32, v21) and (v32, v33, v22), and so the pebbling configuration C isn’t reachable. Yet
KC(C) = 1.

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 28

by the assumption of our lemma we have that

0 = |CP |〈KD −KD∪{z}, g〉 =
∑
C

([D ⊆ C]− [D ∪ {z} ⊆ C])g(C) =
∑
C⊇D
z/∈C

g(C). (3.1)

We use (3.1) along with reverse induction on |D| to show that g(D) = 0 whenever ` /∈ G(D). Given

D, suppose that g(C) = 0 for all C) D satisfying ` /∈ G(C), or equivalently, z /∈ C. Equation (3.1)

implies that

0 =
∑
C⊇D
z/∈C

g(C) = g(D) +
∑
C)D
z/∈C

g(C) = g(D).

3.2.2 Dual Basis

In view of Lemma 3.8, we will be interested in the value of 〈gP,`,KC〉 for the function gP,` which we

will construct. IfK = {KC | C ∈ CP }were an orthonormal basis like the Fourier basis, then 〈gP,`,KC〉

would be the coefficient of KC in the unique representation of gP,` in the basis K. However, the vectors

KC are not orthogonal. We therefore construct another basis S = {SC | C ∈ CP } with the following

property:

〈KC , SD〉 = [C = D].

The basis S is known as the dual basis toK. This property implies that 〈gP,`,KC〉 equals the coefficient

of SC in the unique representation of gP,` in the basis S: if

gP,` =
∑
C∈CP

αCSC

then 〈gP,`,KC〉 = αC . The dual basis is given by the following formula:

SD(C) = [C ⊆ D] · |CP |(−1)|D\C|.

We first prove that the two bases are in fact dual.

Lemma 3.9. For any C,D ∈ CP , 〈KC , SD〉 = [C = D].

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 29

Proof. We have

〈KC , SD〉 =
∑
E∈CP

[C ⊆ E][E ⊆ D](−1)|D\E| =
∑

C⊆E⊆D
(−1)|D\E|.

If C is not a subset of D then clearly 〈KC , SD〉 = 0. If C ⊆ D then

〈KC , SD〉 =
∑

E⊆D\C

(−1)|D|−|C|−|E| = [C = D].

The other crucial property of the dual basis is its Fourier expansion.

Lemma 3.10. For any C,D ∈ CP , ŜC(D) = [C ⊆ D](−2)|C|.

Proof. We have

ŜC(D) = 〈SC , χD〉 =
∑
E∈CP

[E ⊆ C](−1)|C\E|(−1)|D∩E| =
∑
E⊆C

(−1)|C\E|+|D∩E|.

Let C = {c1, . . . , ck}. Breaking up the sum over C, we have

ŜC(D) =
∑

E1⊆{c1}

(−1)[c1 /∈E1]+[c1∈E1∩D] · · ·
∑

Ek⊆{ck}

(−1)[ck /∈Ek]+[ck∈Ek∩D].

By considering each sum separately, we see that ŜC(D) = 0 unless C ⊆ D. When C ⊆ D,

ŜC(D) =
∑

E1⊆{c1}

(−1)[c1 /∈E1]+[c1∈E1] · · ·
∑

Ek⊆{ck}

(−1)[ck /∈Ek]+[ck∈Ek]

=
∑

E1⊆{c1}

(−1) · · ·
∑

Ek⊆{ck}

(−1) = (−2)|C|.

3.2.3 Nice Vector Construction

Let ` = (x, y, z) ∈ P . Our plan is to construct gP,` as a linear combination of the form

gP,` =
∑
C∈CP

αC,`SC .

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 30

Since K∅ = 1, the property 〈gP,`,1〉 = 1 implies that α∅,` = 1. Lemma 3.8 shows that for gP,` to be

`-nice, we must have αD,` = αD∪{z},` whenever x, y ∈ Ds (recallDs = D∪{s}). Finally, Lemma 3.10

shows that for D ∈ CP and any two `1, `2 ∈ P ,

ĝP,`1(D)− ĝP,`2(D) =
∑
C∈CP

(αC,`1 − αC,`2)[C ⊆ D]2|C|.

Since we want all small Fourier coefficients to be the same for different `, we need αC,`1 = αC,`2 for

all small cuts C.

We can satisfy all the required constraints by setting all αC,` to binary values: for each ` we will

construct a set A` ⊆ CP containing ∅ and define αC,` = [C ∈ A`], or equivalently

gP,` =
∑
C∈A`

SC .

Lemma 3.8 shows that for gP,` to be `-nice, the set A`, as a set of pebbling configurations, must be

closed under legal pebbling of z. Lemma 3.10 shows that for D ∈ CP and any two `1, `2 ∈ P ,

ĝP,`1(D)− ĝP,`2(D) =
∑
C∈CP

([C ∈ A`1]− [C ∈ A`2])[C ⊆ D]2|C|.

Since we want all small Fourier coefficients to be the same for different `, we need A`14A`2 to contain

only large cuts.

When z = t, the set At := A` must be closed under legal pebbling of t. Since no cuts in CP

contain t, this implies that in all pebbling configurations in At, the vertex t cannot be pebbled. We will

enforce this by requiring that each C ∈ At be reachable from ∅ by using at most h − 2 pebbles. Since

G has reversible pebbling number h, that ensures that t cannot be pebbled. This leads to the following

construction, which constructs the preliminary version fP,` of gP,`.

Lemma 3.11. LetAt be the set of pebbling configurations reachable from ∅ using at most h−2 pebbles.

We think of At as a set of states in the universal switching network. For each literal ` = (x, y, z), let A`

be the closure ofAt under wires labelled ` (that is,A` containsAt as well as any pebbling configuration

reachable from At by a wire labelled `). Since the reversible pebbling number of G is h, no pebbling

configuration in A` pebbles t, and so A` ⊆ CP .

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 31

Define

fP,` =
∑
C∈A`

SC .

The functions fP,` satisfy the following properties:

1. For any ` ∈ P , 〈fP,`,1〉 = 1.

2. For any ` ∈ P , fP,` is `-nice.

3. For any `1, `2 ∈ P and D ∈ CP of size |D| ≤ h− 2, f̂P,`1(D) = f̂P,`2(D).

4. For any ` ∈ P and D ∈ CP , f̂P,`(D)2 ≤ 9|D|.

Proof. Since K∅ = 1,

〈fP,`,1〉 = 〈fP,`,K∅〉 = [{s} ∈ A`] = 1.

To show that fP,` is `-nice, let D1,D2 be two states of the reversible pebbling network connected

by a wire labelled `. We have

〈fP,`,KD1〉 = [D1 ∈ A`], 〈fP,`,KD2〉 = [D2 ∈ A`].

Since A` is closed under wires labelled `, D1 ∈ A` if and only if D2 ∈ A`, and so 〈fP,`,KD1〉 =

〈fP,`,KD2〉. Lemma 3.8 implies that fP,` is `-nice.

For the third property, let `1, `2 ∈ P . We have

f̂P,`1(D)− f̂P,`2(D) =
∑
C∈CP

([C ∈ A`1]− [C ∈ A`2])[C ⊆ D]2|C|.

All pebbling configurations in A`14A`2 must contain exactly h − 1 pebbles, and so [C ∈ A`1] 6=

[C ∈ A`2] implies |C| = h − 1. If |D| ≤ h − 2 then no subset of D satisfies this condition, and so

f̂P,`1(D) = f̂P,`2(D).

Finally, let D ∈ CP . Lemma 3.10 implies that

f̂P,`(D) =
∑
C∈A`

[C ⊆ D](−2)|C| ≤
|D|∑
k=0

(
m

k

)
2k = 3|D|.

Similarly we get f̂P,`(D) ≥ −3k, implying f̂P,`(D)2 ≤ 9|D|.

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 32

There are at most roughly mh pebbling configurations in each A`, and the norm of each SC is

|CP |2|C|/2 ≤ 2m+h/2. Therefore we expect the norm of each fP,` to be roughly 2m(
√

2m)h, which is

too high. In the next section, we fix the situation by applying a low-pass filter to fP,`.

3.2.4 Trimming the Nice Vectors

The vectors fP,` satisfy all the required properties other than having a small norm. In this section we

rectify this situation by relating the Fourier expansion of fP,` to the property of being `-nice. We will

show that a function is `-nice if its Fourier expansion satisfies certain homogeneous linear equations. If

` = (x, y, z) then each equation involves Fourier coefficients C ∪X for X ⊆ {x, y, z}. If we remove

the high Fourier coefficients of fP,` in a way which either preserves or removes all coefficients of the

form C ∪X , then we preserve the property of being `-nice while significantly reducing the norm. We

need to be careful to maintain the property that the small Fourier coefficients are the same for all fP,`.

We start by expressing the property of being `-nice in terms of the Fourier coefficients of a cut vector

f . For a literal `, define the cut vector

I`(C) = [` /∈ G(C)] = [x ∈ Cs][y ∈ Cs][z /∈ Cs].

A function f is `-nice if for every C, either ` ∈ G(C) or f(C) = 0. In other words, either I`(C) = 0

or f(C) = 0, that is to say I`f ≡ 0. In order to express this condition as a condition on the Fourier

coefficients of f , we use the well-known convolution property of the Fourier transform.

Lemma 3.12. Let f, g be cut vectors. Define another cut vector f ∗ g by

(f ∗ g)(C) =
∑
D⊆VP

f(D)g(D4C).

Then f̂ ∗ g(C) = |CP |f̂(C)ĝ(C) and f̂g(C) = f̂(C) ∗ ĝ(C).

Since the Fourier expansion of I` is supported on coefficients which are a subset of {x, y, z}, the

convolution Î` ∗ f̂ has a particularly simple form.

Lemma 3.13. Let ` = (x, y, z) ∈ P , and let A = {x, y, z} \ {s, t}. For a cut vector f , the property of

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 33

being `-nice is equivalent to a set of homogeneous equations of the form

∑
X⊆A

αi,X f̂(Ci ∪X) = 0 (3.2)

for various cuts Ci ⊆ A. (The cuts Ci can be repeated, and the coefficients αi,X can be different in

different equations.)

Proof. Let I`(C) = [x ∈ C][y ∈ C][z /∈ C]. As we remarked above, f is `-nice if and only if I`f ≡ 0,

which is true if and only if for all C ∈ CP , 0 = Î`f(C) = (Î` ∗ f̂)(C) (using the convolution property).

Since all cuts C, the set Cs contains s and does not contain t, I` depends only on A, and so the equation

for C reads

0 = (Î` ∗ f̂)(C) =
∑
X⊆A

Î`(X)f̂(X4C).

Write C = D14D2, where D1 = C \A and D2 = C ∩A. Then the equation for C is equivalent to

0 =
∑
X⊆A

Î`(X)f̂((D14D2)4X),

and since D2 ⊆ A and we are summing over all X ⊆ A we have

∑
X⊆A

Î`(X)f̂((D14D2)4X) =
∑
X⊆A

Î`(X4D2)f̂((D14D2)4(X4D2) =
∑
X⊆A

Î`(X4D2)f̂(D1∪X),

which is of the advertised form.

Because of the particular form of I`, one can show that the equations we get really depend only on

D1, but we do not need this fact in the proof.

Lemma 3.13 points the way toward the construction of the cut vectors gP,` by removing the high

Fourier coefficients of the fP,` functions.

Theorem 3.5. Let m and h be positive integers. Let P be a graph instance of GEN with vertex set VP

isomorphic to a graph G with m vertices and reversible pebbling number at least h. There exist cut

vectors gP,` for each ` ∈ P with the following properties:

1. For any ` ∈ P , 〈gP,`,1〉 = 1.

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 34

2. For any ` ∈ P , gP,` is `-nice.

3. For any ` ∈ P , gP,` depends only on vertices in VP .

4. For any ` ∈ P , ‖gP,`‖2 ≤ (9m)h+1.

5. For any `1, `2 ∈ P and S ∈ C of size |S| ≤ h− 2, ĝP,`1(S) = ĝP,`2(S).

Proof. Let ` = {x, y, z} and A = {x, y, z} \ {s, t}. We define the cut vector gP,` (as a function on CP)

by

gP,` =
∑
C∈CP

|C\A|≤h−2

f̂P,`(C)χC .

We proceed to verify the properties of gP,` one by one. First,

〈gP,`,1〉 = ĝP,`(∅) = f̂P,`(∅) = 〈fP,`,1〉 = 1.

Second, for each C ⊆ A, either all or none of the Fourier coefficients {f̂P,`(C ∪ X) | X ⊆ A}

appear in gP,`, and in both cases the condition given by Lemma 3.13 is maintained, showing that gP,` is

`-nice since fP,` is, by Lemma 3.11.

Third, gP,` depends only on VP by construction.

Fourth, Parseval’s identity in conjunction with Lemma 3.11 shows that

‖gP,`‖2 =
∑
C∈CP

ĝP,`(C)2 ≤
∑
C∈CP
|C|≤h+1

f̂P,`(C)2 ≤
∑
C∈CP
|C|≤h+1

9|C| ≤ (9m)h+1.

Fifth, for S ∈ CP of size |S| ≤ h− 2 and `1, `2 ∈ P ,

ĝP,`1(S) = f̂P,`1(S) = f̂P,`2(S) = ĝP,`2(S),

using Lemma 3.11 once again.

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 35

3.3 Exponential Lower Bounds for Monotone Switching Networks

Using the vectors from Theorem 3.5 we can now prove an exponential lower bound on monotone

switching networks. First, note that the final property shows that all the small Fourier coefficients

of gP,`1 − gP,`2 vanish. To take advantage of this property, we employ a combinatorial design in which

any two sets intersect in fewer than h points.

Lemma 3.14 (Trevisan [25]). For any positive integers q,m, hwith h ≤ m, there exist q setsQ1, Q2, . . . , Qq ⊆

[N], where N = m2e1+ln(q)/h/h, such that |Qi| = m for each i and |Qi ∩Qj | ≤ h for each i 6= j.

We are ready to put the pieces together to prove an exponential lower bound on the size of monotone

switching networks for GEN that are correct on all inputs, which we restate here

Theorem 2.15. LetN,m, h be positive integers, and letG be a DAG onm+1 vertices with in-degree at

most 2 and reversible pebbling number at least h+ 2. Any sound monotone switching network for GEN

which accepts all graph instances isomorphic to G must have at least Ω(hN/m2)h/3/O(m) states.

Proof. Lemma 3.14 gives a design {Q1, . . . , Qq} of size q = (hN/em2)h in which |Qi| = m and

|Qi ∩ Qj | ≤ h for all i 6= j. For each Qi, choose some graph instance Pi isomorphic to G whose

underlying vertex set is Qi. Apply Theorem 3.5 to each instance Pi to get a collection {gPi,`}`∈Pi of cut

vectors.

Let M be a sound monotone switching network for GEN of size n which accepts all graph instances

isomorphic to G. We apply the gap lemma (Lemma 3.4) to each collection of vectors, which gives

a set of vectors {gPi}
q
i=1 and a collection of states {ui}qi=1 such that 〈gPi ,ui〉 ≥ 1/2n and gPi =

gPi,`1 − gPi,`2 for some pair of literals `1, `2 ∈ Pi.

The third property in Theorem 3.5 shows that gPi depends only on vertices in Qi, and the final

property guarantees that ĝP,i(C) = 0 for all |C| ≤ h. It follows that for i 6= j, the functions gPi , gPj

are orthogonal: if ĝPi(C), ĝPj (C) 6= 0 then |C| ≥ h + 1 and C ⊆ Qi, Qj , contradicting the fact that

|Qi ∩Qj | ≤ h. Finally, since ‖gPi,`‖ ≤
√

(9m)h+3 (we get h+ 3 instead of h+ 1 since the reversible

pebbling number is at least h+ 2), we get ‖gPi‖ ≤ 2
√

(9m)h+3.

Since the set {gPi/‖gPi‖ | 1 ≤ i ≤ q} is orthonormal, Parseval’s theorem implies that

n =
∑
u∈M

1 ≥
∑
u∈M

‖Ru‖2 ≥
∑
u∈M

q∑
i=1

(
〈Ru, gPi〉
‖gPi‖

)2

≥ q · 1

4n2

1

4(9m)h+3
.

CHAPTER 3. SIMPLIFIED LOWER BOUNDS FOR EXACT COMPUTATION 36

We deduce that

n3 ≥ q

16 · (9m)h+3
≥
(
hN

9em2

)h
(27m)−3.

Chapter 4

Average Case Lower Bounds

A natural way to extend the above results is to ask whether or not we can also get a superpolynomial

lower bound for randomized monotone switching networks or — by Yao’s Minimax Theorem [26] —

deterministic monotone switching networks which are allowed to make errors on a distribution of inputs.

We will measure the error rate of monotone switching networks in the following way.

If x is an instance of GEN, then we will write GEN(x) = 1 to denote that x is an accepting instance,

and GEN(x) = 0 to denote that x is a rejecting instance.

Definition 4.1. LetD be a distribution on GEN inputs, and let 0 ≤ ε < 1/2 be a real number. We say that

a monotone switching network M computes GEN with ε error on D if Prx∼D[M(x) 6= GEN(x)] = ε.

For the rest of the section fix a DAG G on m+ 1 vertices with a unique sink t, in-degree at most 2,

and reversible pebbling number at least h + 2. We will use the following distribution D over instances

of GEN: with probability 1/2, choose a random graph instance isomorphic to G, and with probability

1/2 choose G(C) for a random cut C.

Our main result is Theorem 2.17, restated here.

Theorem 2.17. Let α be a real number in the range 0 < α < 1. Let m,h,N be positive integers

satisfying 324m2 ≤ Nα, and let G be a DAG with m+ 1 vertices, in-degree 2 and reversible pebbling

number at least h+ 2.

Any monotone switching network which computes GEN on [N + 2] with error ε ≤ 1/2 − 1/N1−α

must have at least Ω(hN/m2)h/3/O(mN) states.

37

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 38

Examining the proof of the lower bound for error-free switching networks solving GEN reveals two

assumptions that fail in the case of switching networks with errors. The first failing assumption is in

the beginning of the proof of Theorem 2.15, whereupon choosing a combinatorial design according

to Lemma 3.14, we need to identify each of the sets P1, . . . , Pq in the design with a graph instance

isomorphic to G. However, if we chose a fixed design, some (or many, or even all) of the instances in

the design could now be rejected by the switching network and we could no longer apply Lemma 3.4.

The second is that Lemma 3.4 no longer holds: in particular, under the distribution D, there may be

cuts C which are incorrectly accepted by the switching network under consideration, and so we can no

longer guarantee that 〈Rt, gP,`〉 = 0 for every cut vector gP,`. In the worst case, this means that if any

cut vector gP,` in the collection required by Lemma 3.4 has 〈Rt, gP,`〉 = 1 then the lower bound would

fail completely.

Luckily we can mitigate both of these problems. If M is a monotone switching network computing

GEN with errors on some distribution, say that a instance P is good for M if P is accepted by the

network and 〈Rt, gP,`〉 ≤ 1− 1/N , where Rt is reachability vector of the target state t in M, ` ∈ P is

any literal, and gP,` is the `-nice vector given by Theorem 3.5.

We need to find a way of generating a combinatorial design, like in Lemma 3.14, such that all of the

instances appearing in the design are good. To do this we will show that a random instance is good with

high probability, and then we can take a random permutation and apply it to each of the sets appearing

in some fixed combinatorial design. It follows that in expectation, the permuted combinatorial design

will have many good instances, and by the probabilistic method we can fix a design with many good

instances and just ignore the instances which are bad.

However, before we discuss the combinatorial design, we first prove the following lemma, which

generalizes Lemma 3.4 to monotone switching networks with errors.

Lemma 4.2 (Generalized Gap Lemma). Let P be an accepting instance of GEN, and let {g`}`∈P be

a collection of vectors indexed by literals in P such that for each ` ∈ P the corresponding vector g`

is `-nice. Let M be a monotone switching network for GEN with n states. Let {Ru}u∈M be the set of

reachability vectors for M, and let W be an s to t path in M which accepts P . Suppose that for some

` ∈ P we have 〈Rt, g`〉 ≤ β, where t is the target state of M. Then there is a node u on W and two

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 39

literals `1, `2 ∈ P for which

|〈Ru, g`1 − g`2〉| ≥
|1− β|

2n
.

Proof. Once again, denote the nodes on W by {u1,u2, . . . ,um}, where u1 = s and um = t. Apply

Lemma 3.3 with xt,` = 〈Rut , g`〉 to obtain a node u and two literals `1, `2 such that

|〈Ru, g`1 − g`2〉| = |〈Ru, g`1〉 − 〈Ru, g`2〉| ≥
1

2m
max
`
|〈Rs, g`〉 − 〈Rt, g`〉| ≥

|1− β|
2n

.

The next lemma shows that if a uniformly random instance is good with high probability, then we

can find a block design with “many” good instances.

Lemma 4.3. Let N,m, h, q be positive integers. Suppose that there are q sets S1, S2, . . . Sq ⊆ [N] such

that the following holds:

1. |Si| = m for all i ∈ [q], and

2. |Si ∩ Sj | ≤ h for all i 6= j.

Additionally, suppose that at most a fraction ε of the sets
(

[N]
m

)
have some property P . Then there exists

a collection of q′ = (1 − ε)q sets S′1, S
′
2, . . . , S

′
q′ ⊆ [N] for which both properties stated above hold,

and additionally none of the sets S′i has property P .

Proof. Let π be a uniformly random permutation on [N], and for any set S ⊆ [N] let π(S) = {π(x) :

x ∈ S}. For each i ∈ [q], let Xi be the indicator random variable which is 1 if and only if the set π(Si)

has property P . Since π is chosen uniformly at random we have Pr[Xi = 1] = ε, and so by linearity of

expectation we get

E
π

[
q∑
i=1

Xi

]
=

q∑
i=1

E
π

[Xi] =

q∑
i=1

Pr
π

[Xi = 1] = εq.

By the probabilistic method it follows that there must exist q sets U ′1, . . . , U
′
q, such that at most εq of the

sets have property P . Therefore, there exist q′ = (1 − ε)q sets S′1, . . . , S
′
q′ such that both properties in

the statement of the lemma hold and none of the sets have property P .

The actual result we will need is slightly different, but the same proof will work.

Our goal is to upper-bound the probability that a uniformly random instance is bad, which we do

by upper-bounding the expectation of 〈Rt, fP,`〉2 for a randomly chosen pointed instance (P, `) and

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 40

applying Markov’s inequality. (A pointed instance (P, `) is a graph instance P isomorphic to G along

with a literal ` ∈ P .)

For the rest of this section, let N be an integer and let M be a monotone switching network of size

n computing GEN on [N + 2] with error ε. For convenience in this section, we assume that s = N + 1

and t = N + 2. Recall that Rt is the reachability vector for the target state of M. For a pointed instance

(P, `), gP,` is the vector constructed using Theorem 3.5.

The error ε results from a combination of two errors: the error ε1 on yes instances, and the error ε2

on no instances. According to the definition of D, we have ε = (ε1 + ε2)/2. We record this observation.

Lemma 4.4. Let ε1 be the probability that M rejects a random pointed instance, and let ε2 be the

probability that M accepts a random cut instance (that is, an instance of the form G(C) for a random

cut C). Then ε = (ε1 + ε2)/2.

Proof. Follows directly from the definition of D.

Our proofs crucially rely on the following upper bound on the Fourier coefficients of gP,`.

Lemma 4.5. Let (P, `) be a pointed instance with underlying vertex set D, and let C ∈ C be any cut. If

C ⊆ D then ĝP,`(C)2 ≤ 9|C|, otherwise ĝP,`(C) = 0.

Proof. Since gP,` depends only on the vertices D, ĝP,`(C) = 0 unless C ⊆ D, so suppose that C ⊆ D.

The construction of ĝP,` in Theorem 3.5 shows that either ĝP,` = 0 or ĝP,` = f̂P,`, where fP,` is the

vector constructed in Lemma 3.11. In the latter case, the upper bound follows from the lemma.

4.1 Warmup

In this section we introduce our technique by proving an upper bound on |E(P,`)〈Rt, gP,`〉|. While this

result isn’t strong enough to prove strong lower bounds for monotone switching networks, it will serve

to introduce the ideas subsequently used to prove the actual lower bounds.

Instead of estimating E(P,`)〈Rt, gP,`〉 directly, we will estimate a sum of many such terms all at

once. Using this device we are able to take advantage of the fact that the large Fourier coefficients of

gP,` appear on larger sets, and larger sets are shared by fewer pointed instances. The sum we are going

to consider includes a pointed instance (P, `) for each subset Q of [N] of size m (recall s, t /∈ [N] in

this section).

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 41

Definition 4.6. A pointed instance function ℘ associates with each set Q ∈
(

[N]
m

)
a graph instance P

isomorphic to G and a literal ` ∈ P .

We will compute the expectation of

∑
Q∈([N]

m)

〈Rt, g℘(Q)〉 = 〈Rt,
∑

Q∈([N]
m)

g℘(Q)〉

over a random ℘ (in fact, we will upper-bound this expression for every pointed instance function). This

will allow us to upper-bound E(P,`)〈Rt, gP,`〉 using the following lemma.

Lemma 4.7. Let ℘ be a pointed instance function chosen uniformly at random, and let (P, `) be a

random pointed instance. We have

E
℘

[〈Rt,
∑

D∈([N]
m)

g℘(D)〉] =

(
N

m

)
E

(P,`)
[〈Rt, gP,`〉].

Proof. Linearity of expectation shows that

E
℘

[
〈Rt,

∑
D∈([N]

m)

g℘(D)〉
]

= E
℘

[∑
D∈([N]

m)

〈Rt, g℘(D)〉
]

=
∑

D∈([N]
m)

E
℘

[〈Rt, g℘(D)〉] =

(
N

m

)
E
S,℘

[〈Rt, g℘(S)〉],

where S is chosen randomly from
(

[N]
m

)
. The lemma follows since ℘(S) is simply a random pointed

instance.

Here is the actual upper bound, which works for any pointed instance function ℘.

Lemma 4.8. Suppose N ≥ 18m2. Let ℘ be any pointed instance function. We have

〈Rt,
∑

D∈([N]
m)

g℘(D)〉 ≤

√
ε2

(
1 +

18m2

N

)(
N

m

)
.

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 42

Proof. By applying Parseval’s Theorem and then Cauchy-Schwarz, we get

〈Rt,
∑

D∈([N]
m)

g℘(D)〉2 ≤

(∑
C∈C

R̂t(C)

(∑
D∈([N]

m)

ĝ℘(D)(C)

))2

≤

(∑
C∈C

R̂t(C)2

)(∑
C∈C

(∑
D∈([N]

m)

ĝ℘(D)(C)

)2
)
.

Recall that the network M computes GEN with error ε2 on cut instances, and so Rt(C) = 1 for ε2|C|

many cuts C. By Parseval’s theorem we have

〈Rt, Rt〉 = ‖Rt‖2 =
∑
C∈C

R̂t(C)2.

Using this, we have ∑
C∈C

R̂t(C)2 =
1

|C|
∑
C∈C

Rt(C)2 =
ε2|C|
|C|

= ε2,

and substituting back yields

〈Rt,
∑

D∈([N]
m)

g℘(D)〉2 ≤ ε2
∑
C∈C

(∑
D∈([N]

m)

ĝ℘(D)(C)

)2

.

Lemma 4.5 shows that ĝ℘(D)(C) = 0 unless C ⊆ D, in which case ĝ℘(D)(C)2 ≤ 9|C|. Additionally,

we have the useful estimates

(
N

i

)
≤ N i and

(
N − i
m− i

)
≤
(
N

m

)
mi

N i
.

Continuing our bound of 〈Rt,
∑

D∈([N]
m) g℘(D)〉 and letting i = |C| for any set C yields

ε2
∑
C∈C

(∑
D∈([N]

m)

ĝ℘(D)(C)

)2

= ε2
∑
C∈C

(∑
D∈([N]

m)
D⊇C

ĝ℘(D)(C)

)2

≤ ε2
m∑
i=0

(
N

i

)(
N − i
m− i

)2

9i

≤ ε2
m∑
i=0

(
N

m

)2N im2i

N2i
9i ≤ ε2

(
N

m

)2 m∑
i=0

(
9m2

N

)i
.

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 43

We have 9m2/N ≤ 1/2 by assumption, and so we can bound this sum by a geometric series like so:

m∑
i=0

(
9m2

N

)i
≤ 1 +

9m2

N

∞∑
i=1

(
1

2

)i
= 1 +

18m2

N
.

Taking square roots finally yields

〈Rt,
∑

D∈([N]
m)

g℘(D)〉 ≤

√
ε2

(
1 +

18m2

N

)(
N

m

)
.

Corollary 4.9. Suppose N ≥ 18m2. For a random pointed instance (P, `),

E
(P,`)

[〈Rt, gP,`〉] ≤

√
ε2

(
1 +

18m2

N

)
.

Proof. Follows directly from Lemma 4.7.

In this way we can actually get a bound on |E(P,`)[〈Rt, gP,`〉]|. However, this bound isn’t helpful for

showing that 〈Rt, gP,`〉 is often bounded away from 1. It could be that most of the time, 〈Rt, gP,`〉 = 1,

and rarely 〈Rt, gP,`〉 attains large negative values. In the following section, we rule out this possibility

by obtaining a bound on E(P,`)[〈Rt, gP,`〉2].

4.2 Tensor Square

We now repeat our calculations, this time bounding E(P,`)[〈Rt, gP,`〉2] instead of E(P,`)[〈Rt, gP,`〉].

Markov’s inequality will then imply that 〈Rt, gP,`〉 is bounded away from 1 most of the time.

At first glance it seems that our trick of taking a sum of several different pointed instances fails,

since 〈·, ·〉2 isn’t linear. We fix that by taking the tensor square of all parties involved.

The tensor product of two cut vectors u and v is the vector u ⊗ v : C2 → R defined by (u ⊗

v)(C,D) = u(C)v(D). We recall the following useful lemma which connects tensor products to the

squares of inner products.

Lemma 4.10. Let u and v be cut vectors. Then 〈u⊗u, v⊗v〉 = 〈u, v〉2, and f̂ ⊗ g(C,D) = f̂(C)ĝ(D).

Using tensor products, we are able to extend Lemma 4.7 to a result which is useful for bounding

E(P,`)[〈Rt, gP,`〉2].

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 44

Lemma 4.11. Let ℘ be a pointed instance function chosen uniformly at random, and let (P, `) be a

random pointed instance. We have

E
℘

[〈Rt ⊗Rt,
∑

D∈([N]
m)

g℘(D) ⊗ g℘(D)〉] =

(
N

m

)
E

(P,`)
[〈Rt, gP,`〉2].

Proof. As in the proof of Lemma 4.7, we get

E
℘

[〈Rt ⊗Rt,
∑

D∈([N]
m)

g℘(D) ⊗ g℘(D)〉] =

(
N

m

)
E

(P,`)
[〈Rt ⊗Rt, gP,` ⊗ gP,`〉].

The lemma now follows from Lemma 4.10.

We proceed with the analog of Lemma 4.8, whose proof is similar in spirit to the proof of Lemma 4.8.

Lemma 4.12. Suppose N ≥ 162m2. Let ℘ be any pointed instance function. We have

〈Rt,
∑

D∈([N]
m)

g℘(D)〉 ≤

√
ε2

(
1 +

324m2

N

)(
N

m

)
.

Proof. Since the network M accepts a random cut with probability ε2 we have 〈Rt, Rt〉 = ε2. We can

therefore apply Lemma 4.10 to get

〈Rt ⊗Rt, Rt ⊗Rt〉 = 〈Rt, Rt〉2 = ε22.

Using this fact, applying Parseval’s identity, Cauchy-Schwarz, and Parseval again yields

〈Rt ⊗Rt,
∑

D∈([N]
m)

g℘(D) ⊗ g℘(D)〉2 ≤

(∑
C1∈C

∑
C2∈C

(R̂t ⊗Rt)(C1, C2)
∑

D∈([N]
m)

(̂g℘(D) ⊗ g℘(D))(C1, C2)

)2

≤ ε22
∑
C1∈C

∑
C2∈C

(∑
D∈([N]

m)

̂(g℘(D) ⊗ g℘(D))(C1, C2)

)2

.

Applying the second conclusion of Lemma 4.10 we get

〈Rt ⊗Rt,
∑

D∈([N]
m)

g℘(D) ⊗ g℘(D)〉2 ≤ ε22
∑
C1∈C

∑
C2∈C

(∑
D∈([N]

m)

ĝ℘(D)(C1)ĝ℘(D)(C2)

)2

.

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 45

Recall from Lemma 4.5 that |ĝ℘(D)(C)| ≤ 3|C| if C ⊆ D, and otherwise ĝ℘(D)(C) = 0. We can use

this to simplify the sum and get

∑
C1∈C

∑
C2∈C

(∑
D∈([N]

m)

ĝ℘(D)(C1)ĝ℘(D)(C2)

)2

≤
∑
C1∈C

∑
C2∈C

(∑
D∈([N]

m)
D⊇C1∪C2

3|C1|+|C2|
)2

.

Now, for any two cuts C1, C2 ∈ C appearing in the above sum, let i = |C1 ∩ C2|, j = |C1 \ C2| and

k = |C2 \ C1|. We can rewrite the sum as

∑
C1∈C

∑
C2∈C

(∑
D∈([N]

m)
D⊇C1∪C2

3|C1|+|C2|
)2

≤
m∑
i=0

m−i∑
j=0

m−i−j∑
k=0

(
N

i, j, k

)(
N − i− j − k
m− i− j − k

)2

92i+j+k,

where
(
N
i,j,k

)
is a multinomial coefficient. We can use the upper bound

(
N
i,j,k

)
≤ N i+j+k to get

m∑
i=0

m−i∑
j=0

m−i−j∑
k=0

(
N

i, j, k

)(
N − i− j − k
m− i− j − k

)2

92i+j+k

≤
m∑
i=0

m−i∑
j=0

m−i−j∑
k=0

N i+j+k

(
N

m

)2m2(i+j+k)

N2(i+j+k)
92i+j+k

≤
(
N

m

)2 m∑
i=0

m−i∑
j=0

m−i−j∑
k=0

(
81m2

N

)i+j+k
.

We can upper-bound this sum by factoring a larger sum:

(
N

m

)2 m∑
i=0

m−i∑
j=0

m−i−j∑
k=0

(
81m2

N

)i+j+k

≤
(
N

m

)2 m∑
i=0

m∑
j=0

m∑
k=0

(
81m2

N

)i+j+k

≤
(
N

m

)2
(

m∑
i=0

81im2i

N i

) m∑
j=0

81jm2j

N j

(m∑
k=0

81km2k

Nk

)
.

Since N ≥ 162m2 by assumption we can upper-bound these using geometric series, as in the proof of

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 46

Lemma 4.8:

(
N

m

)2
(

m∑
i=0

81im2i

N i

) m∑
j=0

81jm2j

N j

(m∑
k=0

81km2k

Nk

)
≤
(
N

m

)2(
1 +

162m2

N

)3

.

Taking square roots, we get

〈Rt ⊗Rt,
∑

D∈([N]
m)

g℘(D) ⊗ g℘(D)〉 ≤ ε2
(

1 +
162m2

N

)3/2(
N

m

)
≤ ε2

(
1 +

324m2

N

)(
N

m

)
.

Corollary 4.13. Suppose N ≥ 162m2. For a random pointed instance (P, `),

E
(P,`)

[〈Rt, gP,`〉2] ≤ ε2
(

1 +
324m2

N

)
.

Proof. Follows directly from Lemma 4.11.

Applying Markov’s inequality, we immediately get the following corollary.

Corollary 4.14. Suppose N ≥ 162m2. Let (P, `) be a random pointed instance. For any δ > 0,

Pr
(P,`)

[〈Rt, gP,`〉 ≥ δ] ≤ δ−2

(
1 +

324m2

N

)
ε2.

4.3 Exponential Lower Bounds for Monotone Switching Networks with

Errors

We are now ready to prove our main theorem (Theorem 2.17), which gives an exponential lower bound

on the size of monotone switching networks computing GEN with error close to 1/2.

Proof of Theorem 2.17. Lemma 3.14 gives a design {Q1, . . . , Qq} of size q = (hN/em2)h in which

|Qi| = m and |Qi∩Qj | ≤ h for all i 6= j. Let π be a random permutation on [N], and let ℘ be a random

pointed instance function. For each Qi, ℘(π(Qi)) is a random pointed instance, and hence for any δ in

the range 0 < δ < 1,

Pr
π,℘

[〈Rt, g℘(π(Qi))〉 ≥ δ] ≤ δ
−2

(
1 +

324m2

N

)
ε2.

CHAPTER 4. AVERAGE CASE LOWER BOUNDS 47

Moreover, the probability that ℘(π(Qi)) is rejected by M is ε1. The probability that either of these bad

events happen is at most

τ := ε1 + δ−2

(
1 +

324m2

N

)
ε2 ≤ δ−2

(
1 +

324m2

N

)
2ε,

using Lemma 4.4. The technique of Lemma 4.3 shows that for some π and ℘, the number of Qi for

which either 〈Rt, g℘(π(Qi))〉 ≥ δ or ℘(π(Qi)) is rejected by M is at most τq. In other words, there exists

a set {(P1, `1), . . . , (Pq∗ , `q∗)} of q∗ := (1 − τ)q pointed instances with underlying sets Q∗1, . . . , Q
∗
q∗

such that |Q∗i ∩Q∗j | ≤ h for all i 6= j, each instance Pi is accepted by M, and for any literal ` ∈ Pi we

have 〈Rt, gPi,`〉 ≤ δ.

The rest of the proof directly follows the proof of Theorem 2.15. We can apply Theorem 3.5 to

each instance Pi and get a collection of vectors {gPi,`}`∈Pi , and then apply the generalized gap lemma

(Lemma 4.2) to each such collection of vectors, which yields a set of vectors {gPi}
q∗

i=1 and a set of

states {ui}q
∗

i=1 in M satisfying 〈gPi , Rui〉 ≥ (1 − δ)/2n (recall n is the size of M). This collection

of vectors is orthogonal, and each vector satisfies the upper bound ‖gi‖2 ≤ 4(9m)h+1. Since the set

{gPi/‖gPi‖ : 1 ≤ i ≤ q} is orthonormal, Parseval’s theorem implies that

n =
∑
u∈M

1 ≥
∑
u∈M

‖Ru‖2 ≥
∑
u∈M

q∗∑
i=1

(
〈Ru, gPi〉
‖gPi‖

)2

≥ q∗ · (1− δ)2

4n2

1

4(9m)h+3
.

We deduce that

n3 ≥ q∗(1− δ)2

16 · (9m)h+3
≥ (1− τ)(1− δ)2

(
hN

9em2

)h
(27m)−3.

An auspicious choice for δ is δ = 1− 1/N . Since ε ≤ 1/2− 1/N1−α and 324m2/N ≤ Nα−1,

τ ≤
(

1 +
324m2

N

)
2ε ≤

(
1 +

1

N1−α

)(
1− 2

N1−α

)
≤ 1− 1

N1−α .

Therefore

n3 ≥ 1

N1−α
1

N2

(
hN

9em2

)h
(27m)−3 ≥

(
hN

9em2

)h
(27mN)−3.

Bibliography

[1] N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions. Combinatorica,

7(1):1–22, 1987.

[2] A. Andreev. On a method for obtaining lower bounds for the complexity of individual monotone

functions. Soviet Math. Dokl, 31(3):530–534, 1985.

[3] P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for Lovász Schrijver from multiparty com-

munication complexity. In SIAM J. Computing, 2007.

[4] C. Berg and S. Ulfberg. Symmetric approximation arguments for monotone lower bounds without

sunflowers. Computational Complexity, 8:1–20, 1999.

[5] A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends in Theoretical

Computer Science, 2(1):1–106, 2006.

[6] Allan Borodin. On relating time and space to size and depth. SIAM Journal on Computing,

6(4):733–744, December 1977.

[7] Siu Man Chan. Just a pebble game. In CCC, 2013.

[8] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via fourier

analysis. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,

New York, NY, USA, May 19 - 22, 2012, pages 495–504. ACM, 2012.

[9] Stephen A. Cook. An observation on time-storage trade off. In Proceedings of the fifth annual

ACM Symposium on Theory of computing, STOC ’73, pages 29–33, New York, NY, USA, 1973.

ACM.

48

BIBLIOGRAPHY 49

[10] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by synchronous

parallel machines. Journal of Computer and System Sciences, 30(2):149–161, April 1985.

[11] Yuval Filmus, Toniann Pitassi, Robert Robere, and Stephen Cook. Average case lower bounds for

monotone switching networks. Submitted, 2013.

[12] John R. Gilbert and Robert Endre Tarjan. Variations on a pebble game on graphs. Technical Report

STAN-CS-78-661, Stanford University, 1978.

[13] M. Grigni and M. Sipser. Monotone separation of logarithmic space from logarithmic depth. JCSS,

50:433–437, 1995.

[14] A. Haken. Counting bottlenecks to show monotone P 6= NP . In FOCS, pages 36–40, 1995.

[15] D. Harnik and R. Raz. Higher lower bounds on monotone size. In STOC, pages 378–387, 2000.

[16] T. Huynh and J. Nordstrom. On the virtue of succinct proofs: Amplifying communication com-

plexity hardness to time-space tradeoffs in proof complexity. In 44th STOC, pages 233–248, 2012.

[17] G. Karakostas, J. Kinne, and D. van Melkebeek. On derandomization and average-case complexity

of monotone functions. Theoretical Computer Science, 434:35–44, 2012.

[18] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-

logarithmic depth. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-

puting, pages 539–550, Chicago, IL, May 1988.

[19] Jakob Nordstöm. New wine into old wineskins: A survey of some pebbling classics with supple-

mental results. Manuscript.

[20] R. O’Donnell and K. Wimmer. KKL, Kruskal-Katona, and monotone nets. In FOCS, pages 725–

734, 2009.

[21] A. Potechin. Bounds on monotone switching networks for directed connectivity. In FOCS, pages

553–562, 2010.

[22] R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. In Proceedings of 38th IEEE

Foundations of Computer Science, 1997.

BIBLIOGRAPHY 50

[23] Ran Raz and Avi Wigderson. Probabilistic communication complexity of Boolean relations. In

30th Annual Symposium on Foundations of Computer Science, pages 562–567, Research Triangle

Park, NC, October 1989. IEEE. Full version.

[24] A. A. Razborov. Lower bounds on the monotone complexity of some Boolean function. Soviet

Math. Dokl., 31:354–357, 1985.

[25] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879,

2001.

[26] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. In

18th Annual Symposium on Foundations of Computer Science, pages 222–227. IEEE, 1977.

Appendix A

Relating Monotone Switching Network

Size to Monotone Circuit Depth

In this appendix we show that a monotone circuit of depth d can be simulated by a monotone switching

network of size 2d, and a monotone switching network of size s can be simulated by a monotone circuit

of depth O(log2 s). The corresponding results for the nonmonotone case (with switching networks

replaced by branching programs) were proved by Borodin [6].

The second result is easy: Given a monotone switching network of size s together with its input bits

x1, . . . , xn, we construct an s× s Boolean matrix A, where Aij = 1 iff i = j or there is a wire between

state i and state j with a label xk = 1. Now the circuit computes As by squaring the matrix log s times.

The network accepts the input iff Aab = 1, where a is the initial state and b is the accepting state.

Now we show how a monotone switching network can evaluate a monotone circuit C of depth d.

We may assume that C is a balanced binary tree where the root is the output gate (at level 1) and the

nodes at levels 1 to d are gates, each labelled either ∧ or ∨, and each leaf at level d+ 1 is labelled with

one of the input variables xi. The idea is to simulate an algorithm which uses a depth first search of the

circuit to evaluate its gates.

We assume that the circuit is laid out on the plane with the output gate at the bottom and the input

nodes at the top, ordered from left to right. A full path is a path in the circuit from the output gate to

some input node.

The states of the network consist of a start state s, a target state t, and a state up for each full path p

51

APPENDIX A. RELATING MONOTONE SWITCHING NETWORK SIZE TO MONOTONE CIRCUIT DEPTH52

in the circuit (so there are 2d such states).

Definition A.1. We say that a path p from a gate g in C to some input node is initial if p leaves every

∧-gate g on the path via the left input to g. We say that p is final if p leaves every ∧-gate via the right

input to g. If p is a full path, then the state up is initial if p is initial, and up is final if p is final.

We say that a state up is sound (for a given setting of the input bits ~x) if for each ∧-gate g on the

path p, if the path leaves g via its right input, then the left input to g has value 1.

We will construct our network so that following holds.

Claim A.2. For each input ~x, a state up is reachable iff up is sound.

Now we define the wires and their labels in the network.

The start state s is connected via a wire labelled 1 (that is, this wire is always alive) to every initial

state up. Note that every initial state is (vacuously) sound, as required by the claim.

For every nonfinal full path p to some input xi, up is connected by a wire labelled xi to every state

up′ such that p′ is a full path which follows p up to the last ∧-gate g such that p leaves g via its left

input, and then p′ leaves g via its right input and continues along any initial path to a circuit input.

The following is easy to verify:

Claim A.3. It p, p′ and xi are as above, and xi = 1, then up is sound iff up′ is sound.

Claim A.2 follows from Claim A.3 and the facts that all initial states are sound, and every noninitial

sound state uq′ is connected by a wire labelled 1 to a sound state uq where the path q is to the left of

path q′.

For every final full path p to some input xi, the state up is connected to the target t by a wire labelled

xi. Note that if up is reachable and sound, and xi = 1, then every gate along p has value 1, including

the output gate. This and Claim A.2 shows that the network is sound (the circuit output is 1 if the target

t in the network is reachable).

Conversely, if the circuit outputs 1, then there is a sound final full path p which witnesses it.

Claim A.2 shows that up is reachable, and so t is reachable. We conclude that the network is com-

plete.

Appendix B

More on Randomized

Karchmer-Wigderson

Our work in Section 2.6 implies that the Karchmer-Wigderson reduction fails in the randomized setting.

Here is a concrete example. Let f4 be the function whose input is an undirected graph G on n vertices,

and f4(G) = 1 if G contains some triangle. The corresponding communication problem is: Alice gets

a graph A with a triangle, Bob gets a graph B without a triangle, and they have to come up with an

edge e such that e ∈ A and e /∈ B. We consider the following probability distributions over yes and

no inputs: Alice gets a random triangle, and Bob gets a complete bipartite graph generated by a random

partition of {1, . . . , n}. Here is a deterministic protocol for Rmf4 with success probability 3/4:

1. Alice sends Bob the vertices i, j, k of her input triangle (we assume i < j < k).

2. If (i, j) /∈ B then Bob outputs (i, j), else Bob outputs (i, k).

The Karchmer-Wigderson transformation produces the following formula:

φ =
∨

i<j<k

xi,j ∧ xj,k,

where xs,t is the input variable corresponding to the edge (s, t). The formula φ is true with high prob-

ability over a random no input. Intuitively, Alice can cheat: instead of choosing a bona fide triangle

i, j, k, she identifies two edges (i, j), (j, k) in the input graph, and pretends as if her input triangle were

i, j, k. In order to make this intuition more precise, we digress into the game semantics of monotone

53

APPENDIX B. MORE ON RANDOMIZED KARCHMER-WIGDERSON 54

circuits.

Let C be a monotone circuit with input x. We define a combinatorial game a(C) between two

players, Alice and Bob, whose value depends on the input x. The game starts at the root node of the

circuit, and progresses toward the leaves. Alice’s goal is to guide the game toward a leaf corresponding

to a 1 input bit, and Bob’s goal is to guide the game toward a leaf corresponding to a 0 input bit.

At a node v = v1 ∨ · · · ∨ vk, Alice decides which of the nodes v1, . . . , vk to go next to. At a node

v = v1 ∧ · · · ∧ vk, Bob decides which of the nodes v1, . . . , vk to go next to. At a leaf f = xi, the input

bit xi is revealed: if xi = 1 then Alice wins, if xi = 0 then Bob wins. Under optimal play, one of the

two players always wins (this is a property of combinatorial games with perfect information). In fact, if

C(x) = 1 then Alice wins under optimal play, and if C(x) = 0 then Bob wins under optimal play. This

can be proved by induction on the structure of the circuit.

Having identified monotone circuits with games of the form a(C), we describe the Karchmer-

Wigderson reduction as a game. Given a function f and a (correct) protocol P for Rmf , the game

a(P) proceeds as follows. The states of the game are partial transcripts of the protocol P . We only

consider partial transcripts which actually occur for some yes input of Alice and some no input of Bob.

The initial state is the empty transcript. At a partial transcript τ , if it’s Alice’s turn to speak in the

protocol, then she chooses whether to proceed to τ0 or to τ1. If one of these, say τ0, never occurs as a

partial transcript of the protocol, then she is forced to choose the other, in this case τ1. When it’s Bob’s

turn to speak, he gets to decide which way to proceed. At a completed transcript τ with output i, the

game terminates by revealing the input bit xi.

The game a(P) has the feature that if f(x) = 1 then Alice wins, while if f(x) = 0 then Bob wins.

Since the situation is symmetric, we concentrate on the case that f(x) = 1. We show that Alice has a

winning strategy for a(P). Her winning strategy is simple: at a partial transcript τ when it’s her turn

to speak, Alice acts according to the protocol P , assuming her input is x. The game terminates at a

transcript τ which corresponds to some input y for Bob. Since P is correct, it outputs a bit i such that

xi = 1 and yi = 0. Since xi = 1, Alice wins a(P).

There is an important difference between the communication protocol P and the corresponding

game a(P): in the communication protocol P , both players are cooperating to find the bit i which

monotonically distinguishes their inputs. In contrast, the game a(P) is competitive. If f(x) = 1 then

Alice wins since she has a winning strategy, in which she truthfully follows the protocol P . Whatever

APPENDIX B. MORE ON RANDOMIZED KARCHMER-WIGDERSON 55

Bob does is consistent with some input y for him, and since P is correct, at the end the protocol outputs

a bit i such that xi = 1.

At this point, we come back to our earlier protocol for RmF4 . The formula φ corresponds to the

following game:

1. Alice chooses vertices i, j, k.

2. Bob chooses whether to reveal xi,j or xj,k.

This game is heavily skewed toward Alice. Suppose x is a bipartite graph which contains two edges

(i, j), (j, k). Alice acts as if her input was the triangle {i, j, k}, and wins the game. Even though for

roughly 3/4 of the triangles, the protocol would succeed (the exact probability depends on x), in the

corresponding game Alice always wins, since she gets to choose which triangle to run the protocol

against, and she chooses one for which the protocol fails.

