
8g SAT algs Sep29_

Top - Down algs for SATIUNSAT

Four Central Heuristics

① Decision scheme - Choose the next variable to branch
on
,
what assignment ?

② Unit propagation scheme - Detects units (variables that
must be set a particular way)

F = X
,
n (I

,
v Xz) and sets them

.

③ Clause Learning scheme - From conflicts (ie. when

partial assign . falsifies a clause)
generate new clauses

.

④ Restart Scheme - Decide to throw out the

current partial assignment,
keep learned clauses .

AIgorithmicsche.my [Atserias - Fichte- c-hurley 11]

Throughout we maintain a state S
, which is an

ordered partial assignment to the variables of F .

we also maintain a set of clauses , C , initially
C=F .

MAIN If S satisfies all of C , then stop outputs
If Crs contains t then go to CONFLICT

If we can unit propagate, go to UNIT

Else got DECISION

CONFLICT Apply clause Learning scheme to learn
clause C

,
add to C

check Restart schemes if we restart
now set 5=0 go to MAIN
Else

,
remove assignments from S until

Crs Ft
, goto MAIN

UNIT Apply Unit prop . Scheme and repeatedly
set units until none remain - goto MAIN

DECISION Apply Decision scheme to get a new

assignment X b to be added to S
,

goto MAIN .

Clause Learning ?

(A simplified explanation)

ed F = (x
, vxzvq) n (g- va) n (qub) ncgivavb)

D= I D= 2 d--2 d=2 d -- Z d=2

Xi TO xz-fqpta-p-b-p-qvavb.gra Ivb 9 take final
✓

KNEW
, 11 conflict

XNXZ - I - g-VE
DECISION IUIP

Trotteuristics

DECISION := Resolves all possible literals from unit props
away . Result is a subset of decision literals!

If S is a state then the decision level of an
assignment x - b in S is the number of
decisions made in s up to (including) x=b .
A clause is asserting w.at . S if there is exactly
one literal of the highest decision level .

IUIP a. = Resolve backwards until we get the
first asserting clause

.

First unique implication
point

Algorithm schema
Theoretical Implementations practical

PPSZ PREPROCESSING CDCL Algorithms
-
-

→
Decision := Uniformly at VSIDS heuristic

random (variable and

assignment)

Unit := D- implication (looks standard (only fix
at a set of D clauses, unit clauses)
check if any unit is
implied) .

CL : = None IUIP

Restart := Restarts every time Really varies from
solver to solver

theoretical

T Ve can actually analyze 9 No goodaandlysis
run-time theoretically of run-time

za- In

CDCL as a proof system Sep 29
- -

If F is unsatisfiable , then running one of these
algs on F essentially outputs a resolution proof !

o : Aloys will take exponential time on

PHP
,
Tseitin on expanders , Random formulas , - . .

just because of resolution lower bounds !

Question If there is a short resolution proof,
can these algorithms find it ?

=3 NO (unless P -- Np) Lautomatizability !)
Question 2 What if we allow some

" limited
"

-

non-determinism in some heuristics ?

→

CDCL
"

becomes
"

a propositional proof system !

Tim [Beame- Kautz - sabbhaiiiiahal 04]
CDCL can efficiently simulate resolution , with
non - deterministic

- Decisions
- Unit propagation ,

and also use any clause - learning scheme that is
non - redundant , along with restarting every time .

Thm2_ [BKS 04]

CDCL efficiently simulates resolution with non -det

① Pre - processing
② variable branching

and a fixed Ct scheme
' '
FirstNewcut '

'

.
, greedy

unit propagation . and no restarts

Thm3_ [PD 09
, AFT Il) (Absorption - theoretical)

efficient simulation is possible with non -det .

① Variable branching Decision , IUIP

and greedy unit prop , and asserting CL scheme,
and where we restart after every conflict.

Open Question Understand the power of restarts !

e. g .
Can you prove Them 3 without restarts ?

Open Question Try to prove a good theoretical
upper bound on the run- time

f CDCL .
✓

Ofhlogt)
Open Question Understand CDCL operates on n

satisfiable inputs

Otherstttalgs
- Schoening's Algorithm for K- SAT [Sch ol]
(local search algorithm)

- Dynamic programming (no ref . off top of my head)
- Survey propagation (connections to random K-SAT,

theoretical physics
\

