
Lecture 7 Sep 24
- -

Prover - Delayer games

F- i. =
unsat CNF formula

prover Goal : Find a falsified clause
Delayer Goal : stop the Prover !

Together maintain a
"

state
"

s (partial assignment to F)

In each round

- Prover picks a variable x (not in s)

- Delayer responds with be {0,1} , s updated
S = So Ex -- b}

- prover can then choose to forget a subset of S .

Game ends when S falsifies some clause of F.

"

Runs of game
"

I
' '

Resolution proofs
"

Prover strategies = upper bounds (i.e . actual resolution pfs)

Delayer strategies = lower bounds

Them consider the modified PD game : where Sep 24
now the Delayer can choose not to

-

respond with a bit and let the prover

pick . whenever this happens Delayer scores
a point .

If there is a strategy for the Delayer where
they always score > r points then

T
Spies (F) 72

'

.

Pf Let IT be a tree - like resolution proof . We
-

use IT to make a Prover strategy .

The Prover strategy works from "

top-down
"

, by

taking a walk starting at t and ending at
a leaf (i.e . an axiom) .

When the prover is at a clause C in Tl
,

it asks Delayer for the value of X , the
variable that was resolved on to deduce C.

Let C = AVB
, was obtained by resolution step

Avx BVI
-

AVB =c

If Delayer responds with 1 , prover goes to
BVI (adds x to the state) .

- O
,
Drover goes to

Av X (adds I to state) .

If the Delayer passes (wins a point) : then Prover

chooses whatever value leads to the smaller
subtree

.

1- Let

'*D Tl , Tlz , - - - il be the
A¥¥÷÷¥÷:*: ÷.sn#:ees+ia:.nese
HI

I Etppl EI Itr, l E f- 1 Time I E - - - E¥ ,
IT

,
I EIT ITH

so ITI) > I
.

D

The Resolution complexity measures can be completely
characterized by PD games .

Dpnes (F) : = min {DEZ : 3- Prover P tf Delayers D P
ends the game in Ed rounds

}

wrestF) : = min {WE Z : 3- Prover P t Delayers D }
Psizeends game using - stales of

Spies (F) : = min { SEZ : F Prover P and set of ES stales
Tl s . t.ttDelayer p

sefdagetshe game only using
}

Prods Let IT be any resolution proof , Sep 24
we design a prover strategy using Tl.

-

The Prover strategy works from "

top-down
"

, by

taking a walk starting at t and ending at
a leaf (i.e . an axiom) .

Along this walk we maintain the following
invariant :

Invariant The state s stoned by the Prover is

exactly 7C where C is the clause currently
visited by the walk .

Initially : 5=0 ,
and C=L

,
so invariant is

satisfied .

When the prover is at a clause C in Tl
,

it asks Delayer for the value of X , the
variable that was resolved on to deduce C.

Let C = AVB
, was obtained by resolution step

Avx BVI
-

AVB =c

If Delayer responds with 1 , prover goes to
BVI

,
X is added to S

,
and all vars in AIB are

forgotten . Now S = X n TB .

< (so invariant is restored)

If Delayer responds with O , do the symmetric more .

If C is an Axiom of F , then invariant ⇒ s

falsifies C , so game ends .

The depth , size, width are maintained .

(⇐) Exercise

Let P be a prover strategy , t be states visited
by the prover over all possible Delayers .

Show : For every state SETI , there is a
resolution t weakening proof of 75 from F.

(Hint : structure Tl as a DAG
, sort in topological

order and do induction .)
II

Algorithms for SAT
-

Let F be a K- CNF formula , not necessarily unsatisfiable

Goal : solve SAT on F ! Either

- Find a satisfying assignment for F , or

- Prove that F is unsatisfiable

Totally naive method : try every assignment to F and

evaluate .

Runs in time : 2n . poly (IFI)
I ←

time to evaluateall assign

Exponential Time Hypothesis [Impagliazzo -Patani 03
?

]

There is a > O St
.
3-SAT can not be solved in 2

"

- time
.

Strong Exponential Time Hypothesis [IP 033

There is NE E > O S - t .
VK
,
K- SAT can be solved

in n

G - e)

time
.

och)
ETH ⇒ 2 time is impossible for 3-SAT

SETH ⇒ for SAT lie no bound on width of clauses)

then cannot do better than 2n
- oh)

Thin [PPZ 98
,
PPSZOI , Hertli to]

For every K there is a (randomized) algorithm
(the PPSZ algorithm) that solves K- SAT in time

all - ¥)n q, > o , cry
""t

z
'll - 0¥) n ask→ x

The best algs for SAT (theoretically : ppsz , practice :
conflict - Driven - clause - learning CDCL) have the same

underlying algorithm schema.

Proceed from the " top -down
"

: choose variables X
and choose assignments to those variables

- if lucky, find a satisfying assignment, done !

- if unlucky, they falsify a clause from F .
The algorithms backtrack and proceed elsewhere.

