F := unsatisfiable CNF formula

\[F = C_1 \land C_2 \land \ldots \land C_m \], each \(C_i \) is a clause (OR of lift)

Resolution Refutation of \(F \) is a list of clauses

\[D_1, \ldots, D_m, D_m \rightarrow \ldots \rightarrow D_s = \bot \leftarrow \text{empty clause} \]

F All other clauses are obtained from earlier clauses by the resolution rule

\[
\frac{A \lor x \quad B \lor \overline{x}}{A \lor B}
\]

ex)f \(x_1 \land (x_1 \lor x_2) \land (x_2 \lor x_3) \land \overline{x_3} \)

\[
\frac{x_2 \quad \overline{x_2}}{1} \]

Defn A resolution refutation is tree-like if the graph underlying the refutation is a tree.

(i.e. every derived clause is used at most once.)

- Tree-like resolution can be exponentially weaker than general resolution, but, it is still complete.
Complexity Measures of Refutations

$F := \text{unsat CNF, on } n \text{ variables}$

$S_{\text{Res}}(F) := \min \# \text{ of clauses in any resolution ref. of } F$

$S_{\text{Tres}}(F) := \text{tree-like res. ref. of } F$

$D_{\text{Res}}(F) := \min \text{ depth of any resolution ref. of } F$

Example DAG-like proof

$F = y \land (\overline{y} \lor x) \land (x \lor z) \land (x \lor \overline{z})$

$w(F) := \frac{\text{width of the largest clause in } F}{\# \text{ of lits}}$

$w_{\text{Res}}(F) := \text{minimum width of any resolution refutation of } F.$

Assumes F is minimally unsat, i.e. if we delete a clause it is SAT (safe assumption)

- $w(F) \leq w_{\text{Res}}(F) \leq D_{\text{Res}}(F) \leq n$
- $S_{\text{Res}}(F) \leq S_{\text{Tres}}(F) \leq 2^{O_{\text{Res}}(F)(\pm 1)}$
- $S_{\text{Res}}(F) \leq \frac{3}{4} \# \text{ of clauses of width } \leq w_{\text{Res}}(F)$
In particular, if $\text{wres}(F) = O(1)$ then F has a polynomial-size proof.

Thm. [Haken 85] Any resolution refutation of PHP_{n+1}^n requires length $2^{\omega(n)}$.

PHP_{n+1}^n is defined on $(n+1)n$ variables

$X_{ij} \quad i \in [n+1] \ , j \in [n]$

$X_{ij} = 1 \iff \text{Pigeon } i \text{ mapped to hole } j$

Clauses:

$\forall j \in [n] \quad \bigvee_{i=1}^{n} X_{ij}$ for all $i \in [n+1]$

$\bigvee_{i \neq k} X_{ij} \lor X_{kj}$ for all $i \neq k \in [n+1], j \in [n]$.

Proof. Two steps

(1) Any "proof" of PHP_{n+1}^n requires a wide clause

(2) There is a partial restriction $\rho \in \{0,1,*\}^{(n+1)n}$ such that

$\text{PHP}_{n+1}^n \upharpoonright \rho = \text{PHP}_{m}^m$

$C \upharpoonright \rho := \text{plug } \rho \text{ into}$

- All wide clauses will be satisfied by ρ

in the proof.
Defn An assignment \(\alpha \in \{0,1\}^{(n+1)n} \) is \(i \)-critical if the only clause falsified in \(\text{PHP}_n^{n+1} \) is
\[\bigvee_{j=1}^{n} x_{ij}^\alpha. \]

2-critical

Defn If \(C \) is a clause over \(x_{ij} \) vars, let \(C^+ \) be the clause obtained by replacing every negative literal \(\overline{x_{ij}} \) with
\[\bigvee_{k \neq j} x_{ik}. \]

Let \(\Pi \) be a resolution proof of \(\text{PHP}_n^{n+1} \) let
\[\Pi^+ = \{ C^+ \mid C \in \Pi \}. \]

"relativization"

Claim \(\Pi^+ \) contains a clause \(C^+ \) with \(\mu(C^+) \geq \frac{n^2}{q} \).

Proof For any clause \(C \), define
\[\text{Crit}(C) := \{ i \in [n+1] : C(\alpha) = 0 \text{ for an } i\text{-crit assign } \alpha \} \]
\[\mu(C) := |\text{Crit}(C)|. \]

If \(C \) is a clause of \(\text{PHP}_n^{n+1} \),
- \(\mu(C) = 0 \) if \(C \) is a "hole" clause
- \(\mu(C) = 1 \) if \(C \) is a "pigeon" clause
\[\mu(\bot) = n+1. \]
If \(A = \text{Res}(B, C) \)

\(\mu(A) \leq \mu(B) + \mu(C) \)

\(A(x) = 0 \) for \(i \)-crit \(\alpha \), then \(\text{either } B(x) = 0 \text{ or } C(x) = 0 \)!

\[\therefore \text{Let } C \text{ be any clause in the proof } \Pi \text{ with } \frac{n}{3} < \mu(C) \leq \frac{2n}{3} \text{ (uses subadditivity).} \]

Let \(i \in \text{Crit}(C) \), \(j \notin \text{Crit}(C) \).

Let \(\alpha \) be \(i \)-crit, s.t. \(C(\alpha) = 0 \)

Go from \(\alpha \) to \(\alpha' \) which is \(j \)-critical by setting

\[X_{ik} = 1 \quad X_{jk} = 0 \]

But \(C(\alpha') = 1 \) — so \(X_{ik} \) appears in \(C^+ \)!

Apply the same argument to all \(i \in \text{Crit}(C) \), \(j \notin \text{Crit}(C) \)

then

\[w(C^+) \geq \mu(C) (n - \mu(C)) \geq n^2 \frac{1}{q}. \]

Aside: example of CNF formula \(F \) with small resolution proofs but large tree-like resolution proofs?

Answer: Q3 any Horn formula that is unsatisfiable has a polynomial-size Res. ref.
\[C^+ - \text{obtained from } C \text{ by replacing } \]
\[\overline{x_{ij}} \rightarrow \bigvee_{j \neq k} x_{ik} \]

Fact If \(\alpha \) is an \(i \)-critical assignment for some \(i \), then
\[C(\alpha) = C^+(\alpha) \]

\(C(\alpha) = 1 \) why is \(C^+(\alpha) = 1 \)?

\(C^+(\alpha) = 1 \)
\[x_{ik} = 1 \in C^+ \]
\[\Rightarrow C \text{ contained } \overline{x_{ij}} \text{ for some } j \neq k \]

\(\alpha \) is \(i \)-critical \(\Rightarrow \) \(i \) not mapped (\(\overline{x_{ij}} = 1 \))

or

\(j \)-critical \(\Rightarrow \)
Horn := every clause has \leq 1 positive literal

\[\forall x, \exists y \exists z \]

\[x_1 \lor x_2 \lor x_3 \lor \overline{x_1} \lor \overline{x_4} \lor x_5 \]

\[S_{\text{res}}(F \lor \neg x_1) \geq 2 \text{dres}(F) \]

Exercise: There is a Horn formula requiring large depth!

Defn If \(C \) is a clause over \(x_{ij} \) vars, let

\[C^+ \text{ be the clause obtained by replacing every negative literal } \overline{x_{ij}} \text{ with } \]

\[\bigvee_{k \neq j} x_{ik} \]

Let \(\Pi \) be a resolution proof of \(\text{PHP}^{n+1} \), let

\[\Pi^+ = \{ C^+ \mid C \in \Pi \} \]

"relativization"

Claim \(\Pi^+ \) contains a clause \(C^+ \) with \(w(C^+) \geq \frac{n^2}{q} \).

Today: How do we kill all the wide clauses?

Notice all clauses \(C^+ \) are ORs of positive literals. So, restricting any variable in \(C^+ \) to 1 will kill the clause.

Say a clause \(C \) in the proof \(\Pi \) is wide if \(w(C^+) \geq \epsilon n^2 \) (choose \(\epsilon \) later).

Since every wide clause has an \(\epsilon \)-fraction of the variables, by averaging there is some literal \(x_{ij} \).
occurring in \(\geq eS \) of the wide clauses \((\text{where } S \text{ is the } \# \text{ of wide clauses}) \).

- Pick \(x_{ij} \), set \(x_{ij} = 1 \), set \(x_{ik} = 0 \) for all \(k \neq i \).
- After this restriction we're left with \(\text{PHP}^n_{n-1} \) and the restricted proof is a refutation of the new instance.

How many times until all wide clauses are gone?

- After \(d \) restrictions, we have \((1-e)^d S \) wide clauses remaining. To kill all wide clauses, we need

\[
(1-e)^d S \leq e^{-d \epsilon} S < 1.
\]

\[
\Rightarrow \ln S < d \epsilon \iff \frac{\ln S}{\epsilon} < d
\]

Choose \(d = \frac{\ln S}{\epsilon} \). After \(d \) restrictions, we have a proof of \(\text{PHP}^{n_1-d}_{n-d} \) with no wide clauses. By the Claim, there is a clause of width

\[
\frac{(n-d)^2}{q} \geq \frac{(n - \ln S / \epsilon)^2}{q}
\]

So, if \((n-d)^2 / q \geq \epsilon n^2 \) we have a contradiction. Towards this, assume \(S \leq e^{\frac{\epsilon n}{4}} \), then

\[
\frac{(n-d)^2}{q} \geq \frac{(n - \frac{\epsilon n}{4})^2}{q} = \frac{n^2}{16}
\]

Then, if \(\epsilon < \frac{1}{16} \) we have a contradiction. \(\therefore S \geq e^{\frac{\epsilon n}{4}} \). \(\square \)
Thm For any unsat CNF F, we have

1. $S_{\text{Res}}(F) \geq 2^{\frac{W_{\text{Res}}(F) - w(F)}{16n}}$

2. $S_{\text{Res}}(F) \geq 2^{\frac{W_{\text{Res}}(F) - w(F)}{16n}}$

"width gap is $w(\ln n)$ then lower bds"

(1) cannot naively be applied to get $\mathsf{P} \neq \mathsf{NP}$ lower bds

Pf (1)

Prove by induction on b (parameter) and n ($\# \text{vars}$) that if

$S_{\text{Res}}(F) \leq b$

then $W_{\text{Res}}(F) \leq b + w(F)$.

Notation

$x^0 := \overline{x}$, $x^1 := x$

$F \upharpoonright x=a :=$ New CNF formula from F by substituting $a \in \{0,1\}$ for x.

So, if $C \subseteq F$ contains x^a we remove C, if $x^{1-a} \in C$ we delete x^{1-a} from the clause.

Claim If $W_{\text{Res}}(F \upharpoonright x=a) \leq K$ and

$W_{\text{Res}}(F \upharpoonright x=1-a) \leq K-1$ then

$W_{\text{Res}}(F) \leq \max \{ K, w(F) \}$.
For simplicity, we assume resolution has the weakening rule

$$\frac{C}{C \lor x}$$

for any $x \in C$.

(Note: This just makes the proof cleaner and can be removed.)

How to combine Δ and Δ' into a refutation of F?

- Let Π_1 be the refutation of $F \land x = a$, in width $k-1$.
- Let Π_1' be obtained by adding x^{1-a} to every clause in Π_1.

- Every clause at start of the proof of Π_1' is either a clause in F or a weakening of a clause in F.

$$x^{1-a} \lor A \lor x \quad x^{1-a} \lor B \lor \overline{x}$$

- Observe adding x^{1-a} doesn't affect the correctness of any resolution step.
Let \(\{1\} \leq b \)

\text{(Almost) done!}

If \(b = 0 \) then \(|\{1\}| = 1 \), \(\mu \) means \(LEF \).

Now substitute the new proof to derive \(\mu x = 1 \).

\(\mu \)

\(\mu - a \)

\(\mu \) width \(\mu \)
Otherwise: the last step of \(\Pi \) resolved two literals \(x \) and \(\overline{x} \).

\[
\begin{array}{c}
\Pi \\
\setminus
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\setminus \\
x
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\setminus \\
\overline{x}
\end{array}
\end{array}
\]

Size \(\leq 2^b \)

Assume w.l.o.g. \(|\Pi_L| \leq |\Pi_R| \), so \(|\Pi_L| \leq \frac{|\Pi|}{2} \leq 2^{b-1} \).

- Induction on \(b \) for \(\Pi_L \), we get a width \(b-1 \) proof of \(F \wedge x = 0 \).

- Induction on \(n \) for \(\Pi_R \) we get a width \(b \) proof of \(F \wedge x = 1 \).

Apply the claim and we are done!

This will massively restructure the proof — low width at cost of doubly-exponential blow-up in size!
Q. Do you have to pay this cost?
(i.e. can we optimize width and size at the same time?)

No!

[Razborov 2016] Doubly-exponential blow-up is necessary for some formulas!

Next time:

$$S_{\text{Res}}(F) \geq 2 \frac{(\text{w}_{\text{Res}}(F) - \text{w}(F))^2}{16n}.$$

$$\begin{align*}
\forall \sqrt{\gamma} & \quad z_1 \land z_2 = (\overline{z_1} \lor \overline{z_2}) \land (z_1 \lor z_2) \\
\overline{z_1 \land z_2} & = (\overline{z_1} \lor \overline{z_2}) \land (\overline{z_1} \lor z_2) \\
((z_1 \lor z_2) \land (\overline{z_1} \lor z_2)) & \lor ((\overline{z_3} \lor z_4) \land (\overline{z_3} \lor z_4)) \\
\end{align*}$$

(rewrite in CNF.)