Lecture 20 Sums-of-Squares Nov 10 First: when I defined SA Boolean axioms were encoded as two inequalifies $\frac{\xi_{X_1^2 - X_1^2 \to 0}}{M_{ultilinearize}} \times \chi_1^2 \times \chi_2^2 \times \chi_3^2 \xrightarrow{2} \chi_1 \times \chi_2 \times \chi_3^2} \times \chi_1 \times \chi_2 \times \chi_3^2 \xrightarrow{2} \chi_1 \times \chi_2 \times \chi_3^2$ Multilinearize + $\chi_1 \chi_3^2 (\chi_2 - \chi_2^2)$ $+ x_1 x_2 (x_3 - x_3^2) = x_1 x_2 x_3$ These are not non-neg juntas! Instead we should always include $x_i^2 - x_i = 0$ instead of two inequalities, or just multilinearize with every computation (working modulo $\xi x_i^2 - x_i = 0\xi$). On to Sos! Recall the SA set-up: let $P = \{p_1 = 0, \dots, p_m = 0\}$ (include $x_i^2 - x_i^o$ for all i) and $Q = \{q_1, z_0, \dots, q_n\} \geq 0$. An SA proof of the inequality r(x) 7C is given by - List of polynomials f. ... fm

such that

$$\Sigma f_i p_i + \Sigma g_s^2 q_s^2 = r(x) - c.$$

• The degree of the derivation is the max degree of any polynomial in it.

• The size is the length of the encoding of the proof in bits. Coefficient size really matters!

Q1. Can we represent any non-regative poly as an SOS?

NO! [Hilbert 1888] Non-constructive

[Motzkin 1967] "Motzkin polynomial"

 $p(x_{y}) = x^{4}y^{2} + x^{2}y^{4} - 3x^{2}y^{2} + 1$

1-low does sos compare to other proof systems?

- [Berkholz 18] sos can simulate PCR efficiently if boolean axioms are present (Not true without boolean axioms) Theorem There are degree - 3 sos refut. of PHP n. Pf. hecall the encoding: Yie [n+i]: ∑ Xii ≥1 $\forall i \neq j \in [n+1], K \in [n] \quad X_{iK}^{i} + X_{jK}^{i} \leq 1$ 170 We derive for all Ke[n]: $\sum_{i=1}^{n+1} X_{iK}^* \in \mathbb{1}$ $1 \cdot \left(1 - \sum_{i=1}^{n+1} \chi_{iK}^{2}\right)$ $\sum_{i,j\in[nti]} (1 - \chi_{ik} - \chi_{jk}) \times \frac{2}{ik} +$ $|-2\sum_{i=1}^{|l|} x_{iK}^{i} + \begin{pmatrix} n+l \\ \sum \\ i=1 \end{pmatrix}^{2}$ $\sum_{\substack{i \neq j \\ x_{ik} = x_{ik}^{2} = x_{ik}^{2} = x_{ik}^{2} + x_{jk}^{2}}$ 1 - 2 Z Xik i=1 $+ \sum_{i=1}^{n} x_{ik} + \sum_{i\neq j} x_{ik} \times_{jk}^{o}$ $= \Sigma - X_{iK} X_{jK}$ multilin $i \neq j$ + $= 1 - \sum_{i=1}^{n+1} \chi_{iK}$

Then summing $up \lor \begin{pmatrix} n+i \\ Z \\ \forall K \end{pmatrix} - 1$ and $i - Z \\ i = i \\ i = i \\ \Box$ For both Tseitin and random 3-CNF formulas, M(n)-degree lower bounds are known for SOS. [Grigoriev Ol, Schoenbeck 08] Theorem [Atserias - Hakoniemi 19] # of monomials If there is a size-s sos refutation of a system (P,Q) then $\deg_{SOS}(P;q)) \leq O(\sqrt{n \log s + k})$ where k is the degree of the system. Open Problem Give strong separations between CP and SOS. Open Problem Prove that SOS is not size automatizable under any reasonable complexity assumption. is degree-automatizable (like SA): if is a degree sd sos proof of some inequality there is an algorithm that will find it 505 there then λ time nold) * using <u>semidefinite</u> programming (which generalizes

For many NP-Itard problems (Max Cut, Vertex Cover, CSPs) SOS-based semidefinik programming algorithms capture the best-known approximation algs.

Furthermore: assuming the Unique Games Conjecture the approximation ratio Obtained by SOS for these problems is optimal unless P=NP.

ex) Max-Cut: Given a graph G=(V, E) with edge weights we >0.

Find a partition $V = V_1 \cup V_2$ such that the total weight of edges crossing the partition is maximized.

- NP-Complete [karp]

- There is a simple LP obtains a 12-approximation ratio [Forklone]

- [de la Vega-Mathieu 07 SA requires degree Charikar - Makanychev² 09 $\Sigma(n)$ to obtain O'donne 11 - Schramm 18] $(\frac{1}{z} + \varepsilon)$ - approximation

- There is an SOP algorithm captured by O(1) SOS obtains a ~ 0.878-approximation [Goemans-Williamson 94]

0.878... = min
$$0/\pi$$

 $> 0.20 < \pi (1-\cos\theta)/2$
This is tight (unless $P = NP$) assuming UGC
[Kindler-Khot-Mossel-0'Donnell 04]
UGC It is NP-Hard to solve the (1-e, e)-Unique
Games problem.
(1-e, e)
Unique Games Given graph $G = (V, E)$ and for
each edge given a permutation
function
 $\mu e: [9] \rightarrow [9]$
Coal: Find a colouring $x: V \rightarrow [9]$ s.t.
for every edge μv
 $\mu e(X(u)) = X(v)$
s.t either $= (1-e)$ frac of const are satisfied.

~