Lecture 13 Algebraic Proof Systems Oct 15
Cutting Planes - "semi-algebraic" - inequalities over neals
with polynomials
Resolution - "boolean" - standard boolean logic
Today: Nullstellensatz proof system.
"algebraic" := manipulates polynomial equalities
over a field.
How do we encode CNFs as polynomial equalities?

$$p(c)=$$

 $e_X | C = x_1 \vee x_2 \vee x_3 \longrightarrow (1-x_1)(1-x_2) \times_3 = 0$
constrain $x_i \in Sa_i IS$ by adding
 $x_i^2 - x_i = 0$ for each i.
Given clause C , let $p(c)$ denote it's polynomial
encoding.
Defn Let $F = C_1 \wedge \cdots \wedge C_m$ is an unsat CNF over n
variables Let F be any field Then a
Nullstellensatz refutation of F is a
set of polynomials
 $g_{1}, g_{2}, \cdots, g_m, h_1, h_2, \cdots, h_n$ calculus)
over IF such that
 $\sum_{i=1}^{m} g_i^* p(C_i^*) + \sum_{i=1}^{m} h_i^* (x_i^2 - x_i^*) = 1$

Why is this a refutation?

Suppose that F had a solution! Then plugging in M get O = 1! Contradiction. $ex = x_1 \wedge (\overline{x}_1 \vee x_2) \wedge (\overline{x}_2 \vee x_3) \wedge \overline{x}_3$ C satisfiable $\rho(\cdot) \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ iff . 3011 assign $(1-x_1) \times (1-x_2) \times (1-x_3) \times 3$ setting each poly to 0. $(1 - x_1) + x_1(1 - x_2) + x_1x_2(1 - x_3) + x_1x_2x_3$ $= (1 - x_1) + x_1(1 - x_2) + x_1 x_2$ $= (1 - x_1) + x_1 = 1$ We've argued <u>soundress</u>: if there is a nefutation then F is unsatisfiable. Completeness follows from Q3 on the assignment! vilhere does this come from? Answer: Page 2 of any algebraic geometry textbook. Name comes from a theorem by Hilbert called Hilbert's Nullstellensatz. Hilbert wanted to link Semantics - solutions to a system of polynomial equations (Noder)

with

syntactic
(Aroof) the set of all polynomial equations
derivable from the system.
ex) Pick
$$x^2 - 4 = 0$$
 x EIR
 $x + 200 = 0$
Not simultaneously satisfiable!
Given poly eqns we can easily deduce new ones!
(multiplybyx)
 $x^2 - 4 = 0 \implies x^3 - 4x = 0$
 $\Rightarrow x^{2+i} - 4x^i = 0$
(addition)
 $x^2 - 4 = 0$ and $x + 200 = 0 \implies x^2 + x + 196 = 0!$
Define the ideal of a system of polynomial eqns
to be the set of all polynomial eqns
derivable in this way!
Hilbert's Nullstellensatz

Let IF be any algebraically closed field and let
F be any system of polynomials over
$$1F$$
. Then
 $\xi f = 0$ | $f \in F \xi$
has no solution in $1F$ iff the ideal contains 1.

Complexity Measures

Let
$$F = C_1 \wedge \dots \wedge C_m$$
 be our CNF formula, on variables
 $x_1 \dots x_n$
Let $TT = \{g_i^* S_{i=1}^m \cup \{h_i^* S_{i=1}^n, be an NS refutation over $|F.$
 $deg_{NS}(TT) = \max \{ deg(g_i^* p(C_i)) \}_{i=1}^m \forall \{ deg(h_i^* (x_i^* - x_i)) \}_{i=1}^n$
i.e. expand all products and take the maximum degree.
 $S_{NS}(TT) = \text{total} \# \text{ of monomials when all products are expanded out before Cancellation.}$
 $deg_{NS_{IF}}(F) := \min \text{ degree of an NS refutation of F over IF}$
 $S_{NS_{IF}}(F) := \min \text{ size of any NS ref. of F over F}$$

Compare Nullstellensatz with other proof systems.

Resolution:

- Over $\mathbb{F}_2 = \{0, 1\}$, then Nullstellensatz has short proofs of Tseig for any G.

- On the other hand: Nullstellensatz has difficulty proving (torn formulas! (These are very easy for Resolution by A1)

We usually use degree as the primary complexity measure for NS. There is a size-degree tradeoff for NS just like resolution (moreover, by a very similar proof).

Q3:
$$\deg_{NS}(F) \leq D_{Res}(F) + u(F)$$

Defn Let G=(V,E) be a DAG with a unique sink node t and s.t. every internal node has at most 2 predecessors.

Define Pebg to be the following unsat. CNF (Horn) for mulas:

- Clauses

- For every vertex uev with predecessors P add the clause

Xu V V XV

ex]
$$G = 1$$

 $Peb_{G} := x_{1}, x_{1} \vee x_{2} \vee x_{3}$
 $x_{2} \vee x_{4} \vee x_{5}, x_{3} \vee x_{5} \vee x_{6}$
 $Y = 5 G$
 $Y = 2 \to 3 \to X_{6}$
Then [Buss-Pitassi 98]
Let Pn be the directed path with n vertices:
 $1 \to 2 \to 3 \to \cdots \to n$.
Then deg_{NS_F} (Peb_{Pn}) = $O(\log n)$.
Then deg_{NS_F} (Peb_{Pn}) = $O(\log n)$.
Then [Buresh-Oppenheim et al DO]
For any "good" DAG G = (V, E)
 $deg_{NS_{F}}$ (Peb_G) \geq (black petbling number)
There exist graphs with black petbling number $O(\gamma_{logn})$.
Then [de Rezende - Meir - Nördstron - R 18]
For any "good" DAG G = (V, E)
 $deg_{NS_{F}}$ (Peb_G) = reversible petbling number $O(\gamma_{logn})$.

Defn Let G = (V, E) be a good DAG. Consider the following game. Oct 15 You have a collection of "pebbles". Goal is to place a pebble on the sink vertex of G. To place pebbles you can make the following "move": For any vertex v in G, if all predecessors of v have a pebble, then you can place or vernove a pebble from v. ex $\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \qquad P_{5}$ place pebble here You can always win by placing IVI pebbles! Used only O ---> O ---> O --> O ---> O --> O - Used 4 pebbles Reversible pebbling number min # of petbles