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Announcements

• Assignment 2 grades are online! 

• See TAs if you have questions about your grade 

• Will try to organize ‘joint office hour’ with all TAs who graded 

assignment 2 (will be announced)  

• Project 4 Kaggle deadline March 21st! 

• Report only deadline extended 1 day, to March 22nd.
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Announcements
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Recall: Bayesian terminology

• Likelihood                 : our model of the data. Given our weights, 

how do we assign probabilities to dataset examples?  

• Prior             : before we see any data, what do we think about our 

parameters? 

• Posterior                 : our distribution over weights, given the data 

we’ve observed and our prior 

• Marginal likelihood             : also called the normalization constant. 

Does not depend on w, so not usually calculated explicitly

p(w|D) =
p(D|w)p(w)

p(D)

p(w)

p(D|w)

p(w|D)

p(D)
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Recall: Conjugate priors

• A prior             is conjugate to a likelihood function                  if the 

posterior is in the same family as the prior  

• In other words, if prior * likelihood gives you the same form as the 

prior with different parameters, it’s a conjugate prior 

• Ex 1: the Gaussian distribution is a conjugate prior to a 

Gaussian likelihood 

• Ex 2: the Beta distribution is conjugate to a Bernoulli likelihood 

• Why? Want simple form for our posterior! Don’t want it to get 

more complicated every time you add more data

p(w) p(D|w)
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Bayesian linear regression

• Previous examples (coin flip, learning the mean of a Gaussian) 

only had outputs y, no inputs x 

• How can we learn to make predictions that are input-dependent? 

• Can use an extension of linear regression: Bayesian linear 

regression
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• Given a dataset    , how do we make predictions for a new input? 

• Step 1: Define a model that represents your data (the likelihood): 

• Step 2: Define a prior over model parameters: 

• Step 3: Calculate posterior using Bayes’ rule: 

• Step 4: Make prediction by integrating over model parameters: 

7

Recall: Steps for Bayesian inference

D = {(x1, y1), . . . , (xN , yN )}
D

p(w|D) =
p(D|w)p(w)

p(D)

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw

p(w)

p(D|w)
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Bayesian linear regression

• We take a specific form of the likelihood and the prior: 

• Step 1: Likelihood 

• Step 2: Conjugate prior 

• Prior precision      and noise variance       considered known  

• Linear regression where we learn a distribution over the 

parameters

p(y|x,w) = N (wT
x,�2)

p(w) = N (0,↵�1I)

�2↵

Output y close to 
learned linear function 
w*x , with some noise

Prefer small weights. 
(assuming no other info)
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Visualizing inference

• Start with simple example (one feature x):  

• How can we visualize what’s happening in Step 3? (finding                 )

y = w0 + w1x+ ✏

p(w|D)
likelihood prior/ posterior data space

Copyright C.M. Bishop, PRML

For different w0, 
w1, how likely is 
this data point?

How likely are 
different (w0, w1) 
given data so far?

Shows data points 
and sample functions 

for data so far
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• Goal: fit lines 

• Bayes theorem: p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

y

Visualizing inference
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Visualizing inference

• Goal: fit lines 

• Bayes theorem:  

• Similar to ridge regression, expect good w to be small

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat prior?

Copyright C.M. Bishop, PRML
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• Goal: fit lines 

• Bayes theorem:  

• Similar to ridge regression, expect good w to be small

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat prior?

x

y

Copyright C.M. Bishop, PRML

Visualizing inference
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• Goal: fit lines 

• Bayes theorem:  

• Similar to ridge regression, expect good w to be small

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat prior?

x

y

Copyright C.M. Bishop, PRML

Visualizing inference
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• Goal: fit lines 

• Bayes theorem:  

• Similar to ridge regression, expect good w to be small

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat prior?

x

y

Copyright C.M. Bishop, PRML

Visualizing inference
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• Goal: fit lines 

• Bayes theorem:  

• Good lines should pass ‘close by’ datapoint

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat likelihood?

x

y

Copyright C.M. Bishop, PRML

Visualizing inference
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• Goal: fit lines 

• Bayes theorem:  

• Good lines should pass ‘close by’ datapoint

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat likelihood?

x

y

Copyright C.M. Bishop, PRML

Visualizing inference
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• Goal: fit lines 

• Bayes theorem:  

• For all values of w, multiply prior and likelihood  
(and re-normalize)

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

y

x =

Copyright C.M. Bishop, PRML

Visualizing inference

prior likelihood posterior
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Copyright C.M. Bishop, PRML

Bayesian linear regression: inference

?
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Copyright C.M. Bishop, PRML

Bayesian linear regression: inference
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Copyright C.M. Bishop, PRML

Bayesian linear regression: inference

?
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Copyright C.M. Bishop, PRML

Bayesian linear regression: inference
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Copyright C.M. Bishop, PRML

Bayesian linear regression: inference

?
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Copyright C.M. Bishop, PRML

Bayesian linear regression: inference
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Copyright C.M. Bishop, PRML

Bayesian linear regression: inference

As new data points are 
added, posterior converges 
on true value of parameters 
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• Can calculate posterior by multiplying prior and likelihood: 

•      has one input per row,    has one target output per row 

• If prior precision     goes to 0, mean becomes maximum likelihood 

solution (ordinary linear regression) 

• Infinitely wide likelihood variance      , or 0 datapoints, means 

distribution reduces to prior 

SN = (↵I+ ��2XTX)�1

p(w|D) = N (��2SNXTy,SN )

↵

�2

X y

Step 3: calculate posterior

(derivation similar 
to case with no  

inputs — slide 30  
of lecture 18)  
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• We can investigate the maximum of the posterior (MAP) 

• Log-transform posterior: log is sum of prior + likelihood

Aside: finding the MAP

max log p(w|y)

max���2

2

NX

n=1

(yn �w

T
xn)

2 � ↵

2

w

T
w + const.

min

NX

n=1

(yn �w

T
xn)

2
+ �wT

w

=
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• We can investigate the maximum value of the posterior (MAP) 

• Calculate in log space: log posterior = log prior + log likelihood 

• Same objective function as for ridge regression! 

• Penalty term: 

Ridge regression,  
Lecture 4  

(linear regression)

prior precision
likelihood 
variance

� = ↵�2

Aside: finding the MAP

max log p(w|y)

max���2

2

NX

n=1

(yn �w

T
xn)

2 � ↵

2

w

T
w + const.

min

NX

n=1

(yn �w

T
xn)

2
+ �wT

w

=

Recall:

Note: since posterior is 
Gaussian, MAP = 
mean of posterior 
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Step 4: prediction

• Prediction for new datapoint: 

• For Gaussians, can compute solution analytically: 

• Variance tends to go down with more data until it reaches 

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw

p(y⇤|D) = N (��2
x

⇤T
SNX

T
y,�2 + x

T
SNx)

mean from 
before

from weight 
uncertainty

from observation 
noise

new input

�2
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Step 4: prediction

• Every w makes a prediction, 
weighted by posterior   

-1 0 1

-1

0

1

x medium  
   

x

y

C
op
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ho
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M
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p(w|D) =
p(D|w)p(w)

p(D)

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw

=

p(w|D) =
p(D|w)p(w)

p(D)
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Step 4: prediction

• Every w makes a prediction, 
weighted by posterior   
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Step 4: prediction

• Every w makes a prediction, 
weighted by posterior   
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Each vertical line  
defines  
for that x*

32

Step 4: prediction

• Every w makes a prediction, 
weighted by posterior   

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

many other models

x small 

x medium  
   

x large

-1 0 1

-1

0

1

+

x

y

C
op

yr
ig

ht
 C

.M
. B

is
ho

p,
 P

R
M

L

p(w|D) =
p(D|w)p(w)

p(D)

p(w|D) =
p(D|w)p(w)

p(D)

p(w|D) =
p(D|w)p(w)

p(D)

p(y⇤|x⇤,D) =
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• Like ordinary linear regression, can use non-linear basis

Bayesian linear regression

Copyright J. Pineau Lecture 4, linear regression
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• Like ordinary linear regression, can use non-linear basis

Bayesian linear regression

Copyright C.M. Bishop, PRML

ŷ =
MX

i=1

wi�i(x)
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• Example: Bayesian linear regression with polynomial bases 

• Green line: true function.   Blue circles: data points.  
Red line: MAP prediction.   Shaded red: posterior predictive distribution.

Copyright C.M. Bishop, PRML

Bayesian linear regression: polynomial bases
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Copyright C.M. Bishop, PRML

Bayesian linear regression: polynomial bases
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Copyright C.M. Bishop, PRML

Bayesian linear regression: polynomial bases
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Recall: inspection task example
Copyright C.M. Bishop, PRML

threshold

should we accept this part?how about this one?

Could produce this graph using Bayesian linear regression



Herke van Hoof39

Beyond linear regression

• Non-linear data sets can be handled by using non-linear features 

• Features specify the class of functions we consider 

(hypothesis class) 

• What if we do not know good features? 

• Some features (polynomial, RBF) work for many problems 

ŷ =
MX

i=1

wi�i(x)

Input dim 1

In
pu

t d
im

 2
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Application: black-box optimization

• Problem: find value x for which function f(x) is maximized 

• Constraints: 

• f(x) is a ‘black box’ function: we only know the value f(x) for 

small set of points x that we evaluate 

• Evaluating f(x) is relatively expensive 

• f(x) might have local optima 

• Derivatives might not be known 

• Example: finding the hyperparameters of a neural network 

• How can we approach this problem?
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Black-box optimization

• Problem: find value x for which function f(x) is maximal 

• Example of black box function

learning rate

Final  
neural  
network 
performance

?

?

?
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• So far, we have mainly done gradient ascent 

• But gradient ascent requires an estimate of the gradient  

• Might need many function evaluations (costly)  

• Can get stuck in local minima 

• Can we do better?

Black-box optimization
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• How might a problem look like? 

• Where to sample next, if we have a budget for, say, 10 samples?

input variable x

f(x)

points that were already 
evaluated

Black-box optimization
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• How might a problem look like?

input variable x

f(x)

we could sample here, might be  
near local maximum

but here we know very  
little, could help find  
better solutions later

Black-box optimization
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• How might a problem look like? 

• How about now?

input variable x

f(x)

Black-box optimization
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• Idea: to make a good decision we should imagine what the whole 

function should look like 

• It seems important to take into account how certain we are for 

various input values x 

• Bayesian linear regression might do the job here! 

• This implies Bayesian point of view: Bayesian optimisation (a 

method to do black-box optimization)

Bayesian optimization
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0 1 2 3 4 5 6 7 8 9 10
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y

• Bayesian posterior over function 

• Where to sample next?

47

Bayesian optimisation

previous  
function  
evaluations
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Bayesian optimisation

• Where to sample next? 

• What happens if we simply sample where mean is highest?
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Bayesian optimisation

• We don’t sample on the right at all! 

• We might miss the real maximum
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Bayesian optimisation

• Where to sample next? 

• Two objectives: 

• Exploitation: sample where we think high values are 

If we know the samples will be low, it does not make sense to 

sample there 
Maybe: sample highest mean? 

• Exploration: If we always sample where we think the highest 

value is, we might miss other values 

Maybe: sample where uncertainty is highest?
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Bayesian optimisation

• Several strategies exist for combining these two objectives 

• Can give ‘score’ to possible examples using acquisition function 

• Very straightforward method: upper confidence bound (UCB) 

• Acquisition functions gives a ‘score’ to each sample point 

• UCB has good theoretical properties

aUCB(x
⇤;D) = µ(x⇤;D) + �(x⇤;D)

predicted mean  
given data so far

predicted standard deviation 
given data so far

trade-off 
parameter
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Bayesian optimisation

• Upper confidence bound acquisition function
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UCB acquisition 
function (𝜅=2)

Maximum of  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Bayesian optimisation

• Upper confidence bound acquisition function
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Bayesian optimisation

• We now explore sufficiently well go get close to the maximum
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Bayesian optimisation
• Different acquisition functions exist: 

• Probability of improvement 

• Probability sampled value > current maximum? 

• Sometimes too greedy 

• Expected improvement 

• Weights probability with amount of improvement 

• Can be overly greedy 

• Upper confidence bound 

• Strong theoretical properties 

• Need to set tuning parameter 𝜅
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Bayesian optimisation
• Pros 

• Attempt at global optimisation 

• Need relatively few samples to get close to optimum 

• Software packages available 

• Cons 

• Computational expensive 

• Need to fit a model and hyperparameters in every iteration 

• Need to maximise non-convex acquisition function 

• Sensitive to choice of model 

• Only works well with few input (up to ~10 dimensions)
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Bayesian hyperparameter optimisation

• One application of Bayesian optimisation is hyperparameter 

optimisation 

• Example: Tune learning rate in deep neural net 

• Nonconvex function with local optima 

• Evaluating a learning rate is expensive: we must train the 

network with that rate to know how good it is
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Inference vs. Learning

• Different (overlapping!) communities use different terminology, can be 

confusing 

• In traditional machine learning: 

• Learning: adjusting the parameters of your model to fit the data (by 

optimization of some cost function) 

• Inference: given your model + parameters and some data, make some 

prediction (e.g. the class of an input image) 

•  In Bayesian statistics, inference is to say something about the process that 

generated some data (includes parameter estimation)  

• Take-away: in an ML problem, we can find a good value of params by 

optimization (learning) or calculate a distribution over params (inference) 
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• Overfitting in e.g. linear regression models 

• MLE of coin flip probabilities with three sequential ‘heads’ 
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Can use uncertainty in decision making 

• Can use uncertainty to decide which data to acquire  

(active learning, experimental design)
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Account for reliability of different pieces of evidence 

• Possible to update posterior incrementally with new data 

• Variance problem especially bad with small data sets
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Use prior knowledge in a principled fashion
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Why Bayesian probabilities?

• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Use prior knowledge in a principled fashion 

• In practice, using prior knowledge and uncertainty 

particularly makes difference with small data sets
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Why not Bayesian probabilities?

• Prior induces bias 

• Misspecified priors: if prior is wrong, posterior can be far off  

• Prior often chosen for mathematical convenience, not actually 

knowledge of the problem 

• In contrast to frequentist probability, uncertainty is subjective, 

different between different people / agents
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Beyond linear regression

• Relying on features can be problematic 

• We tried to avoid using features before…  

• Lecture 8, instance based learning. Use distances! 

• Lecture 12, support vector machines. Use kernels! 

• Next class: extend regression to nonparametric models 

• Gaussian processes!
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What you should know

• Bayesian terminology (prior, posterior, likelihood, etc.) 

• Conjugate priors, what they mean, showing a distribution is a 

conjugate prior 

• Bayesian linear regression and its properties 

• When and why to use Bayesian methods 

• Core concepts behind Bayesian optimization


