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Announcements

• Assignment 2 grades should be available in the next week or so 

• For Kaggle project: try using square bounding boxes 

• If you use regular bounding boxes, some digits that correspond 

to the correct label (e.g. ‘1’) will have a smaller bounding box 

by area
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Bayesian probabilities
• An example from regression 

• Given few noisy data points, multiple parameter values possible 

• Can we quantify uncertainty over our parameters using 

probabilities? 

• i.e. given a dataset: 

and some model with weights w, can we find:   

                            ?

Copyright C.M. Bishop, PRML

p(w|D) =
p(D|w)p(w)

p(D)

D = {(x1, y1), . . . , (xN , yN )}
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Bayesian probabilities

• Yes we can!! 

• Bayesian view: probability represents 

uncertainty about some value or variable 

• We use Bayesian probabilities to represent 

uncertainty about the parameters of our 

model

Copyright C.M. Bishop, PRML
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Bayesian probabilities

• To calculate uncertainty, need to specify a model. Two ingredients: 

1. Prior over model parameters: 

2. Likelihood term: 

• We are given a dataset: 

• Want to do inference using Bayes’ theorem:

p(w)

p(D|w)

p(w|D) =
p(D|w)p(w)

p(D)

D = {(x1, y1), . . . , (xN , yN )}
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Bayesian terminology

• Likelihood                 : our model of the data. Given our weights, 

how do we assign probabilities to dataset examples?  

• Prior             : before we see any data, what do we think about our 

parameters? 

• Posterior                 : our distribution over weights, given the data 

we’ve observed and our prior 

• Marginal likelihood             : also called the normalization constant. 

Does not depend on w, so not usually calculated explicitly

p(w|D) =
p(D|w)p(w)

p(D)

p(w)

p(D|w)

p(w|D)

p(D)
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Bayesian probabilities

• How do we make predictions if we have a distribution over 

parameters? 

• Rather than using a fixed value for parameters, integrate over all 

possible parameter values!  

• (Integration is annoying, we will try to avoid this when possible)

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw

p(y⇤|x⇤,D) =

Z

R
p(y⇤,w|x⇤,D)dw

Posterior predictive distribution
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Why Bayesian probabilities?

• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Use prior knowledge in a principled fashion
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Why do we need uncertainty?

Copyright C.M. Bishop, PRML

• Regression with (extremely) small and noisy dataset 

• Many functions are compatible with data
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Why do we need uncertainty?

Copyright C.M. Bishop, PRML

• Quantify the uncertainty using probabilities 

(e.g. Gaussian mean and variance for every input x)
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Why do we need uncertainty?

• Knowing uncertainty of output helpful in decision making 

• Consider inspecting task.  

• x: some measurement 

• y: predicted breaking strength 

• Parts which are too weak (breaking strength < t) are rejected 

• Falsely rejecting a part incurs a small cost (c=1) 

• Falsely accepting a part can cause more damage down the line 

(expected cost c=100)
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Decision making under uncertainty

Copyright C.M. Bishop, PRML

threshold

should we accept this part?

how about this one?
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• Given a dataset    , how do we make predictions for a new input? 

• Step 1: Define a model that represents your data (the likelihood): 

• Step 2: Define a prior over model parameters: 

• Step 3: Calculate posterior using Bayes’ rule: 

• Step 4: Make prediction by integrating over model parameters: 

• When can we do step 4) in closed form?

13

Algorithms for Bayesian inference

D = {(x1, y1), . . . , (xN , yN )}
D

p(w|D) =
p(D|w)p(w)

p(D)

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw

p(w)

p(D|w)



Herke van Hoof14

Conjugate priors

• Posterior for some dataset: 

• Posterior for old data can act like a prior for new data: 

• Desirable that posterior and prior have same family! 

• Otherwise posterior would get more complex with each step 

• Such priors are called conjugate priors to a likelihood function

p(w|D) =
p(D|w)p(w)

p(D)

p(w|D1,D2) =
p(D2|w)p(w|D1)

p(D2)
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Conjugate priors

• Prediction 

• Argument of the integral is unnormalised distribution over w  

• Integral calculates the normalisation constant 

• For many common distributions, constant is known 

• Let’s make the prior conjugate to a simple likelihood function, 

for which the constant is known

same family as prior

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw



Herke van Hoof16

Algorithms for Bayesian inference

• Not all likelihood functions have conjugate priors 

• However, so-called exponential family distributions do 

• Normal 

• Exponential 

• Beta 

• Bernoulli 

• Categorical 

• …
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Examples

• We will look into supervised learning problems later  

• Start with a simple problem, learning a single parameter with no 

inputs (i.e. no x): a coin toss 

• Dataset consists of outcomes: 

 D = {heads, heads, tails, heads, tails, … }
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Simple example: coin toss

• Flip (possibly unfair) coin N times — get h heads and t tails 

• Probability of ‘heads’ unknown value r 

• How do we calculate the probability of the next flip being 

‘heads’ (i.e. value of r) in a Bayesian way?
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Simple example: coin toss

• Step 1: define model (distribution for likelihood) 

• Likelihood for a single flip: 

• y is one (‘heads’) or zero (‘tails’) 

• r is unknown parameter, between 0 and 1 

• Likelihood for N flips proportional to Binomial: 
r

likelihood for y=1 Copyright C.M. Bishop, 
PRML

Bern(y|r) = ry(1� r)1�y

p(h|r,N) = rh(1� r)N�h / Bin(h|r,N)
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Simple example: coin toss

• Step 2: Define (conjugate) prior p(r):

r r

r r

Copyright C.M. 
Bishop, PRML

Beta(r|a, b) = �(a+ b)

�(a)�(b)
ra�1(1� r)b�1
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Simple example: coin toss

• Conjugate prior: 

• Prior denotes a priori belief over the value r 

• r is a value between 0 and 1 (denotes prob. of heads or tails) 

• a, b are ‘hyperparameters’

rr
no idea about the fairnesscoin probably more likely to give ‘tails’

Copyright C.M. Bishop, PRML

Beta(r|a, b) = �(a+ b)

�(a)�(b)
ra�1(1� r)b�1
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Simple example: coin toss

• Side note: why is the Beta distribution the conjugate prior for a 

Binomial likelihood? (N = #flips, h = #heads)

p(r|D) = p(r|N, h)

= p(h|r,N) · p(r)
= Bin(h|r,N) · Beta(r|a, b)

=

✓
N

h

◆
rh(1� r)N�h · �(a+ b)

�(a)�(b)
ra�1(1� r)b�1

= z�1rh+a�1(1� r)N�h+b�1

= Beta(r|h+ a,N � h+ b)

z�1 =
�(h+ a)�(N � h+ b)

�(a+ b+N)

posterior = prior x likelihood 

normalization 
factor

N, h describe dataset completely

Same distribution family (Beta) as prior!!!

Step 3: 
Calculate 
posterior!
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Simple example: coin toss

• Posterior: 

• We observe more ‘heads’ -> suspect more strongly coin is biased 

• Note that a, b get added to the actual outcome: 

‘pseudo-observations’

Copyright C.M. Bishop, PRML

r r r

p(r|D) = z�1rh+a�1(1� r)N�h+b�1
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Simple example: coin toss

• Model: 

• Likelihood: 

• Conjugate prior: 

• Posterior: 

• Step 4: Make prediction!

Beta(r|a, b) = �(a+ b)

�(a)�(b)
ra�1(1� r)b�1

Beta(r|h+ a,N � h+ b) =
�(a+ b+N)

�(a+ h)�(b+N � h)
rh+a�1(1� r)N�h+b�1

= z�1rh+a�1(1� r)N�h+b�1

Bern(y|r) = ry(1� r)1�y
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Simple example: coin toss

• Step 4: Make prediction! 

• Instead of taking one parameter value, average over all of them 

• a, b, again interpretable as effective # observations 

• Consider the difference if a=b=1, #heads=1, #tails=0

=

Z 1

0
r · Beta(r|h+ a,N � h+ b)dr

= E[Beta(r|h+ a,N � h+ b)]

=
h+ a

N + a+ b

likelihood posterior

=
#heads + a

#heads + #tails + a+ b

the mean of the 
Beta distribution

p(x = 1|D) =

Z 1

0
p(x = 1|r)p(r|D)dr
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Simple example: coin toss

• Step 4: Make prediction! 

• Instead of taking one parameter value, average over all of them 

• a, b, again interpretable as effective # observations 

• Note that as #flips increases, prior starts to matter less

p(x = 1|D) =

Z 1

0
p(x = 1|r)p(r|D)dr

likelihood posterior

=

Z 1

0
r · Beta(r|h+ a,N � h+ b)dr

= E[Beta(r|h+ a,N � h+ b)]

=
h+ a

N + a+ b
=

#heads + a

#heads + #tails + a+ b

the mean of the 
Beta distribution
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Takeaways

• Instead of predicting using one parameter value, average 

over all of them 

• True for all Bayesian models 

• Hyperparameters interpretable as effective # observations 

• True for many Bayesian models 

(depends on parametrization) 

• As amount of data increases, prior starts to matter less 

• True for all Bayesian models
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Example 2: mean of a 1d Gaussian

• Try to learn the mean      of a Gaussian distribution that generated 

some real number. e.g. D = {0.3427}   

• Note: still no x, only y 

• Model: 

• Step 1: Likelihood 

• Step 2: Conjugate prior 

• Assume variances of the distributions are known (         ) 

• Prior: we know the mean is close to zero but not its exact value

p(y) = N (µ,�2)

p(µ) = N (0,↵�1)

�,↵

µ
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Example 2: inference for Gaussian

• Calculation is slightly easier to carry out in log space 

• log likelihood: 

• log conjugate prior: 

• Step 3: calculate posterior distribution (in log space)

const� 1

2

(y � µ)2

�2

const� 1

2

µ2↵

log p(µ|D)
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Inference for Gaussian

const� 1

2

✓
(y � µ)2

�2
+ µ2↵

◆

(y � µ)2

�2
+ µ2↵ = �yµ

�2
+

µ2

�2
+ µ2↵+ const

= �yµ

�2
+ (↵+ ��2

)µ2
+ const

= �↵+ ��2

↵+ ��2

1

�2
yµ+ (↵+ ��2

)µ2
+ const

=

⇣
��2

↵+��2 y � µ
⌘2

(↵+ ��2
)

�1
+ const

mean of posterior distribution 
of    : between MLE (y) and 

prior (0)

covariance of posterior: 
smaller than either 

covariance of likelihood or 
prior

µ

= �2

yµ

�2
+

µ2

�2
+ µ2↵+ const

= �2

yµ

�2
+ (↵+ ��2

)µ2
+ const

= �2

↵+ ��2

↵+ ��2

1

�2
yµ+ (↵+ ��2

)µ2
+ const

log p(µ|D)

Step 3: calculate

log p(µ|D) = log p(µ) + log p(D|µ) + const
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Inference for Gaussian

Copyright C.M. Bishop, PRML
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Prediction for Gaussian

• Step 4: make prediction 

• Convolution of Gaussians, can be solved in closed form 

p(y⇤|D) =

Z 1

�1
p(y⇤, µ|D)dµ

=

Z 1

�1
p(y⇤|µ)p(µ|D)dµ

=

Z 1

�1
N (y⇤|µ,�2)N

✓
µ

����
��2

↵+ ��2
ytrain,

1

↵+ ��2

◆
dµ

p(y⇤|D) = N
✓
y⇤

����
��2

↵+ ��2
ytrain,�

2 +
1

↵+ ��2

◆

noise + parameter uncertainty
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Bayesian vs. frequentist

• Can we quantify uncertainty over models using probabilities? 

• Classical / frequentist statistics: no 

• Probability represents frequency  
of repeatable event 

• There is only one true model 

• Do not consider ‘prior knowledge’

Copyright C.M. Bishop, PRML
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Bayesian probabilities

• Note: that Bayes’ theorem is used does not mean a method 

uses a Bayesian view on probabilities! 

• Bayes’ theorem is a consequence of the sum and product rules of 

probability 

• Many frequentist methods refer to Bayes’ theorem (naive Bayes, 

Bayesian networks) 

• Bayesian view on probability: Can represent uncertainty (in 

parameters) using probability
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Bayesian probabilities

Randall Munroe / xkcd.com
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Inference vs. Learning

• Different (overlapping!) communities use different terminology, can be 

confusing 

• In traditional machine learning: 

• Learning: adjusting the parameters of your model to fit the data (by 

optimization of some cost function) 

• Inference: given your model + parameters and some data, make some 

prediction (e.g. the class of an input image) 

•  In Bayesian statistics, inference is to say something about the process that 

generated some data (includes parameter estimation)  

• Take-away: in an ML problem, we can find a good value of params by 

optimization (learning) or calculate a distribution over params (inference) 
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• Overfitting in e.g. linear regression models 

• MLE of coin flip probabilities with three sequential ‘heads’ 
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Use uncertainty in decision making 

Knowing uncertainty important for many loss functions  

• Use uncertainty to decide which data to acquire  

(active learning, experimental design)
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Account for reliability of different pieces of evidence 

• Possible to update posterior incrementally with new data 

• Variance problem especially bad with small data sets
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Use prior knowledge in a principled fashion
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Why Bayesian probabilities?

• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Use prior knowledge in a principled fashion 

• In practice, using prior knowledge and uncertainty 

particularly makes difference with small data sets



Herke van Hoof42

Why not Bayesian probabilities?

• Prior induces bias 

• Misspecified priors: if prior is wrong, posterior can be far off  

• Prior often chosen for mathematical convenience, not actually 

knowledge of the problem 

• In contrast to frequentist probability, uncertainty is subjective, 

different between different people / agents
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What you should know

• What is the Bayesian view of probability? 

• Why can the Bayesian view be beneficial? 

• What are the general inference and prediction steps? 

• Role of the following distributions: 

• Likelihood, prior, posterior, posterior predictive 

• How can posterior and posterior predictive distribution be used?


