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Announcements

» Assignment 2 grades should be available in the next week or so
* For Kaggle project: try using square bounding boxes

 If you use regular bounding boxes, some digits that correspond
to the correct label (e.g. ‘1) will have a smaller bounding box

by area
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Bayesian probabilities
* An example from regression

* Given few noisy data points, multiple parameter values possible

« Can we quantify uncertainty over our parameters using

probabilities? (

* 1.e. given a dataset: Y
D = {(X17y1)7°' . (XNayN)}

and some model with weights w, can we find:

p(w|D) ?

0 :

0 T

Copyright C.M. Bishop, PRML
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Bayesian probabilities

Yes we can!!

Bayesian view: probability represents

uncertainty about some value or variable 1

We use Bayesian probabilities to represent Y

uncertainty about the parameters of our 0l

model

0 T

Copyright C.M. Bishop, PRML

4 Herke van Hoof



Bayesian probabilities

« To calculate uncertainty, need to specify a model. Two ingredients:

1. Prior over model parameters: p(w)
2. Likelihood term: p(D|w)
*  We are given a dataset:

D = {(X1,y1),---a(XNayN)}

- Want to do inference using Bayes’ theorem:

p(D|w)p(w)
p(D)

p(w|D) =
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Bayesian terminology

p(D|w)p(w)
p(D)
Likelihood p(D|w ): our model of the data. Given our weights,

p(w|D) =

how do we assign probabilities to dataset examples?

Prior p(w): before we see any data, what do we think about our

parameters?

Posterior p(W‘D): our distribution over weights, given the data

we’'ve observed and our prior

Marginal likelihood p(D): also called the normalization constant.

Does not depend on w, so not usually calculated explicitly
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Bayesian probabilities

How do we make predictions if we have a distribution over

parameters”?

p(y*|x™, D) :/p(y*,w\x*,D)dw
R

ply*|x*, D) = / p(w|D)p(y*|x*, w)dw

RN \

Posterior predictive distribution

Rather than using a fixed value for parameters, integrate over all

possible parameter values!

(Integration is annoying, we will try to avoid this when possible)
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Why Bayesian probabilities?

Maximum likelihood estimates can have large variance
We might desire or need an estimate of uncertainty
Have small dataset, unreliable data, or small batches of data

Use prior knowledge in a principled fashion
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Why do we need uncertainty?

OF

0 |
£
Copyright C.M. Bishop, PRML

* Regression with (extremely) small and noisy dataset

- Many functions are compatible with data
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Why do we need uncertainty?

OF OF

Copyright C.M. Bishop, PRML

* Quantify the uncertainty using probabilities

(e.g. Gaussian mean and variance for every input x)
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Why do we need uncertainty?

* Knowing uncertainty of output helpful in decision making

« Consider inspecting task.
* X: some measurement
» y: predicted breaking strength

* Parts which are too weak (breaking strength < t) are rejected
« Falsely rejecting a part incurs a small cost (c=7)

» Falsely accepting a part can cause more damage down the line

(expected cost ¢=700)

11 Herke van Hoof



Decision making under uncertainty

ol
threshold
—1F
0 t t ; |
should we accept this part?
how about this one? Copyright C.M. Bishop, PRML
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Algorithms for Bayesian inference

Given a dataset D, how do we make predictions for a new input?

D={(x1,v1),---, XN, UN)}

. Step 1: Define a model that represents your data (the likelihood): p(D|w)

» Step 2: Define a prior over model parameters: p(W)

+ Step 3: Calculate posterior using Bayes’ rule: p(W|D) =

p(D|w)p(w)
p(D)

« Step 4: Make prediction by integrating over model parameters:

p(y*|x*, D) = / p(w|D)p(y” |x*, w)dw
RN

When can we do step 4) in closed form?
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Conjugate priors

Posterior for some dataset:
p(D|w)p(w)
p(D)

Posterior for old data can act like a prior for new data:

p(w|Dy, D) = L2
1y £72 p(DQ)

Desirable that posterior and prior have same family!

p(w|D) =

* Otherwise posterior would get more complex with each step

Such priors are called conjugate priors to a likelihood function
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Conjugate priors

Prediction

p(y*|x", D) = / p(w|D)p(y*|x*, w)dw
RN

same family as prior
Argument of the integral is unnormalised distribution over w
Integral calculates the normalisation constant
For many common distributions, constant is known

» Let’'s make the prior conjugate to a simple likelihood function,

for which the constant is known
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Algorithms for Bayesian inference

* Not all likelihood functions have conjugate priors
 However, so-called exponential family distributions do

* Normal

Exponential

Beta

Bernoulli

Categorical
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Examples

We will look into supervised learning problems later

Start with a simple problem, learning a single parameter with no

inputs (i.e. no x): a coin toss

Dataset consists of outcomes:

D = {heads, heads, tails, heads, tails, ...}
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Simple example: coin toss

Flip (possibly unfair) coin N times — get h heads and t tails
Probability of ‘heads’ unknown value r

How do we calculate the probability of the next flip being

‘heads’ (i.e. value of r) in a Bayesian way?

18 Herke van Hoof



Simple example: coin toss

- Step 1: define model (distribution for likelihood)
+ Likelihood for a single flip: Bern(y|r) = r¥(1 — 7)Y
* yisone (‘heads’) or zero (‘tails’)

* ris unknown parameter, between 0 and 1

ﬁ

likelihced function

o _ 1
likelihood for y=1 Copyright C.M. Bishop,
0 | PRML

0 0.5 l

» Likelihood for N flips proportional to Binomial:

p(hlr, N) = r"(1 — r)N =" & Bin(h|r, N)
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Simple example: coin toss

- Step 2: Define (conjugate) prior p(r):
I'(a+b) _,_ 4

Beta(r|a,b) = '_“(a)F(b)r (1 —r)b!
a=01 | oa=1
b— 0.l b1
.
"o 0 I "0 0.5 I
r r
3 : :
b=
1t 1
Copyright C.M.
Bishop, PRML 02 — ‘ J 0> |
r
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Simple example: coin toss

- Conjugate prior:  Beta(r|a,b) = 5((63—;(1;)) Ta—l(]_ B T)b—l
a

* Prior denotes a priori belief over the value r
* ris avalue between 0 and 1 (denotes prob. of heads or tails)

* a, b are ‘hyperparameters’
Copyright C.M. Bishop, PRML

N 0.5 I 0 as l
r r

coin probably more likely to give ‘tails’ no idea about the fairness

21 Herke van Hoof



Simple example: coin toss

« Side note: why is the Beta distribution the conjugate prior for a

Binomial likelihood? (N = #flips, h = #heads)

Step 3: p(r|D) = p(r|N, h) N, h describe dataset completely

Calculate = p(h|r,N) - p(r) —

posterior! — Bin(h|r, N) - Beta(r|a, b) posterior = prior x likelihood

_ “h(1 _ \N=h ['(a +b) pa—101 _ \b—1
I VN
—1,rh—|—a—1(1 o T)N—h—l—b—l

— 2

~Z Beta(r|h+a, N — h+b)

normalization
factor

1 T'(h+a)I'(N —h+D)
T T T(at b+ N) Same distribution family (Beta) as prior!!!
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Simple example: coin toss

+ Posterior: p(r|D) =z~ lphta=l(q — p)N-h+o=1

2

2

prior likelihood function
1t | /
() : 0 :
Q 0.5 1 QO 0.5 1
r r

2

posterior

()

0

0.5

r

We observe more ‘heads’ -> suspect more strongly coin is biased

Note that a, b get added to the actual outcome:

‘pseudo-observations’

Copyright C.M. Bishop, PRML
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Simple example: coin toss

Model:

Likelihood: Bern(y|r) = r¥(1 — r)l—y

« Conjugate prior:

r b
Beta(r\a, b) — F((CCLL)_II:([))) 7“0’_1(1 _ T)b_l
Posterior:
I'a+b+ N . o
Beta(rlh +a,N —h+b) = Ma —|—(Z)I‘(b . N)_ y phta=l(] _ p)N=h+b—1
_ Z—l,’,,h—l—a,—l(l o ,’,,)N—h—l—b—l

« Step 4: Make prediction!

24 Herke van Hoof



Simple example: coin toss

- Step 4: Make prediction! likelihood posterior

p(z =1|D) =

the mean of the
Beta distribution

NV

/s

p(x = 1|r)p(r|D)dr

0

1
/ r - Beta(rlh +a, N — h + b)dr
0

h+a

N+a+b

| Beta(r|h + a, N — h + b)|

##heads + a
#heads + #tails+a + b

* Instead of taking one parameter value, average over all of them

* a, b, again interpretable as effective # observations

e Consider the difference if a=b=1, #heads=1, #tails=0
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Simple example: coin toss

- Step 4: Make prediction! likelihood posterior

p(z =1|D) =

the mean of the
Beta distribution

NV

/s

p(x = 1|r)p(r|D)dr

0

1
/ r - Beta(rlh +a, N — h + b)dr
0

h+a

N+a+b

| Beta(r|h + a, N — h + b)|

##heads + a
#heads + #tails+a + b

* Instead of taking one parameter value, average over all of them

* a, b, again interpretable as effective # observations

 Note that as #flips increases, prior starts to matter less
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Takeaways

Instead of predicting using one parameter value, average

over all of them
* True for all Bayesian models
Hyperparameters interpretable as effective # observations

* True for many Bayesian models

(depends on parametrization)
As amount of data increases, prior starts to matter less

* True for all Bayesian models
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Example 2: mean of a 1d Gaussian

Try to learn the mean [t of a Gaussian distribution that generated

some real number. e.g. D = {0.3427}

Note: still no x, only y

Model:

. Step 1: Likelihood p(y) = N(u,0°)

. Step 2: Conjugate prior  p(u) = N (0, 04_1)

Assume variances of the distributions are known (7, v)

Prior: we know the mean is close to zero but not its exact value
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Example 2: inference for Gaussian

Calculation is slightly easier to carry out in log space

log likelihood: 1 (y — p)?
const >

O

. . 1
log conjugate prior: const — —/ﬂa

Step 3: calculate posterior distribution (in log space) log p(u|D)
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Inference for Gaussian

log p(u|D) = log p(u) + log p(D|u) + const

1 . 2
const — 5 ((y H) —+ ,u204

0-2

2
— )2 S T
(y Uzﬂ) + e = 202 i p- o+ const
— Qy/; - (a4 07 %)pu” + const
Step 3: calculate Z R
log p(4|D) =227 g+ (a+ 02’ + const
ato“qg
aia_Qy}'u) + const
(a+0-2)7Y

covariance of posterior:
smaller than either
covariance of likelihood or
prior

mean of posterior distribution
of W: between MLE (y) and
prior (0)
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Inference for Gaussian

Copyright C.M. Bishop, PRML
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Prediction for Gaussian

« Step 4: make prediction

p(y”|D) = /OO p(y*, u|D)dpu

— OO

-/ " oy lWp(ulD)dy

> * 2 0_2 1
— N(y |:u70 )N M ) Ytrain 9 d:u

o+ 0o o+ o0~

« Convolution of Gaussians, can be solved in closed form

* * 0_2 1
p(y ‘D) :N(y _Qytrainao-Q | )

o+ o o+ o2

noise + parameter uncertainty
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Bayesian vs. frequentist

« Can we quantify uncertainty over models using probabilities?

 Classical / frequentist statistics: no

* Probability represents frequency 9y
of repeatable event
* There is only one true model 'l
* Do not consider ‘prior knowledge’
= R

Copyright C.M. Bishop, PRML
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Bayesian probabilities

Note: that Bayes’ theorem is used does not mean a method

uses a Bayesian view on probabilities!

Bayes’ theorem is a consequence of the sum and product rules of

probability

Many frequentist methods refer to Bayes’ theorem (naive Bayes,

Bayesian networks)

Bayesian view on probability: Can represent uncertainty (in

parameters) using probability
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Bayesian probabilities

DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE,)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, TROWS TWO DICE. IF THEY
BOTH COME UP SiX, ITUES TO US.
OTHERWISE,, IT TELLS THE TRUH.
LET'S TRY.
LETECTOR! HAS THE

)
w0

FREQUENTIST STRISTICIAN: BAYESAN STATISTIOAN:
THE PROBABIITY OF THIS RESULT
HAPPENING BY CHANCE 15 3;=007. BET YOU $50
IT HASNT

ONCE p<0.05, T CONCLUDE
THAT THE SUN HAS EXPLODED.

e

1

Randall Munroe / xkcd.com
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Inference vs. Learning

Different (overlapping!) communities use different terminology, can be

confusing
In traditional machine learning:

« Learning: adjusting the parameters of your model to fit the data (by

optimization of some cost function)

- Inference: given your model + parameters and some data, make some

prediction (e.g. the class of an input image)

In Bayesian statistics, inference is to say something about the process that

generated some data (includes parameter estimation)

Take-away: in an ML problem, we can find a good value of params by

optimization (/learning) or calculate a distribution over params (inference)
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Why Bayesian probabilities?
 Maximum likelihood estimates can have large variance

« Overfitting in e.g. linear regression models

* MLE of coin flip probabilities with three sequential ‘heads’
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Why Bayesian probabilities?

«  Maximum likelihood estimates can have large variance

 We might desire or need an estimate of uncertainty

Use uncertainty in decision making

Knowing uncertainty important for many loss functions

Use uncertainty to decide which data to acquire

(active learning, experimental design)
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Why Bayesian probabilities?

«  Maximum likelihood estimates can have large variance

* We might desire or need an estimate of uncertainty

e Have small dataset, unreliable data, or small batches of data
* Account for reliability of different pieces of evidence
* Possible to update posterior incrementally with new data

* Variance problem especially bad with small data sets
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Why Bayesian probabilities?
Maximum likelihood estimates can have large variance
We might desire or need an estimate of uncertainty

Have small dataset, unreliable data, or small batches of data

Use prior knowledge in a principled fashion
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Why Bayesian probabilities?

Maximum likelihood estimates can have large variance

We might desire or need an estimate of uncertainty

Have small dataset, unreliable data, or small batches of data
Use prior knowledge in a principled fashion

In practice, using prior knowledge and uncertainty

particularly makes difference with small data sets
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Why not Bayesian probabilities?

Prior induces bias
Misspecified priors: if prior is wrong, posterior can be far off

Prior often chosen for mathematical convenience, not actually

knowledge of the problem

In contrast to frequentist probability, uncertainty is subjective,

different between different people / agents
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What you should know

What is the Bayesian view of probability?

Why can the Bayesian view be beneficial?

What are the general inference and prediction steps?
Role of the following distributions:

* Likelihood, prior, posterior, posterior predictive

How can posterior and posterior predictive distribution be used?
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