
COMP 551 – Applied Machine Learning
Lecture 15: Neural Networks (cont’d)

Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca)

Slides mostly by: Joelle Pineau

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the

instructor, and cannot be reused or reposted without the instructor’s written permission.

Joelle Pineau2

Announcements

• Project 3 due today!!!

– Submit online through MyCourses, and submit a hard copy

• Slight update to Lecture 14 slides online, to clarify notation for

backprop

• This lecture’s slides (and all future lectures) will be posted

before class

COMP-551: Applied Machine Learning

Joelle Pineau3COMP-551: Applied Machine Learning

Recap: Gradient-descent for output node

• Derivative with respects to the weights wN+H+1,j entering oN+H+1:

– Use the chain rule: ∂J(w)/∂w = (∂J(w)/∂σ) ∙ (∂σ/∂w)

∂J(w)/∂σ = -(y-oN+H+1)
Note: j here is

any node in the

hidden layer

Joelle Pineau4COMP-551: Applied Machine Learning

Recap: Gradient descent for output node

• Derivative with respects to the weights wN+H+1,j entering oN+H+1:

– Use the chain rule: ∂J(w)/∂w = (∂J(w)/∂σ) ∙ (∂σ/∂w)

• Hence, we can write:

where:

Joelle Pineau5COMP-424: Artificial intelligence

Gradient-descent update for hidden node

• The derivative wrt the other weights, wl,j where j = 1, …, N and

l = N+1, …, N+H can be computed using chain rule:

• Recall that xN+H+1,l = ol. Hence we have:

• Putting these together and using similar notation as before:

Note: now j is

any node in the

input layer, and l

is any node in

the hidden layer

Joelle Pineau6COMP-551: Applied Machine Learning

Recap: Gradient descent for hidden node

Image from: http://openi.nlm.nih.gov/detailedresult.php?img=2716495_bcr2257-1&req=4

Note: now h is

any node in the

hidden layer

Joelle Pineau7COMP-551: Applied Machine Learning

Recap: SGD for LMS loss

• Initialize all weights to small random numbers.

• Repeat until convergence:

– Pick a training example.

– Feed example through network to compute output o = oN+H+1.

– For the output unit, compute the correction:

– For each hidden unit h, compute its share of the correction:

– Update each network weight:

Backpro-

pagation

Gradient

descent

Forward

pass

Initialization

Joelle Pineau8

Additional backprop resources

• “Neural networks and deep learning” textbook, Chapter 2, by

Michael Neilson:

– http://neuralnetworksanddeeplearning.com/chap2.html

– Detailed, thorough look at backprop (with different notation)

COMP-551: Applied Machine Learning

http://neuralnetworksanddeeplearning.com/chap2.html

Joelle Pineau9

Other activation functions: tanh

COMP-551: Applied Machine Learning

tanh(z) = (ez - e-z) / (ez + e-z)

σ(z)/z = 1-σ(z)2

Joelle Pineau10

Rectified linear units (ReLU)

• Instead of using binary units, try log(1+exp(Wx)).

• Unit outputs linear function when input is positive, zero otherwise.

• Most common unit used in feed-forward and convolutional neural

nets

COMP-551: Applied Machine Learning

Joelle Pineau11COMP-551: Applied Machine Learning

How do we encode the input?

Joelle Pineau12

Encoding the input: Discrete inputs

• Discrete inputs with k possible values are often encoded using a

1-hot or 1-of-k encoding:

– k input bits are associated with the variable (one for each possible

value).

– For any instance, all bits are 0 except the one corresponding to the

value found in the data, which is set to 1.

– If the value is missing, all inputs are set to 0.

– Example: using the weather yesterday {sunny, raining, snowing} to

predict the weather today

COMP-551: Applied Machine Learning

Joelle Pineau13

Encoding the input: Real-valued inputs

• Example: using the amount of rain (in mm) to predict the

amount of rain today

• Important to scale the inputs, so they have a common,

reasonable range

• Standard transformation: normalize the data

– To get mean=0, variance=1, subtract the mean and divide by the

standard deviation

– Works well if the data is roughly normal, but bad if we have outliers.

COMP-551: Applied Machine Learning

Joelle Pineau14

Encoding the input: Real-valued inputs

• Example: using the amount of rain (in mm) to predict the

amount of rain today

• Important to scale the inputs, so they have a common,

reasonable range

• Standard transformation: normalize the data

– To get mean=0, variance=1, subtract the mean and divide by the

standard deviation

– Works well if the data is roughly normal, but bad if we have outliers.

• Can also transform into discrete inputs:

– 1-to-n encoding: discretize the variable into a given number of intervals n.

– Thermometer encoding: like 1-to-n but if the variable falls in the i=th interval,

all bits 1..i are set to 1.

COMP-551: Applied Machine Learning

Joelle Pineau15

Encoding the output

• Multi-class domains:

– Use a network with several output units:

one per class

– This allows shared weights at the

hidden layers, compared to training

multiple 1-vs-all classifiers.

COMP-551: Applied Machine Learning

• Regression tasks:

– Use an output unit without a sigmoid function (i.e. just the

weighted linear combination) to get full range of output values.

Joelle Pineau16

How do I choose the number of layers?

• Overfitting occurs if there are too many parameters compared to

the amount of data available.

• Choosing the number of hidden units

– Too few hidden units do not allow the concept to be learned.

– Too many lead to slow learning and overfitting.

– There is no right answer. Choose what works best on your

validation set

• Choosing the number of layers

– Always start with one hidden layer.

– Add one at a time, see if solution improves on validation set.

COMP-551: Applied Machine Learning

Joelle Pineau17COMP-551: Applied Machine Learning

What about local minima?

• If the learning rate is appropriate, SGD is guaranteed to converge

to a local minimum of the cost function.

– NOT the global minimum

• In practice, neural networks can take a very long time to train

with SGD

• How often does SGD get stuck in local minima for deep neural

networks?

Joelle Pineau18

What about local minima?

• TL;DR: for big networks, SGD almost always converges to local

minima close to the global minima

• Question: then why can SGD seem to converge to poor

solutions, and why does it take so long?

COMP-551: Applied Machine Learning

“We conjecture that […] SGD converges to the band of low critical points, and

that all critical points found there are local minima of high quality measured

by the test error. This emphasizes a major difference between large- and small-

size networks where for the latter poor quality local minima have non-zero

probability of being recovered. Finally, we prove that recovering the global

minimum becomes harder as the network size increases and that it is in practice

irrelevant as global minimum often leads to overfitting.”

- “The Loss Surfaces of Multilayer Networks”, Choromanska et al., 2015

Joelle Pineau19

Saddle points

COMP-551: Applied Machine Learning

Image from offconvex.org

“We argue that a profound difficulty originates from the proliferation of

saddle points, not local minima, especially in high dimensional

problems. Such saddle points are surrounded by high error plateaus that

can dramatically slow down learning, and give the illusory impression of

the existence of a local minimum.”

- “Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization”, Dauphin et al., 2014

Joelle Pineau20

Saddle points

• Why are there more saddle points than local minima?

• Intuition: in high dimensions, a local minima means that every

direction that you go, the loss function increases

– If the probability of the loss increasing in a single direction from a

critical point is constant (say 0.5), this becomes exponentially less

likely as the dimension increases

• More likely that there are a small number of directions that

decrease the loss (but these can be hard to find)

COMP-551: Applied Machine Learning

Joelle Pineau21

Saddle points

• SGD moves very slowly over saddle points

COMP-551: Applied Machine Learning
Gif from Alec Radford: imgur.com/a/Hqolp

https://imgur.com/a/Hqolp

Joelle Pineau22

Neural network optimization

• Saddle points are only part of the answer: optimization of neural

networks still not well understood

• How do we avoid these problems?

– Use random restarts = train multiple nets with different initial

weights.

– In practice, the solution found is often good (try a few parallel

restarts).

– Use modified (accelerated) versions of SGD (later this class)

– Smart initialization methods

COMP-551: Applied Machine Learning

Joelle Pineau23

Parameter initialization

• Why not initialize all parameters to 0?

• Symmetry breaking: if all parameters are the same, gradients

will be the same for all parameters in a layer

• So, want to initialize NN parameters randomly

• Don’t want to initialize to large values -> unit saturation

COMP-551: Applied Machine Learning

Joelle Pineau24

Parameter initialization

• How do we do it?

• Glorot initialization: at layer k, sample each weight from a

uniform distribution U[-b, b], where [1]:

b = sqrt(6) / sqrt(H_k + H_{k-1})

• H_k is the number of hidden units at layer k

• Not an exact science, many other methods possible

[1] See “Understanding the difficulty of training deep feed-forward neural networks”,

Glorot & Bengio, 2010, for more info.

COMP-551: Applied Machine Learning

Joelle Pineau25

Overfitting

• In neural networks, traditional overfitting occurs when the network

is trained for too long

• Additional problem: units can become ‘saturated’ when weights

take on large magnitudes, can be very slow to reverse

• Use validation set to decide when to stop training.

– Training horizon is a hyper-parameter.

• Regularization is also effective.

COMP-551: Applied Machine Learning

Joelle Pineau26

Regularization in neural networks

• Incorporate an L2 penalty: J(w) = 0.5(y-hw(x))2 + λwTw

– Select λ with cross-validation.

• Can also use different penalties λ1 , λ2 for each layer.

– Can be interpreted as a Bayesian (Gaussian) prior over weights.

• Next class: other methods (e.g. dropout, batch normalization)

can act as a regularizer instead

COMP-551: Applied Machine Learning

Joelle Pineau27

Choosing the learning rate

• Backprop is very sensitive to the choice of learning rate.

– Too large ⇒ divergence.

– Too small ⇒ VERY slow learning.

– The learning rate also influences the ability to escape critical points.

• Very often, different learning rates are used for units in different

layers. Hard to tune by hand!

• Heuristic: Track performance on validation set, when it

stabilizes, divide learning rate by 2.

COMP-551: Applied Machine Learning

Joelle Pineau28

Optimization

• SGD can be very slow. How can we speed it up?

• One way: add momentum

• Analogy: SGD is a person walking down a hill. Momentum is a

ball rolling down a hill: added inertia smooths out oscillations,

increases speed of convergence

COMP-551: Applied Machine Learning

Joelle Pineau29

Adding momentum

• Add a fraction of the previous gradient(s). Instead of:

We do:

– The second term is called momentum

Without momentum With momentum

COMP-551: Applied Machine Learning

Image source: HSE Coursera course

Joelle Pineau30

Adding momentum

• On the t-th training sample, instead of the update:

We do:

Advantages:

– Easy to pass small local minima/ critical points.

– Keeps the weights moving in areas where the error is flat.

– Increases the speed where the gradient stays unchanged.

Disadvantages:

– With too much momentum, it can get out of a global minimum!

– One more parameter to tune, and more chances of divergence.

COMP-551: Applied Machine Learning

Joelle Pineau31

Adaptive learning rates

• Can do other things, e.g. calculating an adaptive learning rate per

parameter.

• Want to learn slowly for frequent features, faster for rare but informative

features

• How? Divide by the sum of squares of old gradients

• Intuition: If a parameter has been updated frequently, it will be divided

by a large value, and result in a smaller update

See: Duchi, Hazan, Singer (2011) Adaptive subgradient methods for online learning and

stochastic optimization. JMLR.

COMP-551: Applied Machine Learning

Δ𝑤𝑖𝑗 𝑡 ՚ ൘
𝛼𝑖𝑗𝛿𝑗𝑥𝑖𝑗

𝛾 σ𝑖=1
𝑡−1Δ𝑤𝑖𝑗 𝑖

2

Joelle Pineau32

Saddle points with improved optimization

• Adding momentum/ adaptive LRs allows us to escape saddle points

more easily

COMP-551: Applied Machine Learning
Gif from Alec Radford: imgur.com/a/Hqolp

https://imgur.com/a/Hqolp

Joelle Pineau33

Saddle points with improved optimization

COMP-551: Applied Machine Learning
Gif from Alec Radford: imgur.com/a/Hqolp

https://imgur.com/a/Hqolp

Joelle Pineau34

Saddle points with improved optimization

COMP-551: Applied Machine Learning
Gif from Alec Radford: imgur.com/a/Hqolp

https://imgur.com/a/Hqolp

Joelle Pineau35

Optimization

• Can do both momentum, and adaptive learning rates

– Leads to ADAM (Kingma & Ba, 2015), very popular in deep

learning

• Story of why momentum works is slightly more complicated

– See “Why Momentum Really Works”,

https://distill.pub/2017/momentum/

• Other optimization methods: RMSProp, Adagrad, Adadelta,

Nesterov Momentum

COMP-551: Applied Machine Learning

https://distill.pub/2017/momentum/

Joelle Pineau36

More application-specific tricks

• If there is too little data, it can be perturbed by random noise;

this helps escape local minima and gives more robust results.

– In image classification and pattern recognition tasks, extra data can

be generated, e.g., by applying transformations that make sense.

COMP-551: Applied Machine Learning

Joelle Pineau37

More application-specific tricks

• If there is too little data, it can be perturbed by random noise;

this helps escape local minima and gives more robust results.

– In image classification and pattern recognition tasks, extra data can

be generated, e.g., by applying transformations that make sense.

• Weight sharing can be used to indicate parameters that should

have the same value based on prior knowledge.

– Each update is computed separately using backpropagation, then

the tied parameters are updated with an average.

COMP-551: Applied Machine Learning

Joelle Pineau38

When to consider using NNs

• Input is high-dimensional (e.g. raw sensor input).

• Output is discrete or real valued, or a vector of values.

• Possibly noisy data, or a large quantity of data.

• Training time is not important.

• Form of target function is unknown and complex.

• Human readability of result is not important.

• The computation of the output based on the input has to be fast.

COMP-551: Applied Machine Learning

Joelle Pineau39

Several applications

• Speech recognition and synthesis.

• Natural language understanding.

• Image classification, digit recognition.

• Financial prediction.

• Game playing strategies.

• Robotics.

• …..

In recent years, many state-of-the-art results obtained using Deep Learning.

COMP-551: Applied Machine Learning

Joelle Pineau40COMP-551: Applied Machine Learning

Final notes

• What you should know:

– Definition / components of neural networks.

– Training by backpropagation.

– Overfitting (and how to avoid it).

– Saddle points and local optima for neural networks

– When and how to use NNs.

– Some strategies for successful application of NNs (optimization

methods, initialization, activation functions, etc.).

Joelle Pineau41

Additional info

• Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School:

http://videolectures.net/deeplearning2017_larochelle_neural_networks/

https://drive.google.com/file/d/0ByUKRdiCDK7-c2s2RjBiSms2UzA/view?usp=drive_web

https://drive.google.com/file/d/0ByUKRdiCDK7-UXB1R1ZpX082MEk/view?usp=drive_web

• “Neural networks and deep learning” textbook, Chapter 2, by

Michael Neilson:

– http://neuralnetworksanddeeplearning.com/chap2.html

• Overview of gradient descent optimization methods

– http://ruder.io/optimizing-gradient-descent/

COMP-551: Applied Machine Learning

http://neuralnetworksanddeeplearning.com/chap2.html
http://ruder.io/optimizing-gradient-descent/

