
COMP 551 – Applied Machine Learning
Lecture 14: Neural Networks

Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca)

Slides mostly by: Joelle Pineau

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the

instructor, and cannot be reused or reposted without the instructor’s written permission.

Joelle Pineau2

Annnouncements

• Assignment 3 deadline postponed

• New deadline: Monday, Feb 26, noon EST

• Questions about assignment 1 grading? See grading TAs during

office hours

• My office hours (for now): Monday, 12pm-1pm, MC 232

COMP-551: Applied Machine Learning

Joelle Pineau3COMP-551: Applied Machine Learning

Recall: the perceptron

• We can take a linear combination and threshold it:

• The output is taken as the predicted class.

Joelle Pineau4COMP-551: Applied Machine Learning

Decision surface of a perceptron

• Can represent many functions.

• To represent non-linearly separable functions (e.g. XOR), we could use

a network of perceptron-like elements.

• If we connect perceptrons into networks, the error surface for the

network is not differentiable (because of the hard threshold).

Joelle Pineau5

Example: A network representing XOR

COMP-551: Applied Machine Learning

N1

N2

N3

o1

o2

Decision boundary for two neurons in

the first hidden layer

Decision boundary for output

neuron

Joelle Pineau6COMP-551: Applied Machine Learning

Recall the sigmoid function

Sigmoid provide “soft threshold”, whereas perceptron provides “hard threshold”

• is the sigmoid function:

• It has the following nice property:

We can derive a gradient descent rule to train:

– One sigmoid unit; Multi-layer networks of sigmoid units.

ds(z)

dz
= s(z)(1-s(z))

s(z) =
1

1+ e-z

s(w × x) =
1

1+ e-w×x

Joelle Pineau7COMP-551: Applied Machine Learning

Feed forward neural networks

• A collection of neurons with non-linear activation functions, arranged in layers.

• Layer 0 is the input layer, its units just copy the input.

• Last layer (layer K) is the output layer, its units provide the output.

• Layers 1, .., K-1 are hidden layers, cannot be detected outside of network.

Joelle Pineau8COMP-551: Applied Machine Learning

Why this name?

• In feed-forward networks the output of units in layer k become input

to the units in layers k+1, k+2, …, K.

• No cross-connection between units in the same layer.

• No backward (“recurrent”) connections from layers downstream.

• Typically, units in layer k provide input to units in layer k+1 only.

• In fully-connected networks, all units in layer k provide input to all

units in layer k+1.

Joelle Pineau9COMP-551: Applied Machine Learning

Feed-forward neural networks

Notation:

• wji denotes weight on connection

from unit i to unit j.

• By convention, xj0 = 1, j

– Also called bias, b

• Output of unit j, denoted oj is

computed using a sigmoid:

oj = (wj· xj)

where wj is vector of weights entering unit j

xj is vector of inputs to unit j

• By definition, xji = oi .

Given an input, how do we compute the output? How do we train the weights?

Joelle Pineau10

• Suppose we want network to make prediction about instance <x,y=?>.

Run a forward pass through the network.

For layer k = 1 … K

1. Compute the output of all neurons in layer k:

2. Copy this output as the input to the next layer:

The output of the last layer is the predicted output y.

COMP-551: Applied Machine Learning

Computing the output of the network

Joelle Pineau11COMP-551: Applied Machine Learning

Learning in feed-forward neural networks

• Assume the network structure (units + connections) is given.

• The learning problem is finding a good set of weights to

minimize the error at the output of the network.

• Approach: gradient descent, because the form of the

hypothesis formed by the network, hw is:

– Differentiable! Because of the choice of sigmoid units.

– Very complex! Hence direct computation of the optimal weights is

not possible.

Joelle Pineau12COMP-551: Applied Machine Learning

Gradient-descent preliminaries for NN

• Assume we have a fully connected network:

– N input units (indexed 1, …, N)

– H hidden units in a single layer (indexed N+1, …, N+H)

– one output unit (indexed N+H+1)

• Suppose you want to compute the weight update after seeing

instance <x, y>.

• Let oi, i = 1, …, H+N+1 be the outputs of all units in the network

for the given input x.

• For regression: the sum-squared error function is:

Joelle Pineau13COMP-551: Applied Machine Learning

Gradient-descent update for output node

• Derivative with respects to the weights wN+H+1,j entering oN+H+1:

– Use the chain rule: ∂J(w)/∂w = (∂J(w)/∂σ) ∙ (∂σ/∂w)

∂J(w)/∂σ = -(y-oN+H+1)
Note: j here is

any node in the

hidden layer

Joelle Pineau14COMP-551: Applied Machine Learning

Gradient-descent update for output node

• Derivative with respects to the weights wN+H+1,j entering oN+H+1:

– Use the chain rule: ∂J(w)/∂w = (∂J(w)/∂σ) ∙ (∂σ/∂w)

• Hence, we can write:

where:

Joelle Pineau15COMP-424: Artificial intelligence

Gradient-descent update for hidden node

• The derivative wrt the other weights, wl,j where j = 1, …, N and

l = N+1, …, N+H can be computed using chain rule:

• Recall that xN+H+1,l = ol. Hence we have:

• Putting these together and using similar notation as before:

Note: now j is

any node in the

input layer, and l

is any node in

the hidden layer

Joelle Pineau16COMP-551: Applied Machine Learning

Gradient-descent update for hidden node

Image from: http://openi.nlm.nih.gov/detailedresult.php?img=2716495_bcr2257-1&req=4

Note: now h is

any node in the

hidden layer

Joelle Pineau17COMP-551: Applied Machine Learning

Stochastic gradient descent (SGD)

• Initialize all weights to small random numbers.

• Repeat until convergence:

– Pick a training example.

– Feed example through network to compute output o = oN+H+1.

– For the output unit, compute the correction:

– For each hidden unit h, compute its share of the correction:

– Update each network weight:

Backpro-

pagation

Gradient

descent

Forward

pass

Initialization

Joelle Pineau18COMP-551: Applied Machine Learning

Flavours of gradient descent

• Stochastic gradient descent: Compute error on a single

example at a time (as in previous slide).

• Batch gradient descent: Compute error on all examples.

– Loop through the training data, accumulating weight changes.

– Update all weights and repeat.

• Mini-batch gradient descent: Compute error on small subset.

– Randomly select a “mini-batch” (i.e. subset of training examples).

– Calculate error on mini-batch, apply to update weights, and repeat.

Joelle Pineau19COMP-551: Applied Machine Learning

Expressiveness of feed-forward NN

A single sigmoid neuron?

• Same representational power as a perceptron: Boolean AND, OR,

NOT, but not XOR.

A neural network with a single hidden layer?

Joelle Pineau20

Expressiveness of feed-forward NN

Image from: Hugo Larochelle’s & Pascal Vincent’s slides

COMP-551: Applied Machine Learning

(non-linearity)

Joelle Pineau21

Expressiveness of feed-forward NN

Image from: Hugo Larochelle’s & Pascal Vincent’s slides

COMP-551: Applied Machine Learning

Joelle Pineau22

Expressiveness of feed-forward NN

Image from: Hugo Larochelle’s & Pascal Vincent’s slides

COMP-551: Applied Machine Learning

Joelle Pineau23COMP-551: Applied Machine Learning

Expressiveness of feed-forward NN

A single sigmoid neuron?

• Same representational power as a perceptron: Boolean AND, OR,

NOT, but not XOR.

A neural network with a single hidden layer?

• Universal approximation theorem (Hornik, 1991):

– “Every bounded continuous function can be approximated with

arbitrary precision by a single-layer neural network”

• But might require a number of hidden units that is exponential in

the number of inputs.

• Also, this doesn’t mean that we can easily learn the parameter

values!

Joelle Pineau24COMP-551: Applied Machine Learning

Expressiveness of feed-forward NN

A single sigmoid neuron?

• Same representational power as a perceptron: Boolean AND, OR,

NOT, but not XOR.

A neural network with a single hidden layer?

• Universal approximation theorem (Hornik, 1991)

• But might require a number of hidden units that is exponential in

the number of inputs.

• Also, this doesn’t mean that we can easily learn the parameter

values!

A neural network with two hidden layers?

• Any function can be approximated to arbitrary accuracy by a

network with two hidden layers.

Joelle Pineau25

Final notes

• What you should know:

– Definition / components of neural networks.

– Training by backpropagation

– Stochastic gradient descent and its variants

• Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School:

http://videolectures.net/deeplearning2017_larochelle_neural_networks/

https://drive.google.com/file/d/0ByUKRdiCDK7-c2s2RjBiSms2UzA/view?usp=drive_web

https://drive.google.com/file/d/0ByUKRdiCDK7-UXB1R1ZpX082MEk/view?usp=drive_web

Manifold perspective on neural nets with cool visualizations:

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

COMP-551: Applied Machine Learning

