
Probability in
Programming

Prakash Panangaden
School of Computer Science

McGill University

Two crucial issues

Two crucial issues

• Correctness of software:

Two crucial issues

• Correctness of software:

• with respect to precise specifications.

Two crucial issues

• Correctness of software:

• with respect to precise specifications.

• Efficiency of code:

Two crucial issues

• Correctness of software:

• with respect to precise specifications.

• Efficiency of code:

• based on well-designed algorithms.

Logic is the key

Logic is the key
• Precise specifications have to be made in a formal

language

Logic is the key
• Precise specifications have to be made in a formal

language

• with a rigourous definition of meaning.

Logic is the key
• Precise specifications have to be made in a formal

language

• with a rigourous definition of meaning.

• Logic is the “calculus” of computer science.

Logic is the key
• Precise specifications have to be made in a formal

language

• with a rigourous definition of meaning.

• Logic is the “calculus” of computer science.

• It comes with a framework for reasoning.

Logic is the key
• Precise specifications have to be made in a formal

language

• with a rigourous definition of meaning.

• Logic is the “calculus” of computer science.

• It comes with a framework for reasoning.

• Many kinds of logic: propositional, predicate,
modal,

Probability

Probability
• Probability is also a framework for reasoning

Probability
• Probability is also a framework for reasoning

• quantitatively.

Probability
• Probability is also a framework for reasoning

• quantitatively.

• But is this relevant for computer programmers?

Probability
• Probability is also a framework for reasoning

• quantitatively.

• But is this relevant for computer programmers?

• Yes!

Probability
• Probability is also a framework for reasoning

• quantitatively.

• But is this relevant for computer programmers?

• Yes!

• Probabilistic reasoning is everywhere.

Some quotations

Some quotations

• The true logic of the world is the calculus of
probabilities — James Clerk Maxwell

Some quotations

• The true logic of the world is the calculus of
probabilities — James Clerk Maxwell

• The theory of probabilities is at bottom nothing but
common sense reduced to calculus — Pierre
Simon Laplace

Why does one use
probability?

Why does one use
probability?

• Some algorithms use probability as a
computational resource: randomized algorithms.

Why does one use
probability?

• Some algorithms use probability as a
computational resource: randomized algorithms.

• Software for interacting with physical systems have
to cope with noise and uncertainty:
telecommunications, robotics, vision, control
systems,

Why does one use
probability?

• Some algorithms use probability as a
computational resource: randomized algorithms.

• Software for interacting with physical systems have
to cope with noise and uncertainty:
telecommunications, robotics, vision, control
systems,

• Big data and machine learning: probabilistic
reasoning has had a revolutionary impact.

Basic Ideas

Basic Ideas

Sample space X: the set of things that can

possibly happen.

Basic Ideas

Sample space X: the set of things that can

possibly happen.

Event: subset of the sample space; A,B ⇢ X.

Basic Ideas

Sample space X: the set of things that can

possibly happen.

Event: subset of the sample space; A,B ⇢ X.

Probability: Pr : X ! [0, 1],

P
x2X

Pr(x) = 1.

Basic Ideas

Sample space X: the set of things that can

possibly happen.

Event: subset of the sample space; A,B ⇢ X.

Probability: Pr : X ! [0, 1],

P
x2X

Pr(x) = 1.

Probability of an event A: Pr(A) =

P
x2A

Pr(x).

Basic Ideas

Sample space X: the set of things that can

possibly happen.

Event: subset of the sample space; A,B ⇢ X.

Probability: Pr : X ! [0, 1],

P
x2X

Pr(x) = 1.

Probability of an event A: Pr(A) =

P
x2A

Pr(x).

A,B are independent: Pr(A \B) = Pr(A) · Pr(B).

Basic Ideas

Sample space X: the set of things that can

possibly happen.

Event: subset of the sample space; A,B ⇢ X.

Probability: Pr : X ! [0, 1],

P
x2X

Pr(x) = 1.

Probability of an event A: Pr(A) =

P
x2A

Pr(x).

A,B are independent: Pr(A \B) = Pr(A) · Pr(B).

Subprobability:

P
x2X

Pr(x) 1.

A Puzzle

A Puzzle

Imagine a town where every birth is equally likely

to give a boy or a girl. Pr(boy) = Pr(girl) = 1
2 .

A Puzzle

Imagine a town where every birth is equally likely

to give a boy or a girl. Pr(boy) = Pr(girl) = 1
2 .

Each birth is an independent random event.

A Puzzle

Imagine a town where every birth is equally likely

to give a boy or a girl. Pr(boy) = Pr(girl) = 1
2 .

Each birth is an independent random event.

There is a family with two children.

A Puzzle

Imagine a town where every birth is equally likely

to give a boy or a girl. Pr(boy) = Pr(girl) = 1
2 .

Each birth is an independent random event.

There is a family with two children.

One of them is a boy (not specified which one), what
is the probability that the other one is a boy?

A Puzzle

Imagine a town where every birth is equally likely

to give a boy or a girl. Pr(boy) = Pr(girl) = 1
2 .

Each birth is an independent random event.

There is a family with two children.

One of them is a boy (not specified which one), what
is the probability that the other one is a boy?

Since the births are independent, the probability

that the other child is a boy should be

1
2 . Right?

Puzzle (continued)

Puzzle (continued)

Wrong!

Puzzle (continued)

Wrong!

Initially, there are 4 equally likely situations:

bb, bg, gb, gg.

Puzzle (continued)

Wrong!

Initially, there are 4 equally likely situations:

bb, bg, gb, gg.

The possibility gg is ruled out with the

additional information.

Puzzle (continued)

Wrong!

Initially, there are 4 equally likely situations:

bb, bg, gb, gg.

The possibility gg is ruled out with the

additional information.

So of the three equally likely scenarios:

bb, bg, gb,

only one has the other child being a boy.

Puzzle (continued)

Wrong!

Initially, there are 4 equally likely situations:

bb, bg, gb, gg.

The possibility gg is ruled out with the

additional information.

So of the three equally likely scenarios:

bb, bg, gb,

only one has the other child being a boy.

The correct answer is

1
3 .

Puzzle (continued)

Wrong!

Initially, there are 4 equally likely situations:

bb, bg, gb, gg.

The possibility gg is ruled out with the

additional information.

So of the three equally likely scenarios:

bb, bg, gb,

only one has the other child being a boy.

The correct answer is

1
3 .

If I had said, “The elder child is a boy”, then the probability

that the other child is a boy is indeed

1
2

Conditional probability

Conditional probability

Conditioning = revising probability in the presence of

new information.

Conditional probability

Conditioning = revising probability in the presence of

new information.

Conditional probability/expectation is the heart of

probabilistic reasoning.

Conditional probability

Conditioning = revising probability in the presence of

new information.

Conditional probability/expectation is the heart of

probabilistic reasoning.

Conditional probability is tricky!

Conditional probability

Conditioning = revising probability in the presence of

new information.

Conditional probability/expectation is the heart of

probabilistic reasoning.

Conditional probability is tricky!

Analogous to inference in ordinary logic.

Conditional probability

Conditional probability

Definition: if A and B are events, the conditional probability

of A given B, written Pr(A | B) is defined by

Pr(A | B) = Pr(A \B)/Pr(B).

Conditional probability

Definition: if A and B are events, the conditional probability

of A given B, written Pr(A | B) is defined by

Pr(A | B) = Pr(A \B)/Pr(B).

We are told that the outcome is one of the possibilities

in B. We now need to change our guess for the outcome

being in A.

Conditional probability

Definition: if A and B are events, the conditional probability

of A given B, written Pr(A | B) is defined by

Pr(A | B) = Pr(A \B)/Pr(B).

We are told that the outcome is one of the possibilities

in B. We now need to change our guess for the outcome

being in A.

A

B

Bayes’ Rule

Pr(A | B) =
Pr(B | A) · Pr(A)

Pr(B)
.

How to revise probabilities.

Bayes’ Rule

Pr(A | B) =
Pr(B | A) · Pr(A)

Pr(B)
.

How to revise probabilities.

Proof is just from the definition.

Example

Example

Two coins, one fake (two heads) one OK.

Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

What is the probability the coin was fake?

Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

What is the probability the coin was fake?

Answer: 2
3 .

Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

What is the probability the coin was fake?

Answer: 2
3 .

Pr(H | Fake) = 1,Pr(Fake) = 1
2 ,Pr(H) = 1

2 · 1 + 1
2 · 1

2 = 3
4 .

Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

What is the probability the coin was fake?

Answer: 2
3 .

Pr(H | Fake) = 1,Pr(Fake) = 1
2 ,Pr(H) = 1

2 · 1 + 1
2 · 1

2 = 3
4 .

Hence Pr(Fake | H) = (12)/(
3
4) =

2
3 .

Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

What is the probability the coin was fake?

Answer: 2
3 .

Pr(H | Fake) = 1,Pr(Fake) = 1
2 ,Pr(H) = 1

2 · 1 + 1
2 · 1

2 = 3
4 .

Hence Pr(Fake | H) = (12)/(
3
4) =

2
3 .

Similarly Pr(Fake | HHH) = 8
9 .

Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

What is the probability the coin was fake?

Answer: 2
3 .

Pr(H | Fake) = 1,Pr(Fake) = 1
2 ,Pr(H) = 1

2 · 1 + 1
2 · 1

2 = 3
4 .

Hence Pr(Fake | H) = (12)/(
3
4) =

2
3 .

Similarly Pr(Fake | HHH) = 8
9 . Pr(Fake | H . . .H| {z }

n

) = 1
1+(1

2)
n .

Bayes’ rule shows how to update the prior probability of A
with the new information that the outcome was B: this

gives the posterior probability of A given B.

Expectation values

Expectation values

A random variable r is a real-valued function on X.

Expectation values

A random variable r is a real-valued function on X.

The expectation value of r is E[r] =
X

x2X

Pr(x)r(x).

Expectation values

A random variable r is a real-valued function on X.

The expectation value of r is E[r] =
X

x2X

Pr(x)r(x).

The conditional expectation value of r given A is:

Expectation values

A random variable r is a real-valued function on X.

The expectation value of r is E[r] =
X

x2X

Pr(x)r(x).

The conditional expectation value of r given A is:

E[r | A] =
X

x2X

r(x)Pr({x} | A).

Expectation values

A random variable r is a real-valued function on X.

The expectation value of r is E[r] =
X

x2X

Pr(x)r(x).

The conditional expectation value of r given A is:

E[r | A] =
X

x2X

r(x)Pr({x} | A).

Conditional probability is a special case of

conditional expectation.

Calculating expectations through conditioning

Calculating expectations through conditioning

Two people roll dice independently.

Calculating expectations through conditioning

Two people roll dice independently.

Calculating expectations through conditioning

Two people roll dice independently.

The first one keeps rolling until

he gets a 1 immediately followed by a 2.

Calculating expectations through conditioning

Two people roll dice independently.

The second one keeps rolling

until she gets a 1 and a 1.

The first one keeps rolling until

he gets a 1 immediately followed by a 2.

Calculating expectations through conditioning

Two people roll dice independently.

The second one keeps rolling

until she gets a 1 and a 1.

The first one keeps rolling until

he gets a 1 immediately followed by a 2.

Do they have the same expected number of rolls?

Calculating expectations through conditioning

Two people roll dice independently.

The second one keeps rolling

until she gets a 1 and a 1.

The first one keeps rolling until

he gets a 1 immediately followed by a 2.

Do they have the same expected number of rolls?

If not, who is expected to finish first?

Calculating expectations through conditioning

Two people roll dice independently.

The second one keeps rolling

until she gets a 1 and a 1.

The first one keeps rolling until

he gets a 1 immediately followed by a 2.

Do they have the same expected number of rolls?

If not, who is expected to finish first?

What is the expected number of rolls for each one?

For the first:

1
6 · (1 + 1

6 · 1 + . . .) + . . .

For the first:

1
6 · (1 + 1

6 · 1 + . . .) + . . .

Is there a better way?

For the first:

1
6 · (1 + 1

6 · 1 + . . .) + . . .

Is there a better way?

Use conditional expectations and think in terms of

state-transition diagrams:

For the first:

1
6 · (1 + 1

6 · 1 + . . .) + . . .

Is there a better way?

Use conditional expectations and think in terms of

state-transition diagrams:

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

Let x = E[Finish | Start]

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

Let x = E[Finish | Start] Let y = E[Finish | 1]

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

Let x = E[Finish | Start] Let y = E[Finish | 1]

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

x = 5
6 · (1 + x) + 1

6 · (1 + y)

Let x = E[Finish | Start] Let y = E[Finish | 1]

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

x = 5
6 · (1 + x) + 1

6 · (1 + y)

y = 1
6 · 1 + 1

6 · (1 + y) + 2
3 · (1 + x)

Let x = E[Finish | Start] Let y = E[Finish | 1]

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

x = 5
6 · (1 + x) + 1

6 · (1 + y)

y = 1
6 · 1 + 1

6 · (1 + y) + 2
3 · (1 + x)

Easy to solve: x = 30, y = 36.

1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

Let x = E[Finish | Start]

1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

Let x = E[Finish | Start] Let y = E[Finish | 1]

1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

Let x = E[Finish | Start] Let y = E[Finish | 1]

x = 1
6 · (1 + y) + 5

6 · (1 + x)

1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

Let x = E[Finish | Start] Let y = E[Finish | 1]

x = 1
6 · (1 + y) + 5

6 · (1 + x)

y = 1
6 · 1 + 5

6 · (1 + x)

1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

Let x = E[Finish | Start] Let y = E[Finish | 1]

x = 1
6 · (1 + y) + 5

6 · (1 + x)

y = 1
6 · 1 + 5

6 · (1 + x)

Easy to solve: x = 42, y = 36.

1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

Let x = E[Finish | Start] Let y = E[Finish | 1]

x = 1
6 · (1 + y) + 5

6 · (1 + x)

y = 1
6 · 1 + 5

6 · (1 + x)

Easy to solve: x = 42, y = 36.

Did you expect this to be the slower one?

Understanding programs

Understanding programs

The state of a program is the correspondence between

names and values.

Understanding programs

The state of a program is the correspondence between

names and values.

[X 7! 3, Y 7! 4, Z 7! �2.5]

Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

if X > 1 then Y = Y + Z else Y = Z

Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

if X > 1 then Y = Y + Z else Y = Z

[X 7! 3, Y 7! 4, Z 7! �2.5] �! [X 7! 3, Y 7! 1.5, Z 7! �2.5]

Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

if X > 1 then Y = Y + Z else Y = Z

[X 7! 3, Y 7! 4, Z 7! �2.5] �! [X 7! 3, Y 7! 1.5, Z 7! �2.5]

Ordinary programs define state-transformer functions.

Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

if X > 1 then Y = Y + Z else Y = Z

[X 7! 3, Y 7! 4, Z 7! �2.5] �! [X 7! 3, Y 7! 1.5, Z 7! �2.5]

Ordinary programs define state-transformer functions.

When one combines program pieces one can

compose the functions to find the combined e↵ect.

Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

if X > 1 then Y = Y + Z else Y = Z

[X 7! 3, Y 7! 4, Z 7! �2.5] �! [X 7! 3, Y 7! 1.5, Z 7! �2.5]

Ordinary programs define state-transformer functions.

How do we understand probabilistic programs?

When one combines program pieces one can

compose the functions to find the combined e↵ect.

Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

if X > 1 then Y = Y + Z else Y = Z

[X 7! 3, Y 7! 4, Z 7! �2.5] �! [X 7! 3, Y 7! 1.5, Z 7! �2.5]

Ordinary programs define state-transformer functions.

How do we understand probabilistic programs?

As distribution transformers.

When one combines program pieces one can

compose the functions to find the combined e↵ect.

X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

Initial distribution: [X 7! (0, 1.0), C 7! (0, 1.0)]

X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

Initial distribution: [X 7! (0, 1.0), C 7! (0, 1.0)]

Final distribution: [X 7! (1, 0.5)(�1, 0.5), C 7! (0, 0.5)(1, 0.5)]

X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

Initial distribution: [X 7! (0, 1.0), C 7! (0, 1.0)]

Final distribution: [X 7! (1, 0.5)(�1, 0.5), C 7! (0, 0.5)(1, 0.5)]

A Markov chain has S: states and a probability

distribution transformer T .

X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

Initial distribution: [X 7! (0, 1.0), C 7! (0, 1.0)]

Final distribution: [X 7! (1, 0.5)(�1, 0.5), C 7! (0, 0.5)(1, 0.5)]

A Markov chain has S: states and a probability

distribution transformer T .

T : St⇥ St ! [0, 1] or T : St ! Dist(St).

X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

Initial distribution: [X 7! (0, 1.0), C 7! (0, 1.0)]

Final distribution: [X 7! (1, 0.5)(�1, 0.5), C 7! (0, 0.5)(1, 0.5)]

A Markov chain has S: states and a probability

distribution transformer T .

T : St⇥ St ! [0, 1] or T : St ! Dist(St).

T (s1, s2) is the conditional probability of being

in state s2 after the transition given that the

state was s1 before.

X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

Initial distribution: [X 7! (0, 1.0), C 7! (0, 1.0)]

Final distribution: [X 7! (1, 0.5)(�1, 0.5), C 7! (0, 0.5)(1, 0.5)]

A Markov chain has S: states and a probability

distribution transformer T .

T : St⇥ St ! [0, 1] or T : St ! Dist(St).

T (s1, s2) is the conditional probability of being

in state s2 after the transition given that the

state was s1 before.

Markov property: the transition probability only depends

on the current state, not on the whole history.

Because of the Markov property, one can describe

the e↵ect of a transition by a matrix.

Because of the Markov property, one can describe

the e↵ect of a transition by a matrix.

When one combines probabilistic program pieces

one can multiply the transition matrices to find

the combined e↵ect.

Because of the Markov property, one can describe

the e↵ect of a transition by a matrix.

When one combines probabilistic program pieces

one can multiply the transition matrices to find

the combined e↵ect.

We are understanding the program by stepping forwards.

Because of the Markov property, one can describe

the e↵ect of a transition by a matrix.

When one combines probabilistic program pieces

one can multiply the transition matrices to find

the combined e↵ect.

We are understanding the program by stepping forwards.

This is called “forwards” or state-transformer semantics.

Backwards semantics

Maybe we do not want to track every detail of the state

as it changes.

Backwards semantics

Maybe we do not want to track every detail of the state

as it changes.

Backwards semantics

Perhaps we want to know if a property holds,

e.g. X > 0.

Maybe we do not want to track every detail of the state

as it changes.

Backwards semantics

Perhaps we want to know if a property holds,

e.g. X > 0.

We write {P} step {Q} to mean that P holds

before the step and Q holds after the step.

Maybe we do not want to track every detail of the state

as it changes.

Backwards semantics

Perhaps we want to know if a property holds,

e.g. X > 0.

We write {P} step {Q} to mean that P holds

before the step and Q holds after the step.

{X > 0} X = X � 5 {X > 0} ??

Maybe we do not want to track every detail of the state

as it changes.

Backwards semantics

Perhaps we want to know if a property holds,

e.g. X > 0.

We write {P} step {Q} to mean that P holds

before the step and Q holds after the step.

{X > 0} X = X � 5 {X > 0} ??

We cannot say anything for sure after the step!

But we can go backwards!

But we can go backwards!

{X > 5} X = X � 5 {X > 0}

But we can go backwards!

{X > 5} X = X � 5 {X > 0} �

But we can go backwards!

{X > 5} X = X � 5 {X > 0}

We must read this di↵erently: if we want X > 0

after the step, we must make sure X > 5 before the step.

 �

But we can go backwards!

{X > 5} X = X � 5 {X > 0}

We must read this di↵erently: if we want X > 0

after the step, we must make sure X > 5 before the step.

This is called “predicate-transformer” semantics.

 �

But we can go backwards!

{X > 5} X = X � 5 {X > 0}

We must read this di↵erently: if we want X > 0

after the step, we must make sure X > 5 before the step.

This is called “predicate-transformer” semantics.

 �

Can we do something like this for probabilistic programs?

Classical logic Generalization

Truth values {0, 1} Probabilities [0, 1]
Predicate Random variable

State Distribution

The satisfaction relation |= Integration

R

Instead of predicates we have real-valued functions.

Instead of predicates we have real-valued functions.

Suppose that your probabilistic program describes a

search for some resource.

Instead of predicates we have real-valued functions.

Suppose that your probabilistic program describes a

search for some resource.

Suppose that r : St ! R is the “expected reward”

in each state.

Instead of predicates we have real-valued functions.

Suppose that your probabilistic program describes a

search for some resource.

Suppose that r : St ! R is the “expected reward”

in each state.

We write

ˆTr for a new reward function defined by

(

ˆTr)(s) =
X

s02S

T (s, s0)r(s0).

Instead of predicates we have real-valued functions.

Suppose that your probabilistic program describes a

search for some resource.

Suppose that r : St ! R is the “expected reward”

in each state.

We write

ˆTr for a new reward function defined by

(

ˆTr)(s) =
X

s02S

T (s, s0)r(s0).

This tells you the expected reward before the transition

assuming that r is the reward after the transition.

Probabilistic Models

Probabilistic Models

• A general framework to reason about situations
computationally and quantitatively.

Probabilistic Models

• A general framework to reason about situations
computationally and quantitatively.

• Most important class of models: graphical models.

Probabilistic Models

• A general framework to reason about situations
computationally and quantitatively.

• Most important class of models: graphical models.

• They capture dependence and independence and

Probabilistic Models

• A general framework to reason about situations
computationally and quantitatively.

• Most important class of models: graphical models.

• They capture dependence and independence and

• conditional independence.

Complex systems

Complex systems
• Complex systems have many variables.

Complex systems
• Complex systems have many variables.

• They are related in intricate ways: correlated or
independent.

Complex systems
• Complex systems have many variables.

• They are related in intricate ways: correlated or
independent.

• They may be conditionally independent or dependent.

Complex systems
• Complex systems have many variables.

• They are related in intricate ways: correlated or
independent.

• They may be conditionally independent or dependent.

• There may be causal connections.

Complex systems
• Complex systems have many variables.

• They are related in intricate ways: correlated or
independent.

• They may be conditionally independent or dependent.

• There may be causal connections.

• We want to represent several random variables that
may be connected in different ways.

A simple graphical model

A simple graphical model

Trying to analyze what is wrong with a web site:

A simple graphical model

Trying to analyze what is wrong with a web site:

could be buggy (yes/no)

A simple graphical model

Trying to analyze what is wrong with a web site:

could be buggy (yes/no)

could be under attack (yes/no)

A simple graphical model

Trying to analyze what is wrong with a web site:

could be buggy (yes/no)

could be under attack (yes/no)

tra�c (very high/high/moderate/low)

A simple graphical model

Trying to analyze what is wrong with a web site:

could be buggy (yes/no)

could be under attack (yes/no)

tra�c (very high/high/moderate/low)

Symptoms: crashed or slow

A simple graphical model

Trying to analyze what is wrong with a web site:

could be buggy (yes/no)

could be under attack (yes/no)

tra�c (very high/high/moderate/low)

Symptoms: crashed or slow

There are 64 states.

The arrows show probabilistic dependencies.

The arrows show probabilistic dependencies.

Everything in the top row is independent of each other.

The arrows show probabilistic dependencies.

Everything in the top row is independent of each other.

We write A?B for A is independent of B.

The arrows show probabilistic dependencies.

Everything in the top row is independent of each other.

We write A?B for A is independent of B.

Perhaps too simple:

if attacked then the tra�c should be heavy.

This version: tra�c is a↵ected by being attacked.

Medical example (from Koller and Friedman)

Medical example (from Koller and Friedman)

Flu and allergy are correlated through season.

Medical example (from Koller and Friedman)

Flu and allergy are correlated through season.

Given the season, they are independent: (A?F | S)

Independence relations:

Independence relations:

(F?A | S), (Sn?S | F,A), (P?A,Sn | F), (P | Sn | F)

Independence relations:

(F?A | S), (Sn?S | F,A), (P?A,Sn | F), (P | Sn | F)

P (Sn | F,A, S) = P (Sn | F,A)

Independence relations:

(F?A | S), (Sn?S | F,A), (P?A,Sn | F), (P | Sn | F)

P (Sn | F,A, S) = P (Sn | F,A)

Sn depends on S but it is conditionally independent given A and F .

Independence and Factorization

Independence and Factorization

Why do we care about conditional independence?

Independence and Factorization

Why do we care about conditional independence?

Because we can factorize the joint distributions.

Independence and Factorization

Why do we care about conditional independence?

Because we can factorize the joint distributions.

Independence and Factorization

Why do we care about conditional independence?

Because we can factorize the joint distributions.

P (S,A, F, P, Sn) =

P (S)P (F |S)P (A|S)P (Sn|A,F)P (Pain|F)

Independence and Factorization

Why do we care about conditional independence?

Because we can factorize the joint distributions.

P (S,A, F, P, Sn) =

P (S)P (F |S)P (A|S)P (Sn|A,F)P (Pain|F)

A huge advantage for representing, computing and reasoning.

Where can we go from here?

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis.

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

I choose a real number between 0 and 1 uniformly, what is the probability of

getting a rational number?

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

I choose a real number between 0 and 1 uniformly, what is the probability of

getting a rational number? Answer: 0!

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

I choose a real number between 0 and 1 uniformly, what is the probability of

getting a rational number? Answer: 0!

If every single point has probability 0 how can I have anything interesting?

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

I choose a real number between 0 and 1 uniformly, what is the probability of

getting a rational number? Answer: 0!

If every single point has probability 0 how can I have anything interesting?

Is it possible to assign a probability to every set?

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

I choose a real number between 0 and 1 uniformly, what is the probability of

getting a rational number? Answer: 0!

If every single point has probability 0 how can I have anything interesting?

Is it possible to assign a probability to every set?

Answer: No!

Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

I choose a real number between 0 and 1 uniformly, what is the probability of

getting a rational number? Answer: 0!

If every single point has probability 0 how can I have anything interesting?

Is it possible to assign a probability to every set?

Answer: No!

There is a rich and fascinating theory of programming

and reasoning about probabilistic systems.

Logic and Probability are your
weapons.

Go forth and conquer the software
world!

Thank you!

