
Probability in 
Programming

Prakash Panangaden 
School of Computer Science 

McGill University



Two crucial issues



Two crucial issues

• Correctness of software:



Two crucial issues

• Correctness of software:

• with respect to precise specifications.



Two crucial issues

• Correctness of software:

• with respect to precise specifications.

• Efficiency of code:



Two crucial issues

• Correctness of software:

• with respect to precise specifications.

• Efficiency of code:

• based on well-designed algorithms.
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Logic is the key
• Precise specifications have to be made in a formal 

language

• with a rigourous definition of meaning.

• Logic is the “calculus” of computer science.

• It comes with a framework for reasoning.

• Many kinds of logic: propositional, predicate, 
modal, .....
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• Probability is also a framework for reasoning 

• quantitatively.

• But is this relevant for computer programmers?

• Yes!

• Probabilistic reasoning is everywhere.
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Some quotations

• The true logic of the world is the calculus of 
probabilities — James Clerk Maxwell

• The theory of probabilities is at bottom nothing but 
common sense reduced to calculus — Pierre 
Simon Laplace



Why does one use 
probability?



Why does one use 
probability?

• Some algorithms use probability as a 
computational resource: randomized algorithms.



Why does one use 
probability?

• Some algorithms use probability as a 
computational resource: randomized algorithms.

• Software for interacting with physical systems have 
to cope with noise and uncertainty: 
telecommunications, robotics, vision, control 
systems, ....



Why does one use 
probability?

• Some algorithms use probability as a 
computational resource: randomized algorithms.

• Software for interacting with physical systems have 
to cope with noise and uncertainty: 
telecommunications, robotics, vision, control 
systems, ....

• Big data and machine learning: probabilistic 
reasoning has had a revolutionary impact.
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Basic Ideas

Sample space X: the set of things that can

possibly happen.

Event: subset of the sample space; A,B ⇢ X.

Probability: Pr : X ! [0, 1],

P
x2X

Pr(x) = 1.

Probability of an event A: Pr(A) =

P
x2A

Pr(x).

A,B are independent: Pr(A \B) = Pr(A) · Pr(B).

Subprobability:

P
x2X

Pr(x)  1.
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A Puzzle

Imagine a town where every birth is equally likely

to give a boy or a girl. Pr(boy) = Pr(girl) = 1
2 .

Each birth is an independent random event.

There is a family with two children.

One of them is a boy (not specified which one), what
is the probability that the other one is a boy?

Since the births are independent, the probability

that the other child is a boy should be

1
2 . Right?
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Puzzle (continued)

Wrong!

Initially, there are 4 equally likely situations:

bb, bg, gb, gg.

The possibility gg is ruled out with the

additional information.

So of the three equally likely scenarios:

bb, bg, gb,

only one has the other child being a boy.

The correct answer is

1
3 .

If I had said, “The elder child is a boy”, then the probability

that the other child is a boy is indeed

1
2
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Conditional probability

Conditioning = revising probability in the presence of

new information.

Conditional probability/expectation is the heart of

probabilistic reasoning.

Conditional probability is tricky!

Analogous to inference in ordinary logic.
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Conditional probability

Definition: if A and B are events, the conditional probability

of A given B, written Pr(A | B) is defined by

Pr(A | B) = Pr(A \B)/Pr(B).

We are told that the outcome is one of the possibilities

in B. We now need to change our guess for the outcome

being in A.

A

B
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Bayes’ Rule

Pr(A | B) =
Pr(B | A) · Pr(A)

Pr(B)
.

How to revise probabilities.

Proof is just from the definition.
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Example

Two coins, one fake (two heads) one OK.

One coin chosen with equal probability and then tossed
to yield a H.

What is the probability the coin was fake?

Answer: 2
3 .

Pr(H | Fake) = 1,Pr(Fake) = 1
2 ,Pr(H) = 1

2 · 1 + 1
2 · 1

2 = 3
4 .

Hence Pr(Fake | H) = ( 12 )/(
3
4 ) =

2
3 .

Similarly Pr(Fake | HHH) = 8
9 . Pr(Fake | H . . .H| {z }

n

) = 1
1+( 1

2 )
n .



Bayes’ rule shows how to update the prior probability of A
with the new information that the outcome was B: this

gives the posterior probability of A given B.
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Expectation values

A random variable r is a real-valued function on X.

The expectation value of r is E[r] =
X

x2X

Pr(x)r(x).

The conditional expectation value of r given A is:

E[r | A] =
X

x2X

r(x)Pr({x} | A).

Conditional probability is a special case of

conditional expectation.
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Calculating expectations through conditioning

Two people roll dice independently.

The second one keeps rolling

until she gets a 1 and a 1.

The first one keeps rolling until

he gets a 1 immediately followed by a 2.

Do they have the same expected number of rolls?

If not, who is expected to finish first?

What is the expected number of rolls for each one?
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Let x = E[Finish | Start] Let y = E[Finish | 1]

1

3, 4, 5, 6

3, 4, 5, 6

1 2

2,

x = 5
6 · (1 + x) + 1

6 · (1 + y)

y = 1
6 · 1 + 1

6 · (1 + y) + 2
3 · (1 + x)

Easy to solve: x = 30, y = 36.
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1 1

2, 3, 4, 5, 6

2, 3, 4, 5, 6

Let x = E[Finish | Start] Let y = E[Finish | 1]

x = 1
6 · (1 + y) + 5

6 · (1 + x)

y = 1
6 · 1 + 5

6 · (1 + x)

Easy to solve: x = 42, y = 36.

Did you expect this to be the slower one?
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Understanding programs

The state of a program is the correspondence between

names and values.

Running a part of a program changes the state.

[X 7! 3, Y 7! 4, Z 7! �2.5]

if X > 1 then Y = Y + Z else Y = Z

[X 7! 3, Y 7! 4, Z 7! �2.5] �! [X 7! 3, Y 7! 1.5, Z 7! �2.5]

Ordinary programs define state-transformer functions.

How do we understand probabilistic programs?

As distribution transformers.

When one combines program pieces one can

compose the functions to find the combined e↵ect.
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X = 0; C = toss; if C = 1 then X = X + 1 else X = X � 1.

Initial distribution: [X 7! (0, 1.0), C 7! (0, 1.0)]

Final distribution: [X 7! (1, 0.5)(�1, 0.5), C 7! (0, 0.5)(1, 0.5)]

A Markov chain has S: states and a probability

distribution transformer T .

T : St⇥ St ! [0, 1] or T : St ! Dist(St).

T (s1, s2) is the conditional probability of being

in state s2 after the transition given that the

state was s1 before.

Markov property: the transition probability only depends

on the current state, not on the whole history.
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Because of the Markov property, one can describe

the e↵ect of a transition by a matrix.

When one combines probabilistic program pieces

one can multiply the transition matrices to find

the combined e↵ect.

We are understanding the program by stepping forwards.

This is called “forwards” or state-transformer semantics.
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Maybe we do not want to track every detail of the state

as it changes.

Backwards semantics

Perhaps we want to know if a property holds,

e.g. X > 0.

We write {P} step {Q} to mean that P holds

before the step and Q holds after the step.

{X > 0} X = X � 5 {X > 0} ??

We cannot say anything for sure after the step!
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But we can go backwards!

{X > 5} X = X � 5 {X > 0}

We must read this di↵erently: if we want X > 0

after the step, we must make sure X > 5 before the step.

This is called “predicate-transformer” semantics.

 �

Can we do something like this for probabilistic programs?



Classical logic Generalization

Truth values {0, 1} Probabilities [0, 1]
Predicate Random variable

State Distribution

The satisfaction relation |= Integration

R
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Instead of predicates we have real-valued functions.

Suppose that your probabilistic program describes a

search for some resource.

Suppose that r : St ! R is the “expected reward”

in each state.

We write

ˆTr for a new reward function defined by

(

ˆTr)(s) =
X

s02S

T (s, s0)r(s0).

This tells you the expected reward before the transition

assuming that r is the reward after the transition.
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Probabilistic Models

• A general framework to reason about situations 
computationally and quantitatively.

• Most important class of models:  graphical models.

• They capture dependence and independence and

• conditional independence.
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Complex systems
• Complex systems have many variables.

• They are related in intricate ways: correlated or 
independent.

• They may be conditionally independent or dependent.

• There may be causal connections.

• We want to represent several random variables that 
may be connected in different ways.
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A simple graphical model

Trying to analyze what is wrong with a web site:

could be buggy (yes/no)

could be under attack (yes/no)

tra�c (very high/high/moderate/low)

Symptoms: crashed or slow

There are 64 states.
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The arrows show probabilistic dependencies.

Everything in the top row is independent of each other.

We write A?B for A is independent of B.

Perhaps too simple:

if attacked then the tra�c should be heavy.



This version: tra�c is a↵ected by being attacked.
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Medical example (from Koller and Friedman)

Flu and allergy are correlated through season.

Given the season, they are independent: (A?F | S)
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Independence relations:

(F?A | S), (Sn?S | F,A), (P?A,Sn | F ), (P | Sn | F )

P (Sn | F,A, S) = P (Sn | F,A)

Sn depends on S but it is conditionally independent given A and F .
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Independence and Factorization

Why do we care about conditional independence?

Because we can factorize the joint distributions.

P (S,A, F, P, Sn) =

P (S)P (F |S)P (A|S)P (Sn|A,F )P (Pain|F )

A huge advantage for representing, computing and reasoning.
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Where can we go from here?

Continuous state spaces: robotics, telecommunication,

control systems, sensor systems.

Requires measure theory and analysis. Why?

It is subtle to answer questions like:

I choose a real number between 0 and 1 uniformly, what is the probability of

getting a rational number? Answer: 0!

If every single point has probability 0 how can I have anything interesting?

Is it possible to assign a probability to every set?

Answer: No!

There is a rich and fascinating theory of programming

and reasoning about probabilistic systems.



Logic and Probability are your 
weapons. 

Go forth and conquer the software 
world!



Thank you!


