Nuclear ideal systems in tensor-∗ categories

Prakash Panangaden
School of Computer Science, McGill University
Montreal Institute of Learning Algorithms
School of Informatics, The University of Edinburgh

Topos Institute Colloquium 9th February 2023
Collaborators

Collaborators

This talk is based on work by Abramsky, Blute and me:
Later we formalized conformal field theory:
Outline

1. Introduction
Outline

1. Introduction
2. Compact closed categories
Outline

1. Introduction
2. Compact closed categories
3. The search for quantitative relations
Outline

1. Introduction
2. Compact closed categories
3. The search for quantitative relations
4. A bit of functional analysis
Outline

1. Introduction
2. Compact closed categories
3. The search for quantitative relations
4. A bit of functional analysis
5. Nuclear ideals
Outline

1. Introduction
2. Compact closed categories
3. The search for quantitative relations
4. A bit of functional analysis
5. Nuclear ideals
6. PRel and SRel
Outline

1. Introduction
2. Compact closed categories
3. The search for quantitative relations
4. A bit of functional analysis
5. Nuclear ideals
6. PRel and SRel
7. Other examples
Outline

1. Introduction
2. Compact closed categories
3. The search for quantitative relations
4. A bit of functional analysis
5. Nuclear ideals
6. PRel and SRel
7. Other examples
8. Conclusions
Simply subsets of $R \subseteq A_1 \times \ldots \times A_n$, the basic ingredients of relational databases and many many mathematical structures.
Relations

- Simply subsets of $R \subseteq A_1 \times \ldots \times A_n$, the basic ingredients of relational databases and many many mathematical structures.
- Binary relations: $R \subseteq A \times B$, write aRb instead of $(a, b) \in R$
Relations

- Simply subsets of $R \subseteq A_1 \times \ldots \times A_n$, the basic ingredients of relational databases and many many mathematical structures.
- Binary relations: $R \subseteq A \times B$, write aRb instead of $(a, b) \in R$
- n-ary relations can be seen as binary ones
 $R \subseteq (A_1 \times \ldots \times A_m) \times (B_1 \times \ldots \times B_n)$ so we can write
 $R(x_1, \ldots, x_m; y_1, \ldots, y_n)$.
Relations

- Simply subsets of $R \subseteq A_1 \times \ldots \times A_n$, the basic ingredients of relational databases and many many mathematical structures.
- Binary relations: $R \subseteq A \times B$, write aRb instead of $(a, b) \in R$
- n-ary relations can be seen as binary ones
 $R \subseteq (A_1 \times \ldots \times A_m) \times (B_1 \times \ldots \times B_n)$ so we can write $R(x_1, \ldots, x_m; y_1, \ldots, y_n)$.
- Sets and relations form a category: $R : A \rightarrow B$ means $R \subseteq A \times B$.
Relations

- Simply subsets of $R \subseteq A_1 \times \ldots \times A_n$, the basic ingredients of relational databases and many many mathematical structures.

- Binary relations: $R \subseteq A \times B$, write aRb instead of $(a, b) \in R$

- n-ary relations can be seen as binary ones $R \subseteq (A_1 \times \ldots \times A_m) \times (B_1 \times \ldots \times B_n)$ so we can write $R(x_1, \ldots, x_m; y_1, \ldots, y_n)$.

- Sets and relations form a category: $R : A \to B$ means $R \subseteq A \times B$.

- Composition: $R : A \to B, S : B \to C$, define $S \circ R : A \to C$ by $a(S \circ R)c = \exists b \in B \ aRb \land bSc$.
Relational databases and many many mathematical structures.

Binary relations: $R \subseteq A \times B$, write aRb instead of $(a, b) \in R$

n-ary relations can be seen as binary ones
$R \subseteq (A_1 \times \ldots \times A_m) \times (B_1 \times \ldots \times B_n)$ so we can write $R(x_1, \ldots, x_m; y_1, \ldots, y_n)$.

Sets and relations form a category: $R : A \rightarrow B$ means $R \subseteq A \times B$.

Composition: $R : A \rightarrow B, S : B \rightarrow C$, define $S \circ R : A \rightarrow C$ by $a(S \circ R)c = \exists b \in B \ aRb \land bSc$.

One can define a trace: $Tr_U^{A,B} : \text{Hom}(A \times U, B \times U) \rightarrow \text{Hom}(A, B)$ by $aTr(R)b = \exists u \ R(a, u; b, u)$.
Simply subsets of $R \subseteq A_1 \times \ldots \times A_n$, the basic ingredients of relational databases and many many mathematical structures.

Binary relations: $R \subseteq A \times B$, write aRb instead of $(a, b) \in R$

n-ary relations can be seen as binary ones $R \subseteq (A_1 \times \ldots \times A_m) \times (B_1 \times \ldots \times B_n)$ so we can write $R(x_1, \ldots, x_m; y_1, \ldots, y_n)$.

Sets and relations form a category: $R : A \rightarrow B$ means $R \subseteq A \times B$.

Composition: $R : A \rightarrow B, S : B \rightarrow C$, define $S \circ R : A \rightarrow C$ by $a(S \circ R)c = \exists b \in B \ aRb \land bSc$.

One can define a trace: $Tr^{A,B}_{U} : Hom(A \times U, B \times U) \rightarrow Hom(A, B)$ by $aTr(R)b = \exists u \ R(a, u; b, u)$

We can repartition the interface: $R(x_1, \ldots, x_m; y_1, \ldots, y_n)$ can be transposed to give $R'(x_1, \ldots, x_{m-1}; x_m, y_1, \ldots, y_n)$.
finite-dimensional vector spaces over some field k.

Multilinear algebra

- Finite-dimensional vector spaces over some field k.

We have a category with morphisms the k-linear maps. We have notion of multi-linear map $f: V_1 \times \ldots \times V_n \to k$.

Introduce the concept of tensor product $V_1 \otimes V_2 \otimes \ldots \otimes V_n$, to make the multi-linear maps proper linear maps: $f: V_1 \otimes \ldots \otimes V_n \to k$.

We have matrices as concrete (basis-dependent) representations of linear maps. We have higher tensors for multilinear maps. Index notations, diagrammatic notations.

One can define a partial trace $\text{Tr}_{V,W,U}: \text{Hom}(V \times U, W \times U) \to \text{Hom}(V, W)$ by well-known formulas.

We can repartition the interface, moving indices around by transposing matrices or higher tensors.
Multilinear algebra

- Finite-dimensional vector spaces over some field k.
- We have a category with morphisms the k-linear maps.
Multilinear algebra

- Finite-dimensional vector spaces over some field k.
- We have a category with morphisms the k-linear maps.
- We have notion of multi-linear map $f : V_1 \times \ldots \times V_n \to k$.

- Introduce the concept of tensor product $V_1 \otimes V_2$, to make the multi-linear maps proper linear maps: $f : V_1 \otimes \ldots \otimes V_n \to k$.
- We have matrices as concrete (basis-dependent) representations of linear maps. We have higher tensors for multilinear maps. Index notations, diagrammatic notations.
- One can define a partial trace $\text{Tr}_{V, W, U} : \text{Hom}(V \times U, W \times U) \to \text{Hom}(V, W)$ by well-known formulas.
- We can repartition the interface, moving indices around by transposing matrices or higher tensors.
Multilinear algebra

- Finite-dimensional vector spaces over some field k.
- We have a category with morphisms the k-linear maps.
- We have notion of multi-linear map $f : V_1 \times \ldots \times V_n \rightarrow k$.
- Introduce the concept of tensor product $V_1 \otimes V_2$, to make the multi-linear maps proper linear maps: $!f : V_1 \otimes \ldots \otimes V_n \rightarrow k$.

We have matrices as concrete (basis-dependent) representations of linear maps. We have higher tensors for multilinear maps. Index notations, diagrammatic notations.

One can define a partial trace:

$$\text{Tr}_{V, W} : \text{Hom}(V \times U, W \times U) \rightarrow \text{Hom}(V, W)$$

by well-known formulas.

We can repartition the interface, moving indices around by transposing matrices or higher tensors.
Multilinear algebra

- Finite-dimensional vector spaces over some field k.
- We have a category with morphisms the k-linear maps.
- We have notion of multi-linear map $f : V_1 \times \ldots V_n \rightarrow k$.
- Introduce the concept of tensor product $V_1 \otimes V_2$, to make the multi-linear maps proper linear maps: $!f : V_1 \otimes \ldots \otimes V_n \rightarrow k$.
- We have matrices as concrete (basis-dependent) representations of linear maps. We have higher tensors for multilinear maps. Index notations, diagrammatic notations.
Multilinear algebra

- Finite-dimensional vector spaces over some field k.
- We have a category with morphisms the k-linear maps.
- We have notion of multi-linear map $f : V_1 \times \ldots V_n \rightarrow k$.
- Introduce the concept of tensor product $V_1 \otimes V_2$, to make the multi-linear maps proper linear maps: $!f : V_1 \otimes \ldots \otimes V_n \rightarrow k$.
- We have matrices as concrete (basis-dependent) representations of linear maps. We have higher tensors for multilinear maps. Index notations, diagrammatic notations.
- One can define a partial trace: $\text{Tr}_{U}^{V,W} : \text{Hom}(V \times U, W \times U) \rightarrow \text{Hom}(V, W)$ by well-known formulas.
Multilinear algebra

- Finite-dimensional vector spaces over some field k.
- We have a category with morphisms the k-linear maps.
- We have notion of multi-linear map $f : V_1 \times \ldots V_n \to k$.
- Introduce the concept of tensor product $V_1 \otimes V_2$, to make the multi-linear maps proper linear maps: $!f : V_1 \otimes \ldots \otimes V_n \to k$.
- We have matrices as concrete (basis-dependent) representations of linear maps. We have higher tensors for multilinear maps. Index notations, diagrammatic notations.
- One can define a partial trace: $\text{Tr}^{V,W}_{U} : \text{Hom}(V \times U, W \times U) \to \text{Hom}(V, W)$ by well-known formulas.
- We can repartition the interface, moving indices around by transposing matrices or higher tensors.
Monoidal categories

- Categories \mathcal{C} equipped with a “multiplication”: \otimes, a bifunctor $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.

- Equipped with a unit, written I, and \otimes is associative, “up to a natural isomorphism.”

- Any diagram constructed from the natural isomorphisms must commute.

- Fortunately this follows from the requirement that a few specific diagrams must commute.

- Vector spaces and linear maps form a monoidal category with \otimes the usual tensor product.

- Sets and relations also form a monoidal category with the cartesian product playing the role of the monoidal product.

- If there is a natural iso $A \otimes B \sim B \otimes A$ (plus some conditions) we have a symmetric monoidal category.
Monoidal categories

- Categories \mathcal{C} equipped with a “multiplication”: \otimes, a bifunctor $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.
- Equipped with a unit, written I, and
Monoidal categories

- Categories \mathcal{C} equipped with a “multiplication”: \otimes, a bifunctor $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.
- Equipped with a unit, written I, and
- \otimes is associative, “up to a natural isomorphism”.

Any diagram constructed from the natural isomorphisms must commute. Fortunately this follows from the requirement that a few specific diagrams must commute.

Vector spaces and linear maps form a monoidal category with \otimes the usual tensor product.

Sets and relations also form a monoidal category with the cartesian product playing the role of the monoidal product.

If there is a natural iso $A \otimes B \cong B \otimes A$ (plus some conditions) we have a symmetric monoidal category.
Categories \mathcal{C} equipped with a “multiplication”: \otimes, a bifunctor $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$.

Equipped with a unit, written I, and

\otimes is associative, “up to a natural isomorphism”.

Any diagram constructed from the natural isomorphisms must commute.
Monoidal categories

- Categories C equipped with a “multiplication”: \otimes, a bifunctor $C \times C \rightarrow C$.
- Equipped with a unit, written I, and
- \otimes is associative, “up to a natural isomorphism”.
- Any diagram constructed from the natural isomorphisms must commute.
- Fortunately this follows from the requirement that a few specific diagrams must commute.
Monoidal categories

- Categories \mathcal{C} equipped with a “multiplication”: \otimes, a bifunctor $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$.
- Equipped with a unit, written I, and
- \otimes is associative, “up to a natural isomorphism”.
- Any diagram constructed from the natural isomorphisms must commute.
- Fortunately this follows from the requirement that a few specific diagrams must commute.
- Vector spaces and linear maps form a monoidal category with \otimes the usual tensor product.
Monoidal categories

- Categories \mathcal{C} equipped with a “multiplication”: \otimes, a bifunctor $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.
- Equipped with a unit, written I, and
- \otimes is associative, “up to a natural isomorphism”.
- Any diagram constructed from the natural isomorphisms must commute.
- Fortunately this follows from the requirement that a few specific diagrams must commute.
- Vector spaces and linear maps form a monoidal category with \otimes the usual tensor product.
- Sets and relations also form a monoidal category with the cartesian product playing the role of the monoidal product.
Monoidal categories

- Categories \mathcal{C} equipped with a “multiplication”: \otimes, a bifunctor $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.
- Equipped with a unit, written I, and
- \otimes is associative, “up to a natural isomorphism”.
- Any diagram constructed from the natural isomorphisms must commute.
- Fortunately this follows from the requirement that a few specific diagrams must commute.
- Vector spaces and linear maps form a monoidal category with \otimes the usual tensor product.
- Sets and relations also form a monoidal category with the cartesian product playing the role of the monoidal product.
- If there is a natural iso $A \otimes B \cong B \otimes A$ (plus some conditions) we have a symmetric monoidal category.
Closed structure

- Sometimes the collection of morphisms can be internalized as an object.
Closed structure

- Sometimes the collection of morphisms can be internalized as an object.
- A symmetric monoidal category \mathcal{C} has, for every object X, a functor $(\cdot) \otimes X$ (obeying all the required conditions).
Closed structure

- Sometimes the collection of morphisms can be internalized as an object.
- A symmetric monoidal category \mathcal{C} has, for every object X, a functor $\cdot \otimes X$ (obeying all the required conditions).
- A symmetric monoidal closed category, has for each functor $\cdot \otimes X$ a right adjoint written $X \multimap (\cdot)$.

$$\text{hom}(A \otimes X, B) = \text{hom}(A, X \multimap B).$$

Think of $A \multimap B$ as the space of “linear maps” from A to B.
Closed structure

- Sometimes the collection of morphisms can be internalized as an object.
- A symmetric monoidal category \mathcal{C} has, for every object X, a functor $(\cdot) \otimes X$ (obeying all the required conditions).
- A symmetric monoidal **closed** category, has for each functor $(\cdot) \otimes X$ a *right* adjoint written $X \dashv (\cdot)$.
- $\text{hom}(A \otimes X, B) = \text{hom}(A, X \dashv B)$.

Think of $A \dashv B$ as the space of “linear maps” from A to B.

Panangaden

Nuclear Ideals

Topos Feb 2023
Closed structure

- Sometimes the collection of morphisms can be internalized as an object.

- A symmetric monoidal category \mathcal{C} has, for every object X, a functor $(\cdot) \otimes X$ (obeying all the required conditions).

- A symmetric monoidal **closed** category, has for each functor $(\cdot) \otimes X$ a **right** adjoint written $X \circ (\cdot)$.

- $\text{hom}(A \otimes X, B) = \text{hom}(A, X \circ B)$.

- Think of $A \circ B$ as the space of “linear maps” from A to B.
Figure: A morphism from $A \otimes B \otimes C$ to $D \otimes E \otimes F$
Figure: A morphism from $A \otimes B$ to $D \otimes E \otimes F \otimes C$
Compact closed categories

When can we think of linear maps as matrices?
Compact closed categories

When can we think of linear maps as matrices?
When do we have $A \rightarrow B \cong A^* \otimes B$?
When can we think of linear maps as matrices?
When do we have $A \circ B \cong A^* \otimes B$?

A **compact closed category** C has, for every object A a **dual** object A^* and isos: $\nu : I \to A \otimes A^*$, $\psi : A^* \otimes A \to I$.

Finite-dimensional vector spaces and linear maps are the classic example of a compact closed category. The other basic example is sets and binary relations.
When can we think of linear maps as matrices?
When do we have $A \circ B \cong A^* \otimes B$?

A **compact closed category** C has, for every object A a *dual* object A^* and isos: $\nu : I \to A \otimes A^*$, $\psi : A^* \otimes A \to I$.

These should interact sensibly with unit and associativity isos.
When can we think of linear maps as matrices?
When do we have $A ⊸ B \simeq A^* \otimes B$?

A **compact closed category** C has, for every object A a *dual* object A^* and isos: $\nu : I \to A \otimes A^*$, $\psi : A^* \otimes A \to I$.

These should interact sensibly with unit and associativity isos.

Then one can prove that it indeed has an internal hom \to and that $A \to B \simeq A^* \otimes B$.

Finite-dimensional vector spaces and linear maps are the classic example of a compact closed category. The other basic example is sets and binary relations.
When can we think of linear maps as matrices?

When do we have $A \dashv B \cong A^* \otimes B$?

A **compact closed category** C has, for every object A a *dual* object A^* and isos: $\nu : I \rightarrow A \otimes A^*$, $\psi : A^* \otimes A \rightarrow I$.

These should interact sensibly with unit and associativity isos.

Then one can prove that it indeed has an internal hom \dashv and that $A \dashv B \cong A^* \otimes B$.

Finite-dimensional vector spaces and linear maps are the classic example of a compact closed category.
When can we think of linear maps as matrices?

When do we have $A \circ B \cong A^* \otimes B$?

A **compact closed category** C has, for every object A a *dual* object A^* and isos: $\nu : I \to A \otimes A^*$, $\psi : A^* \otimes A \to I$.

These should interact sensibly with unit and associativity isos.

Then one can prove that it indeed has an internal hom \circ and that $A \circ B \cong A^* \otimes B$.

Finite-dimensional vector spaces and linear maps are the classic example of a compact closed category.

The other basic example is sets and binary relations.
Rel as a compact closed category

Rel as a compact closed category

- Given $R : A \rightarrow B$ we write R^c for the converse relation from B to A.
Rel as a compact closed category

- Given $R : A \rightarrow B$ we write R^c for the converse relation from B to A.
- Tensor product: on objects: cartesian product.
Rel as a compact closed category

- Given $R : A \to B$ we write R^c for the converse relation from B to A.
- Tensor product: on objects: cartesian product.
- $R_1 : A_1 \to B_1, R_2 : A_2 \to B_2$ we have $(a, a')(R_1 \otimes R_2)(b, b')$ iff $aR_1 b$ and $a'R_2 b'$.
Rel as a compact closed category

- Given $R : A \rightarrow B$ we write R^c for the converse relation from B to A.
- Tensor product: on objects: cartesian product.
- $R_1 : A_1 \rightarrow B_1, R_2 : A_2 \rightarrow B_2$ we have $(a, a')(R_1 \otimes R_2)(b, b')$ iff $aR_1 b$ and $a'R_2 b'$.
- Unit object: (any) one-point set
Rel as a compact closed category

- Given $R : A \to B$ we write R^c for the converse relation from B to A.
- Tensor product: on objects: cartesian product.
- $R_1 : A_1 \to B_1, R_2 : A_2 \to B_2$ we have $(a, a')(R_1 \otimes R_2)(b, b')$ iff $aR_1 b$ and $a'R_2 b'$.
- Unit object: (any) one-point set
- $(\cdot)^*$ is given by $X^* = X$ and $R^* = R^c$.
Rel as a compact closed category

- Given $R : A \to B$ we write R^c for the converse relation from B to A.
- Tensor product: on objects: cartesian product.
 $$R_1 : A_1 \to B_1, R_2 : A_2 \to B_2 \text{ we have } (a, a')(R_1 \otimes R_2)(b, b') \text{ iff } aR_1 b \text{ and } a'R_2 b'.$$
- Unit object: (any) one-point set
 $$(\cdot)^* \text{ is given by } X^* = X \text{ and } R^* = R^c.$$
- If we write $I = \{\bullet\}$ then $\nu : I \to X \otimes X^*$ is $\bullet \nu(x, x)$ for all x; similarly for ψ.
The naïve idea

Relations: $R : A \rightarrow B$ is $R \subseteq A \times B$ and $S : B \rightarrow C$ is $S \subseteq B \times C$.
The naïve idea

- Relations: $R : A \rightarrow B$ is $R \subseteq A \times B$ and $S : B \rightarrow C$ is $S \subseteq B \times C$.
- Composing relations: $(R \circ S) : A \rightarrow C$ is $a(R \circ S)c$ iff $\exists b, aRb \land bSc$.
The naïve idea

- Relations: $R : A \rightarrow B$ is $R \subseteq A \times B$ and $S : B \rightarrow C$ is $S \subseteq B \times C$.
- Composing relations: $(R \circ S) : A \rightarrow C$ is $a(R \circ S)c$ iff $\exists b, aRb \land bSc$.
- $R \subseteq A \times B$ is the same as $R : A \times B \rightarrow \{0, 1\}$.
The naïve idea

- Relations: $R : A \rightarrow B$ is $R \subseteq A \times B$ and $S : B \rightarrow C$ is $S \subseteq B \times C$.
- Composing relations: $(R \circ S) : A \rightarrow C$ is $a(R \circ S)c$ iff $\exists b, aRb \land bSc$.
- $R \subseteq A \times B$ is the same as $R : A \times B \rightarrow \{0, 1\}$.
- Quantitative relations: $f : X \rightarrow Y$ is $f : X \times Y \rightarrow \mathbb{R}$, $g : Y \rightarrow Z$ is $g : Y \times Z \rightarrow \mathbb{R}$.
The naïve idea

- Relations: $R : A \to B$ is $R \subset A \times B$ and $S : B \to C$ is $S \subset B \times C$.
- Composing relations: $(R \circ S) : A \to C$ is $a(R \circ S)c$ iff $\exists b, aRb \land bSc$.
- $R \subset A \times B$ is the same as $R : A \times B \to \{0, 1\}$.
- Quantitative relations: $f : X \to Y$ is $f : X \times Y \to \mathbb{R}$, $g : Y \to Z$ is $g : Y \times Z \to \mathbb{R}$.
- Composition: $(g \circ f) : X \times Z \to \mathbb{R}$, perhaps
The naïve idea

- Relations: \(R : A \rightarrow B \) is \(R \subset A \times B \) and \(S : B \rightarrow C \) is \(S \subset B \times C \).
- Composing relations: \((R \circ S) : A \rightarrow C\) is \(a(R \circ S)c \) iff \(\exists b, aRb \land bSc \).
- \(R \subset A \times B \) is the same as \(R : A \times B \rightarrow \{0, 1\}\).
- Quantitative relations: \(f : X \rightarrow Y \) is \(f : X \times Y \rightarrow \mathbb{R} \), \(g : Y \rightarrow Z \) is \(g : Y \times Z \rightarrow \mathbb{R} \).
- Composition: \((g \circ f) : X \times Z \rightarrow \mathbb{R} \), perhaps
 \[(g \circ f)(x, z) = \int_Y f(x, y)g(y, z)dy. \]
The naïve idea

Relations: $R : A \to B$ is $R \subseteq A \times B$ and $S : B \to C$ is $S \subseteq B \times C$.

Composing relations: $(R \circ S) : A \to C$ is $a(R \circ S)c$ iff $\exists b, aRb \land bSc$.

$R \subseteq A \times B$ is the same as $R : A \times B \to \{0, 1\}$.

Quantitative relations: $f : X \to Y$ is $f : X \times Y \to \mathbb{R}$, $g : Y \to Z$ is $g : Y \times Z \to \mathbb{R}$.

Composition: $(g \circ f) : X \times Z \to \mathbb{R}$, perhaps

$(g \circ f)(x, z) = \int_Y f(x, y)g(y, z)dy$.

If all works well we hope to get a compact closed category.
Small Problem

Schwartz

There is no function that can serve as an identity for this operation. There is no “function” δ such that:

$$\int_Y f(x, y') \delta(y', y) dy' = f(x, y)$$
Schwartz

There is no function that can serve as an identity for this operation. There is no “function” δ such that:

$$\int_Y f(x, y') \delta(y', y) dy' = f(x, y)$$
Small Problem

Schwartz
There is no function that can serve as an identity for this operation. There is no “function” δ such that:

$$\int_{Y} f(x, y') \delta(y', y) dy' = f(x, y)$$

Dirac
Well cook up a function that does the job!
Small Problem

Schwartz

There is no function that can serve as an identity for this operation. There is no “function” δ such that:

$$\int_Y f(x, y') \delta(y', y) dy' = f(x, y)$$

Dirac

Well cook up a function that does the job!
Schwartz
There is no function that can serve as an identity for this operation. There is no “function” \(\delta \) such that:

\[
\int_Y f(x, y') \delta(y', y) \, dy' = f(x, y)
\]

Dirac
Well cook up a function that does the job!

Schwartz, Gelfand
OK, we’ll invent distributions.
What happened to us

- We explored the idea of using distributions but had to overcome some technical difficulties.
What happened to us

- We explored the idea of using distributions but had to overcome some technical difficulties.
- But in the end we failed to construct a compact closed category.
What happened to us

- We explored the idea of using distributions but had to overcome some technical difficulties.
- But in the end we failed to construct a compact closed category.
- Then we tried using measure theory and thinking of the Dirac delta “function” as a measure. Again we failed to construct a compact closed category.
What happened to us

- We explored the idea of using distributions but had to overcome some technical difficulties.
- But in the end we failed to construct a compact closed category.
- Then we tried using measure theory and thinking of the Dirac delta “function” as a measure. Again we failed to construct a compact closed category.
- Finally Rick Blute realized this was a pattern and formulated the notion of nuclear ideals and realized that there was a well-known example from Hilbert space theory.
Summary

- There are situations where one does not have a category because the things that want to be the identity maps are too “singular”.
Summary

- There are situations where one does not have a category because the things that want to be the identity maps are too “singular”.
- Nevertheless, the maps of interest can sit as ideals inside a bona-fide monoidal category.
Summary

- There are situations where one does not have a category because the things that want to be the identity maps are too “singular”.
- Nevertheless, the maps of interest can sit as ideals inside a bona-fide monoidal category.
- The maps in the nuclear ideal do behave strikingly like they were part of a compact closed category: one can transpose freely.
Summary

- There are situations where one does not have a category because the things that want to be the identity maps are too “singular”.
- Nevertheless, the maps of interest can sit as ideals inside a bona-fide monoidal category.
- The maps in the nuclear ideal do behave strikingly like they were part of a compact closed category: one can transpose freely.
- This is what Grothendieck was doing with Banach spaces: when can the maps be thought of as “matrices”?
Hilbert spaces and tensor products

- Hilbert spaces are vector spaces with an inner product, which induces a norm which induces a metric.
Hilbert spaces and tensor products

- Hilbert spaces are vector spaces with an inner product, which induces a norm which induces a metric.
- The space must be **complete** in this metric.
Hilbert spaces and tensor products

- Hilbert spaces are vector spaces with an inner product, which induces a norm which induces a metric.
- The space must be **complete** in this metric.
- We can define tensor products of Hilbert spaces just as we did for vector spaces but
Hilbert spaces and tensor products

- Hilbert spaces are vector spaces with an inner product, which induces a norm which induces a metric.
- The space must be **complete** in this metric.
- We can define tensor products of Hilbert spaces just as we did for vector spaces but
- we must make sure that we define an inner product on this product and check completeness.
Hilbert spaces are vector spaces with an inner product, which induces a norm which induces a metric.

The space must be **complete** in this metric.

We can define tensor products of Hilbert spaces just as we did for vector spaces but

we must make sure that we define an inner product on this product and check completeness.

The category of Hilbert spaces and *continuous* (iff bounded) linear maps forms a monoidal category.
Hilbert spaces and tensor products

- Hilbert spaces are vector spaces with an inner product, which induces a norm which induces a metric.
- The space must be \textbf{complete} in this metric.
- We can define tensor products of Hilbert spaces just as we did for vector spaces but we must make sure that we define an inner product on this product and check completeness.
- The category of Hilbert spaces and \textit{continuous} (iff bounded) linear maps forms a monoidal category.
- It also has a \(*\) functor like vector spaces.
Hilbert spaces and tensor products

- Hilbert spaces are vector spaces with an inner product, which induces a norm which induces a metric.
- The space must be **complete** in this metric.
- We can define tensor products of Hilbert spaces just as we did for vector spaces but
- we must make sure that we define an inner product on this product and check completeness.
- The category of Hilbert spaces and *continuous* (iff bounded) linear maps forms a monoidal category.
- It also has a * functor like vector spaces.
- For complex Hilbert spaces we also have conjugation or equivalently a “dagger” (more later).
Universal property of tensor products?

There is a unique map, $!$, from $U \times V$ to $U \otimes V$ such that: given a bilinear map from $U \times V$ to W, there is a unique linear map from $U \otimes V$ to W making the diagram commute.
Hilbert-Schmidt maps

- The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map.
Hilbert-Schmidt maps

- The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
Hilbert-Schmidt maps

- The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
- But this linear map may not be bounded i.e. it may not be continuous.
Hilbert-Schmidt maps

- The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
- But this linear map may not be bounded i.e. it may not be continuous.
- But it does work for nice maps: the Hilbert-Schmidt (HS) maps.
Hilbert-Schmidt maps

- The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
- But this linear map may not be bounded i.e. it may not be continuous.
- But it does work for nice maps: the Hilbert-Schmidt (HS) maps.
- If \(f : \mathcal{H} \rightarrow \mathcal{K} \) is a bounded linear map, \(f \) is Hilbert-Schmidt if for any ortho-normal basis \(\{ e_i \} \) of \(\mathcal{H} \), we have \(\sum_i \| f(e_i) \|^2 < \infty. \)
Hilbert-Schmidt maps

- The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
- But this linear map may not be bounded i.e. it may not be continuous.
- But it does work for nice maps: the Hilbert-Schmidt (HS) maps.
- If $f : \mathcal{H} \to \mathcal{K}$ is a bounded linear map, f is Hilbert-Schmidt if for any ortho-normal basis $\{e_i\}$ of \mathcal{H}, we have $\sum_i ||f(e_i)||^2 < \infty$.
- This is independent of the choice of basis in \mathcal{H}.
The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map. Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces. But this linear map may not be bounded i.e. it may not be continuous. But it does work for nice maps: the Hilbert-Schmidt (HS) maps. If $f : \mathcal{H} \to \mathcal{K}$ is a bounded linear map, f is Hilbert-Schmidt if for any ortho-normal basis $\{e_i\}$ of \mathcal{H}, we have $\sum_i ||f(e_i)||^2 < \infty$. This is independent of the choice of basis in \mathcal{H}. $f : \mathcal{H} \times \mathcal{H} \to \mathcal{H}$ given by $f(x, y) = x + y$ becomes $x \otimes y \mapsto x + y$. Clearly this map is not Hilbert-Schmidt. Alas, the identity is not Hilbert-Schmidt! So we cannot have a category of Hilbert spaces and Hilbert-Schmidt maps.
Hilbert-Schmidt maps

- The above property fails in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
- But this linear map may not be bounded i.e. it may not be continuous.
- But it does work for nice maps: the Hilbert-Schmidt (HS) maps.
- If \(f : \mathcal{H} \rightarrow \mathcal{K} \) is a bounded linear map, \(f \) is Hilbert-Schmidt if for any ortho-normal basis \(\{ e_i \} \) of \(\mathcal{H} \), we have \(\sum_i \| f(e_i) \|^2 < \infty \).
- This is independent of the choice of basis in \(\mathcal{H} \).
- \(f : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H} \) given by \(f(x, y) = x + y \) becomes \(x \otimes y \mapsto x + y \).
- Clearly this map is not Hilbert-Schmidt.
A bit of functional analysis

Hilbert-Schmidt maps

- The above property *fails* in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
- But this linear map may not be bounded i.e. it may not be continuous.
- But it does work for nice maps: the Hilbert-Schmidt (HS) maps.
- If \(f : \mathcal{H} \to \mathcal{K} \) is a bounded linear map, \(f \) is Hilbert-Schmidt if for any ortho-normal basis \(\{e_i\} \) of \(\mathcal{H} \), we have \(\sum_i ||f(e_i)||^2 < \infty \).
- This is independent of the choice of basis in \(\mathcal{H} \).
- \(f : \mathcal{H} \times \mathcal{H} \to \mathcal{H} \) given by \(f(x, y) = x + y \) becomes \(x \otimes y \mapsto x + y \).
- Clearly this map is not Hilbert-Schmidt.
- Alas, the identity is not Hilbert-Schmidt!
Hilbert-Schmidt maps

- The above property fails in Hilbert spaces. So one cannot internalize any bilinear map.
- Of course, one can get a linear map from the tensor product space as we did above; Hilbert spaces are vector spaces.
- But this linear map may not be bounded i.e. it may not be continuous.
- But it does work for nice maps: the Hilbert-Schmidt (HS) maps.
- If $f : \mathcal{H} \rightarrow \mathcal{K}$ is a bounded linear map, f is Hilbert-Schmidt if for any ortho-normal basis $\{e_i\}$ of \mathcal{H}, we have $\sum_i ||f(e_i)||^2 < \infty$.

 This is independent of the choice of basis in \mathcal{H}.
- $f : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$ given by $f(x, y) = x + y$ becomes $x \otimes y \mapsto x + y$.
- Clearly this map is not Hilbert-Schmidt.
- Alas, the identity is not Hilbert-Schmidt!
- So we cannot have a category of Hilbert spaces and Hilbert-Schmidt maps.
Grothendieck discovered **nuclear spaces** and **nuclear maps** when he was trying to explain why spaces of distributions had nice properties with respect to tensor product.
Nuclear spaces

- Grothendieck discovered **nuclear spaces** and **nuclear maps** when he was trying to explain why spaces of distributions had nice properties with respect to tensor product.
- The definition(s) of nuclear space are complicated and filled with analysis details about topological vector spaces and various types of tensor products.
Nuclear spaces

Grothendieck discovered **nuclear spaces** and **nuclear maps** when he was trying to explain why spaces of distributions had nice properties with respect to tensor product.

The definition(s) of nuclear space are complicated and filled with analysis details about topological vector spaces and various types of tensor products.

Let $f : A \to B$, where A and B are Banach spaces. Being nuclear is equivalent to saying there is an element $\sum_i f_i \otimes b_i \in A^* \otimes B$ with for all $a \in A$ we have $f(a) = \sum_i f_i(a)b_i$. (Some details elided)
Nuclear spaces

- Grothendieck discovered **nuclear spaces** and **nuclear maps** when he was trying to explain why spaces of distributions had nice properties with respect to tensor product.
- The definition(s) of nuclear space are complicated and filled with analysis details about topological vector spaces and various types of tensor products.
- Let \(f : \mathcal{A} \rightarrow \mathcal{B} \), where \(\mathcal{A} \) and \(\mathcal{B} \) are Banach spaces. Being nuclear is equivalent to saying there is an element \(\sum_i f_i \otimes b_i \in \mathcal{A}^* \otimes \mathcal{B} \) with for all \(a \in \mathcal{A} \) we have \(f(a) = \sum_i f_i(a)b_i \). (Some details elided)
- \(f \) can be thought of like a matrix.
Nuclear spaces

- Grothendieck discovered **nuclear spaces** and **nuclear maps** when he was trying to explain why spaces of distributions had nice properties with respect to tensor product.
- The definition(s) of nuclear space are complicated and filled with analysis details about topological vector spaces and various types of tensor products.
- Let \(f : \mathcal{A} \to \mathcal{B} \), where \(\mathcal{A} \) and \(\mathcal{B} \) are Banach spaces. Being nuclear is equivalent to saying there is an element \(\sum_i f_i \otimes b_i \in \mathcal{A}^* \otimes \mathcal{B} \) with for all \(a \in \mathcal{A} \) we have \(f(a) = \sum_i f_i(a)b_i \). (Some details elided)
- \(f \) can be thought of like a matrix.
- The “common” spaces of functional analysis \(L_p \) spaces, are not nuclear.
Nuclear spaces

- Grothendieck discovered **nuclear spaces** and **nuclear maps** when he was trying to explain why spaces of distributions had nice properties with respect to tensor product.
- The definition(s) of nuclear space are complicated and filled with analysis details about topological vector spaces and various types of tensor products.
- Let $f : \mathcal{A} \to \mathcal{B}$, where \mathcal{A} and \mathcal{B} are Banach spaces. Being nuclear is equivalent to saying there is an element $\sum_i f_i \otimes b_i \in \mathcal{A}^* \otimes \mathcal{B}$ with for all $a \in \mathcal{A}$ we have $f(a) = \sum_i f_i(a) b_i$. (Some details elided)
- f can be thought of like a matrix.
- The “common” spaces of functional analysis L_p spaces, are not nuclear.
- Nuclear spaces are typically not describable as normed vector spaces; the only spaces that are nuclear and normed are finite dimensional.
Given a HS map $f : \mathcal{H}_1 \to \mathcal{H}_2$ and any bounded linear maps $g : \mathcal{H}_2 \to \mathcal{H}_3$ and $h : \mathcal{H}_0 \to \mathcal{H}_1$, the composites $f \circ h$ and $g \circ f$ are both HS.
Given a HS map $f : \mathcal{H}_1 \to \mathcal{H}_2$ and any bounded linear maps $g : \mathcal{H}_2 \to \mathcal{H}_3$ and $h : \mathcal{H}_0 \to \mathcal{H}_1$, the composites $f \circ h$ and $g \circ f$ are both HS.

HS maps form a 2-sided ideal.
Hilbert-Schmidt and Trace Ideals

- Given a HS map \(f : \mathcal{H}_1 \to \mathcal{H}_2 \) and any bounded linear maps \(g : \mathcal{H}_2 \to \mathcal{H}_3 \) and \(h : \mathcal{H}_0 \to \mathcal{H}_1 \), the composites \(f \circ h \) and \(g \circ f \) are both HS.

- HS maps form a 2-sided ideal.

- The space of Hilbert-Schmidt maps \(HS(\mathcal{H}, \mathcal{K}) \) can be made into a Hilbert space.
Given a HS map $f : \mathcal{H}_1 \rightarrow \mathcal{H}_2$ and any bounded linear maps $g : \mathcal{H}_2 \rightarrow \mathcal{H}_3$ and $h : \mathcal{H}_0 \rightarrow \mathcal{H}_1$, the composites $f \circ h$ and $g \circ f$ are both HS.

HS maps form a 2-sided ideal.

The space of Hilbert-Schmidt maps $HS(\mathcal{H}, \mathcal{K})$ can be made into a Hilbert space.

We can define a trace for (positive) bounded linear operators T on \mathcal{H} by $tr(T) = \sum_i \langle e_i \mid Te_i \rangle$ for an orthonormal basis $\{e_i\}$ of \mathcal{H}.
Hilbert-Schmidt and Trace Ideals

- Given a HS map \(f : \mathcal{H}_1 \rightarrow \mathcal{H}_2 \) and any bounded linear maps \(g : \mathcal{H}_2 \rightarrow \mathcal{H}_3 \) and \(h : \mathcal{H}_0 \rightarrow \mathcal{H}_1 \), the composites \(f \circ h \) and \(g \circ f \) are both HS.

- HS maps form a 2-sided ideal.

- The space of Hilbert-Schmidt maps \(HS(\mathcal{H}, \mathcal{K}) \) can be made into a Hilbert space.

- We can define a trace for (positive) bounded linear operators \(T \) on \(\mathcal{H} \) by \(tr(T) = \sum_i \langle e_i | Te_i \rangle \) for an orthonormal basis \(\{e_i\} \) of \(\mathcal{H} \).

- Can be extended to arbitrary bounded linear operators.
Hilbert-Schmidt and Trace Ideals

- Given a HS map $f : \mathcal{H}_1 \to \mathcal{H}_2$ and any bounded linear maps $g : \mathcal{H}_2 \to \mathcal{H}_3$ and $h : \mathcal{H}_0 \to \mathcal{H}_1$, the composites $f \circ h$ and $g \circ f$ are both HS.

- HS maps form a 2-sided ideal.

- The space of Hilbert-Schmidt maps $HS(\mathcal{H}, \mathcal{K})$ can be made into a Hilbert space.

- We can define a trace for (positive) bounded linear operators T on \mathcal{H} by $tr(T) = \sum_i \langle e_i | Te_i \rangle$ for an orthonormal basis $\{e_i\}$ of \mathcal{H}.

- Can be extended to arbitrary bounded linear operators.

- We say T is **trace class** if $tr(T) < \infty$.
Hilbert-Schmidt and Trace Ideals

- Given a HS map $f : \mathcal{H}_1 \rightarrow \mathcal{H}_2$ and any bounded linear maps $g : \mathcal{H}_2 \rightarrow \mathcal{H}_3$ and $h : \mathcal{H}_0 \rightarrow \mathcal{H}_1$, the composites $f \circ h$ and $g \circ f$ are both HS.

- HS maps form a 2-sided ideal.

- The space of Hilbert-Schmidt maps $HS(\mathcal{H}, \mathcal{K})$ can be made into a Hilbert space.

- We can define a trace for (positive) bounded linear operators T on \mathcal{H} by $tr(T) = \sum_i \langle e_i | Te_i \rangle$ for an orthonormal basis $\{e_i\}$ of \mathcal{H}.

- Can be extended to arbitrary bounded linear operators.

- We say T is trace class if $tr(T) < \infty$.

- Trace class maps also form a two-sided ideal.
Hilbert-Schmidt and Trace Ideals

- Given a HS map \(f : \mathcal{H}_1 \to \mathcal{H}_2 \) and any bounded linear maps \(g : \mathcal{H}_2 \to \mathcal{H}_3 \) and \(h : \mathcal{H}_0 \to \mathcal{H}_1 \), the composites \(f \circ h \) and \(g \circ f \) are both HS.

- HS maps form a 2-sided ideal.

- The space of Hilbert-Schmidt maps \(\text{HS}(\mathcal{H}, \mathcal{K}) \) can be made into a Hilbert space.

- We can define a trace for (positive) bounded linear operators \(T \) on \(\mathcal{H} \) by \(\text{tr}(T) = \sum_i \langle e_i | Te_i \rangle \) for an orthonormal basis \(\{e_i\} \) of \(\mathcal{H} \).

- Can be extended to arbitrary bounded linear operators.

- We say \(T \) is trace class if \(\text{tr}(T) < \infty \).

- Trace class maps also form a two-sided ideal.

- The composite \(g \circ f : \mathcal{H} \to \mathcal{H} \) of two nuclear maps \(f : \mathcal{H} \to \mathcal{K} \) and \(g : \mathcal{K} \to \mathcal{H} \) is always trace class.
Some morphisms

Let \mathcal{C} be a symmetric monoidal closed category.
Some morphisms

- Let \mathcal{C} be a symmetric monoidal closed category.
- There is a map $\varphi : B \otimes A^* \rightarrow A \circ B$ constructed by transposing:
Some morphisms

Let \mathcal{C} be a symmetric monoidal closed category.
There is a map $\varphi : B \otimes A^* \to A \to B$ constructed by transposing:

$$B \otimes A^* \otimes A \xrightarrow{id \otimes \psi} B \otimes I \xrightarrow{\cong} B$$

If $f : A \to B$ in \mathcal{C}, we call $n(f) : I \to A \to B$ the name of f.

Panangaden
Some morphisms

Let \mathcal{C} be a symmetric monoidal closed category.

There is a map $\varphi : B \otimes A^* \rightarrow A \circ B$ constructed by transposing:

$$B \otimes A^* \otimes A \xrightarrow{id \otimes \psi} B \otimes I \xrightarrow{\cong} B$$

If $f : A \rightarrow B$ in \mathcal{C}, we call $n(f) : I \rightarrow A \circ B$ the name of f.
Nuclear morphisms

We say that f is *nuclear* if there exists $p(f) : I \rightarrow B \otimes A^*$ such that the following diagram commutes:

![Diagram](image-url)
Preservation properties

Suppose that $f : A \to B$ and $g : C \to D$ are nuclear, then so are:

- $f^* : B^* \to A^*$
Preservation properties

Suppose that $f : A \to B$ and $g : C \to D$ are nuclear, then so are:

- $f^* : B^* \to A^*$
- $f'f : A \to E$ for any morphism $f' : B \to E$
Preservation properties

Suppose that \(f : A \rightarrow B \) and \(g : C \rightarrow D \) are nuclear, then so are:

- \(f^* : B^* \rightarrow A^* \)
- \(f'^{f}: A \rightarrow E \) for any morphism \(f' : B \rightarrow E \)
- \(fh : F \rightarrow B \) for any morphism \(h : F \rightarrow A \)
Preservation properties

Suppose that \(f : A \rightarrow B \) and \(g : C \rightarrow D \) are nuclear, then so are:

- \(f^*: B^* \rightarrow A^* \)
- \(f'^*f : A \rightarrow E \) for any morphism \(f' : B \rightarrow E \)
- \(fh : F \rightarrow B \) for any morphism \(h : F \rightarrow A \)
- \(f \otimes g : A \otimes C \rightarrow B \otimes D \)
Nuclear ideals

Nuclearity and compact closure

We say that an object of C is *nuclear* if its identity map is nuclear.
Nuclear ideals

Nuclearity and compact closure

We say that an object of \mathcal{C} is nuclear if its identity map is nuclear. For any symmetric monoidal closed category, the full subcategory of nuclear objects is compact-closed.
Tensor-\ast categories

\mathcal{C} is a \ast-category if it is equipped with a functor: $(−)^\ast : \mathcal{C}^{op} \to \mathcal{C}$, which is strictly involutive and the identity on objects.
Tensor-\(*\) categories

\(\mathcal{C}\) is a \(*\)-category if it is equipped with a functor: \((-)^*: \mathcal{C}^{\text{op}} \to \mathcal{C}\), which is strictly involutive and the identity on objects.

A \(*\)-category is \emph{tensored} if it is symmetric monoidal, \((f \otimes g)^* = f^* \otimes g^*\),
Tensor-\ast categories

\mathcal{C} is a \ast-category if it is equipped with a functor: $(−)^* : \mathcal{C}^{op} \to \mathcal{C}$, which is strictly involutive and the identity on objects. A \ast-category is tensored if it is symmetric monoidal, $(f \otimes g)^* = f^* \otimes g^*$, and there is a covariant conjugate functor, $\overline{()}: \mathcal{C} \to \mathcal{C}$, which commutes with the \ast-functor and has some natural isomorphisms:

\[\overline{A} \cong A. \]

satisfying the usual monoidal equations, and some other simple equations.
Tensor-\(*\) categories

\mathcal{C} is a \(*\)-category if it is equipped with a functor: $(\cdot)^*: \mathcal{C}^{\text{op}} \rightarrow \mathcal{C}$, which is strictly involutive and the identity on objects.

A \(*\)-category is \textit{tensored} if it is symmetric monoidal, $(f \otimes g)^* = f^* \otimes g^*$, and there is a covariant \textit{conjugate functor}, $\overline{\cdot}: \mathcal{C} \rightarrow \mathcal{C}$, which commutes with the \(*\)-functor and has some natural isomorphisms:

- $\overline{\overline{A}} \cong A.$
- $\overline{A \otimes B} \cong \overline{A} \otimes \overline{B}$

satisfying the usual monoidal equations, and some other simple equations.
Tensor-* categories

\mathcal{C} is a \ast-category if it is equipped with a functor: $(−)^*: \mathcal{C}^{op} \to \mathcal{C}$, which is strictly involutive and the identity on objects.

A \ast-category is tensored if it is symmetric monoidal, $(f \otimes g)^* = f^* \otimes g^*$, and there is a covariant conjugate functor, $(\overline{−}) : \mathcal{C} \to \mathcal{C}$, which commutes with the \ast-functor and has some natural isomorphisms:

- $\overline{A} \cong A$.
- $A \otimes B \cong \overline{A} \otimes \overline{B}$
- $\overline{I} \cong I$.

satisfying the usual monoidal equations, and some other simple equations.
Context: let \mathcal{C} be a tensor-\ast category.
Nuclear Ideal - I

- Context: let \mathcal{C} be a tensor-$*$ category.
- A **nuclear ideal** for \mathcal{C} consists of:
Nuclear Ideal - I

- Context: let \mathcal{C} be a tensor-\(*\) category.
- A **nuclear ideal** for \mathcal{C} consists of:
- Nuclear maps: for all objects A, B, a subset $\mathcal{N}(A, B) \subseteq \text{Hom}(A, B)$.

\[\text{(Panangaden Nuclear Ideals Topos Feb 2023 26 / 42)}\]
Nuclear Ideals

Nuclear Ideal - I

- Context: let \mathcal{C} be a tensor-\ast category.

- A \textbf{nuclear ideal} for \mathcal{C} consists of:
 - Nuclear maps: for all objects A, B, a subset $\mathcal{N}(A, B) \subseteq \text{Hom}(A, B)$.
 - The class \mathcal{N} must be closed under composition with arbitrary \mathcal{C}-morphisms,
Nuclear Ideal - I

- Context: let \mathcal{C} be a tensor-\ast category.
- A **nuclear ideal** for \mathcal{C} consists of:
 - Nuclear maps: for all objects A, B, a subset $\mathcal{N}(A, B) \subseteq \text{Hom}(A, B)$.
 - The class \mathcal{N} must be closed under composition with arbitrary \mathcal{C}-morphisms,
 - closed under \otimes,
Nuclear Ideal - I

- Context: let \mathcal{C} be a tensor-\ast category.
- A **nuclear ideal** for \mathcal{C} consists of:
- Nuclear maps: for all objects A, B, a subset $\mathcal{N}(A, B) \subseteq \text{Hom}(A, B)$.
- The class \mathcal{N} must be closed under composition with arbitrary \mathcal{C}-morphisms,
- closed under \otimes,
- closed under $(\cdot)^\ast$,

Nuclear ideal - I

- Context: let \mathcal{C} be a tensor-\ast category.
- A **nuclear ideal** for \mathcal{C} consists of:
 - Nuclear maps: for all objects A, B, a subset $\mathcal{N}(A, B) \subseteq \text{Hom}(A, B)$.
 - The class \mathcal{N} must be closed under composition with arbitrary \mathcal{C}-morphisms,
 - closed under \otimes,
 - closed under $(\cdot)^\ast$,
 - and the conjugate functor.
A bijection $\theta : \mathcal{N}(A, B) \rightarrow Hom(I, \overline{A} \otimes B)$.
Nuclear Ideal - II

A bijection $\theta : \mathcal{N}(A, B) \rightarrow Hom(I, \overline{A} \otimes B)$.

If $f: A \rightarrow B$ is a nuclear morphism, we can use the bijection θ and the $*$-functor to construct various *transposes*.
A bijection \(\theta : \mathcal{N}(A, B) \rightarrow Hom(I, \overline{A} \otimes B) \).

If \(f : A \rightarrow B \) is a nuclear morphism, we can use the bijection \(\theta \) and the \(*\)-functor to construct various *transposes*. The bijection \(\theta \) must preserve all of the tensored \(*\)-structure.
Finally, θ has to satisfy a naturality property and a “compactness” property.
Dagger compact categories

- We defined \ast and $\overline{\cdot}$ to correspond to dual and conjugation.
Dagger compact categories

- We defined \(\ast \) and \(\overline{\cdot} \) to correspond to dual and conjugation.
- It has become common to use \(\dagger \) as a functor that models adjoints in the sense of operators.
Dagger compact categories

- We defined \star and $\overline{\cdot}$ to correspond to dual and conjugation.
- It has become common to use \dagger as a functor that models adjoints in the sense of operators.
- This leads to **dagger compact categories** much used in categorical quantum mechanics.
Dagger compact categories

- We defined \ast and $\overline{\cdot}$ to correspond to dual and conjugation.
- It has become common to use \dagger as a functor that models adjoints in the sense of operators.
- This leads to **dagger compact categories** much used in categorical quantum mechanics.
- Blute, P. and Pronk (2007) gave an alternate definition of nuclear ideals in terms of dagger compact categories.
Lawvere’s category of probabilistic mappings

- **Mes** is the category of sets equipped with σ-algebras; morphisms are measurable functions.
Lawvere’s category of probabilistic mappings

- **Mes** is the category of sets equipped with σ-algebras; morphisms are measurable functions.
- A **probabilistic mapping** p from (X, Σ) to (Y, Λ) is a function from X to probability distributions over Λ.

These are well known in probability as Markov kernels.
Lawvere’s category of probabilistic mappings

- **Mes** is the category of sets equipped with σ-algebras; morphisms are measurable functions.
- A **probabilistic mapping** p from (X, Σ) to (Y, Λ) is a function from X to probability distributions over Λ.
- We can “curry” p to give $p : X \times \Lambda \to [0, 1]$.
Lawvere’s category of probabilistic mappings

- **Mes** is the category of sets equipped with σ-algebras; morphisms are measurable functions.
- A **probabilistic mapping** p from (X, Σ) to (Y, Λ) is a function from X to probability distributions over Λ.
- We can “curry” p to give $p : X \times \Lambda \rightarrow [0, 1]$.
- For fixed $x \in X$, $p(x, \cdot) : \Lambda \rightarrow [0, 1]$ is a probability measure.
Lawvere’s category of probabilistic mappings

- **Mes** is the category of sets equipped with σ-algebras; morphisms are measurable functions.
- A **probabilistic mapping** p from (X, Σ) to (Y, Λ) is a function from X to probability distributions over Λ.
- We can “curry” p to give $p : X \times \Lambda \rightarrow [0, 1]$.
- For fixed $x \in X$, $p(x, \cdot) : \Lambda \rightarrow [0, 1]$ is a probability measure.
- For fixed $B \in \Lambda$, $p(\cdot, B) : X \rightarrow [0, 1]$ is a Borel-measurable function.
Lawvere’s category of probabilistic mappings

- **Mes** is the category of sets equipped with σ-algebras; morphisms are measurable functions.

- A **probabilistic mapping** p from (X, Σ) to (Y, Λ) is a function from X to probability distributions over Λ.

- We can “curry” p to give $p : X \times \Lambda \rightarrow [0, 1]$.

- For fixed $x \in X$, $p(x, \cdot) : \Lambda \rightarrow [0, 1]$ is a probability measure.

- For fixed $B \in \Lambda$, $p(\cdot, B) : X \rightarrow [0, 1]$ is a Borel-measurable function.

- Composition: $p : X \rightarrow Y$, $q : Y \rightarrow Z$, $q \circ p : X \rightarrow Z$ given by $q \circ p(x, C) = \int_Y q(y, C)p(x, dy)$.
Lawvere’s category of probabilistic mappings

- **Mes** is the category of sets equipped with σ-algebras; morphisms are measurable functions.

- A **probabilistic mapping** p from (X, Σ) to (Y, Λ) is a function from X to probability distributions over Λ.

- We can “curry” p to give $p : X \times \Lambda \to [0, 1]$.

- For fixed $x \in X$, $p(x, \cdot) : \Lambda \to [0, 1]$ is a probability measure.

- For fixed $B \in \Lambda$, $p(\cdot, B) : X \to [0, 1]$ is a Borel-measurable function.

- Composition: $p : X \to Y$, $q : Y \to Z$, $q \circ p : X \to Z$ given by $q \circ p(x, C) = \int_Y q(y, C)p(x, dy)$.

- These are well known in probability as Markov kernels.
The Giry Monad

- A monad on \textbf{Mes}: $\Gamma : \textbf{Mes} \to \textbf{Mes}$
The Giry Monad

- A monad on \(\textbf{Mes} \): \(\Gamma : \textbf{Mes} \to \textbf{Mes}\)
- \(\Gamma((X, \Sigma)) = \{\nu | \nu : \Sigma \to [0, 1]\}\)
The Giry Monad

- A monad on Mes: $\Gamma : \text{Mes} \to \text{Mes}$
- $\Gamma((X, \Sigma)) = \{\nu | \nu : \Sigma \to [0, 1]\}$
- This can be equipped with a natural σ-algebra of its own.
The Giry Monad

- A monad on Mes: $\Gamma : \text{Mes} \to \text{Mes}$
- $\Gamma((X, \Sigma)) = \{\nu | \nu : \Sigma \to [0, 1]\}$
- This can be equipped with a natural σ-algebra of its own.
- Γ on arrows is “image measure”: $\Gamma(f)(\nu) = \nu \circ f^{-1}$.
The Giry Monad

- A monad on \textbf{Mes}: $\Gamma : \textbf{Mes} \to \textbf{Mes}$
- $\Gamma((X, \Sigma)) = \{\nu | \nu : \Sigma \to [0, 1]\}$
- This can be equipped with a natural σ-algebra of its own.
- Γ on arrows is “image measure”: $\Gamma(f)(\nu) = \nu \circ f^{-1}$.
- This forms a monad on \textbf{Mes}, the unit is $x \mapsto \delta_x$ (point mass, Dirac measure)
The Giry Monad

- A monad on Mes: $\Gamma : \text{Mes} \to \text{Mes}$

\[\Gamma((X, \Sigma)) = \{\nu | \nu : \Sigma \to [0, 1]\} \]

- This can be equipped with a natural σ-algebra of its own.

- Γ on arrows is “image measure”: $\Gamma(f)(\nu) = \nu \circ f^{-1}$.

- This forms a monad on Mes, the unit is $x \mapsto \delta_x$ (point mass, Dirac measure)

- The monad multiplication is “weighted average”.

The Kleisli category of the Giry monad is exactly Lawvere’s category of probabilistic mappings. A plausible candidate for the title of “probabilistic relations”. But it is not clear what transposition would mean here.
The Giry Monad

- A monad on \(\textbf{Mes} \): \(\Gamma : \textbf{Mes} \rightarrow \textbf{Mes} \)
- \(\Gamma((X, \Sigma)) = \{ \nu | \nu : \Sigma \rightarrow [0, 1] \} \)
- This can be equipped with a natural \(\sigma \)-algebra of its own.
- \(\Gamma \) on arrows is “image measure”: \(\Gamma(f)(\nu) = \nu \circ f^{-1} \).
- This forms a monad on \(\textbf{Mes} \), the unit is \(x \mapsto \delta_x \) (point mass, Dirac measure)
- The monad multiplication is “weighted average”.
- The Kleisli category of the Giry monad is exactly Lawvere’s category of probabilistic mappings.
The Giry Monad

- A monad on \(\mathbf{Mes} \): \(\Gamma : \mathbf{Mes} \to \mathbf{Mes} \)
- \(\Gamma((X, \Sigma)) = \{ \nu | \nu : \Sigma \to [0, 1] \} \)
- This can be equipped with a natural \(\sigma \)-algebra of its own.
- \(\Gamma \) on arrows is “image measure”: \(\Gamma(f)(\nu) = \nu \circ f^{-1} \).
- This forms a monad on \(\mathbf{Mes} \), the unit is \(x \mapsto \delta_x \) (point mass, Dirac measure)
- The monad multiplication is “weighted average”.
- The Kleisli category of the Giry monad is exactly Lawvere’s category of probabilistic mappings.
- A plausible candidate for the title of “probabilistic relations”.
The Giry Monad

- A monad on \(\mathbf{Mes} \): \(\Gamma : \mathbf{Mes} \to \mathbf{Mes} \)
- \(\Gamma((X, \Sigma)) = \{ \nu | \nu : \Sigma \to [0, 1] \} \)
- This can be equipped with a natural \(\sigma \)-algebra of its own.
- \(\Gamma \) on arrows is “image measure”: \(\Gamma(f)(\nu) = \nu \circ f^{-1} \).
- This forms a monad on \(\mathbf{Mes} \), the unit is \(x \mapsto \delta_x \) (point mass, Dirac measure)
- The monad multiplication is “weighted average”.
- The Kleisli category of the Giry monad is exactly Lawvere’s category of probabilistic mappings.
- A plausible candidate for the title of “probabilistic relations”.
- But it is not clear what transposition would mean here.
The Radon-Nikodym theorem

Given (σ)-finite measures μ, ν on a measurable space X, we say ν is **absolutely continuous** with respect to μ, if for every measurable set A, $\mu(A) = 0$ implies $\nu(A) = 0$.

Notation: $\nu \ll \mu$.

If $\nu \ll \mu$ then there is a measurable function $h: X \to \mathbb{R}$ such that $\forall A \subset X$, $\nu(A) = \int_A h \, d\mu$.

This h is "essentially unique": if h' satisfies the same equation then h and h' differ on a set of μ-measure 0.

This is a tool to construct Markov kernels.
The Radon-Nikodym theorem

Given \((\sigma)\)-finite measures \(\mu, \nu\) on a measurable space \(X\), we say \(\nu\) is \textit{absolutely continuous} with respect to \(\mu\), if for every measurable set \(A\), \(\mu(A) = 0\) implies \(\nu(A) = 0\).

Notation: \(\nu \ll \mu\).
The Radon-Nikodym theorem

- Given (σ)-finite measures \(\mu, \nu \) on a measurable space \(X \), we say \(\nu \) is *absolutely continuous* with respect to \(\mu \), if for every measurable set \(A \), \(\mu(A) = 0 \) implies \(\nu(A) = 0 \).

- Notation: \(\nu \ll \mu \).

- If \(\nu \ll \mu \) then there is a measurable function \(h : X \to \mathbb{R} \) such that \(\forall A \subset X, \nu(A) = \int_A h \, d\mu \).
The Radon-Nikodym theorem

- Given \((\sigma)\)-finite measures \(\mu, \nu\) on a measurable space \(X\), we say \(\nu\) is \textit{absolutely continuous} with respect to \(\mu\), if for every measurable set \(A\), \(\mu(A) = 0\) implies \(\nu(A) = 0\).

- Notation: \(\nu \ll \mu\).

- If \(\nu \ll \mu\) then there is a measurable function \(h : X \to \mathbb{R}\) such that \(\forall A \subset X, \nu(A) = \int_A h d\mu\).

- This \(h\) is “essentially unique”: if \(h'\) satisfies the same equation then \(h\) and \(h'\) differ on a set of \(\mu\)-measure 0.
Given \((\sigma)\)-finite measures \(\mu, \nu\) on a measurable space \(X\), we say \(\nu\) is \textit{absolutely continuous} with respect to \(\mu\), if for every measurable set \(A\), \(\mu(A) = 0\) implies \(\nu(A) = 0\).

Notation: \(\nu \ll \mu\).

If \(\nu \ll \mu\) then there is a measurable function \(h : X \rightarrow \mathbb{R}\) such that \(\forall A \subset X, \nu(A) = \int_A h d\mu\).

This \(h\) is “essentially unique”: if \(h'\) satisfies the same equation then \(h\) and \(h'\) differ on a set of \(\mu\)-measure 0.

This is a tool to construct Markov kernels.
Given a measure μ on a product space $X \times Y$ we get two measures: μ_X on X and μ_Y on Y.
Marginals

- Given a measure μ on a product space $X \times Y$ we get two measures: μ_X on X and μ_Y on Y.
- For $A \subset X$ we have $\mu_X(A) = \mu(A \times Y)$.
Marginals

Given a measure μ on a product space $X \times Y$ we get two measures: μ_X on X and μ_Y on Y.

For $A \subset X$ we have $\mu_X(A) = \mu(A \times Y)$.

For $B \subset Y$ we have $\mu_Y(B) = \mu(X \times B)$.
Probabilistic relations: PRel

- Objects: \((X, \Sigma, \mu)\), where \(\mu\) is a probability measure on \((X, \Sigma)\).
Probabilistic relations: PRel

- **Objects**: \((X, \Sigma, \mu)\), where \(\mu\) is a probability measure on \((X, \Sigma)\).
- **Morphisms**: \(\alpha: (X, \Sigma, \mu) \to (X', \Sigma', \mu')\) are probability measures on \(X \times X'\) (actually on \(\Sigma \otimes \Sigma'\)) such that:

 - Its marginals are absolutely continuous with respect to \(\mu\) and \(\mu'\).
Probabilistic relations: PRel

- Objects: (X, Σ, μ), where μ is a probability measure on (X, Σ).
- Morphisms: $\alpha: (X, \Sigma, \mu) \rightarrow (X', \Sigma', \mu')$ are probability measures on $X \times X'$ (actually on $\Sigma \otimes \Sigma'$) such that:
- its marginals are absolutely continuous with respect to μ and μ'.
Probabilistic relations: PRel

- **Objects**: \((X, \Sigma, \mu)\), where \(\mu\) is a probability measure on \((X, \Sigma)\).
- **Morphisms**: \(\alpha: (X, \Sigma, \mu) \to (X', \Sigma', \mu')\) are probability measures on \(X \times X'\) (actually on \(\Sigma \otimes \Sigma'\)) such that:
 - its marginals are absolutely continuous with respect to \(\mu\) and \(\mu'\).
- How do we compose these things?
Let \((X, \Sigma_X)\) and \((Y, \Sigma_Y)\) be measurable spaces.
From joint measures to Markov kernels

- Let \((X, \Sigma_X)\) and \((Y, \Sigma_Y)\) be measurable spaces.
- Let \(P_X\) be a probability a probability on \((X, \Sigma_X)\).
Let (X, Σ_X) and (Y, Σ_Y) be measurable spaces.
Let P_X be a probability measure on (X, Σ_X).
Let $h(x, B): X \times \Sigma_Y \to [0, 1]$ be a stochastic kernel.
From joint measures to Markov kernels

- Let \((X, \Sigma_X)\) and \((Y, \Sigma_Y)\) be measurable spaces.
- Let \(P_X\) be a probability measure on \((X, \Sigma_X)\).
- Let \(h(x, B) : X \times \Sigma_Y \rightarrow [0, 1]\) be a stochastic kernel.
- Then we have a unique measure \(P\) on the product such that for all \(A \in \Sigma_X\):
 \[
P(A \times B) = \int_A h(x, B) dP_X(x).
 \]
Let \((X, \Sigma_X)\) and \((Y, \Sigma_Y)\) be measurable spaces.

Let \(P_X\) be a probability measure on \((X, \Sigma_X)\).

Let \(h(x, B) : X \times \Sigma_Y \rightarrow [0, 1]\) be a stochastic kernel.

Then we have a unique measure \(P\) on the product such that for all \(A \in \Sigma_X\):

\[
P(A \times B) = \int_A h(x, B) dP_X(x).
\]

So we can go back and forth between distributions on the product space \(X \times Y\) and a pair consisting of a kernel \(h : X \rightarrow \Sigma_Y\) and a measure on \(X\).
Let \((X, \Sigma_X)\) and \((Y, \Sigma_Y)\) be measurable spaces. Let \(P_X\) be a probability on \((X, \Sigma_X)\). Let \(h(x, B) : X \times \Sigma_Y \to [0, 1]\) be a stochastic kernel. Then we have a unique measure \(P\) on the product such that for all \(A \in \Sigma_X\):

\[
P(A \times B) = \int_A h(x, B) dP_X(x).
\]

So we can go back and forth between distributions on the product space \(X \times Y\) and a pair consisting of a kernel \(h : X \to \Sigma_Y\) and a measure on \(X\). And, of course we could instead use a kernel \(k : Y \to \Sigma_X\) and a measure on \(Y\).
Composing probabilistic relations

To compose morphisms we calculate their associated stochastic kernels $F(x, B)$ and $G(y, C)$ using the Radon-Nikodym theorem.
Composing probabilistic relations

To compose morphisms we calculate their associated stochastic kernels $F(x, B)$ and $G(y, C)$ using the Radon-Nikodym theorem and compose as in Lawvere’s category to obtain a stochastic kernel $H(x, C)$.
Composing probabilistic relations

To compose morphisms we calculate their associated stochastic kernels $F(x, B)$ and $G(y, C)$ using the Radon-Nikodym theorem and compose as in Lawvere’s category to obtain a stochastic kernel $H(x, C)$. We then obtain a measure on $X \times Z$ via the formula:

$$\gamma(A \times C) = \int_A H(x, C) d\mu(x)$$
Composing probabilistic relations

To compose morphisms we calculate their associated stochastic kernels $F(x, B)$ and $G(y, C)$ using the Radon-Nikodym theorem and compose as in Lawvere’s category to obtain a stochastic kernel $H(x, C)$. We then obtain a measure on $X \times Z$ via the formula:

$$\gamma(A \times C) = \int_A H(x, C) d\mu(x)$$

The identity on (X, Σ_X, μ) is $\Delta(A \times B) = \mu(A) \cdot \mu(B)$ which can be extended to all the measurable sets of $X \times X$. The associated kernel is the Dirac delta “function”.

It is straightforward to show that \textbf{PRel} is a \textit{*}-tensor category.
A nuclear ideal for PRel

- It is straightforward to show that **PRel** is a \ast-tensor category.
- Consider objects (X, Σ_X, μ_X) and (Y, Σ_Y, μ_Y)
A nuclear ideal for PRel

- It is straightforward to show that PRel is a \star-tensor category.
- Consider objects (X, Σ_X, μ_X) and (Y, Σ_Y, μ_Y).
- Define $\mathcal{N}(X, Y)$ to be the set of all measures α on $X \times Y$ for which there exists a measurable function f such that

$$
\int_C f(x, y) \, d\mu_X \times \mu_Y(x, y) = \alpha(C)
$$
A nuclear ideal for PRel

- It is straightforward to show that PRel is a \ast-tensor category.
- Consider objects (X, Σ_X, μ_X) and (Y, Σ_Y, μ_Y).
- Define $\mathcal{N}(X, Y)$ to be the set of all measures α on $X \times Y$ for which there exists a measurable function f such that

$$\int_C f(x, y)\, d\mu_X \times \mu_Y(x, y) = \alpha(C)$$

- It is immediate that the marginals are absolutely continuous with respect to μ_X and μ_Y.
A nuclear ideal for PRel

- It is straightforward to show that **PRel** is a ∗-tensor category.
- Consider objects \((X, \Sigma_X, \mu_X)\) and \((Y, \Sigma_Y, \mu_Y)\)
- Define \(\mathcal{N}(X, Y)\) to be the set of all measures \(\alpha\) on \(X \times Y\) for which there exists a measurable function \(f\) such that

\[
\int_C f(x, y) \, d\mu_X \times \mu_Y(x, y) = \alpha(C)
\]

- It is immediate that the marginals are absolutely continuous with respect to \(\mu_X\) and \(\mu_Y\).
- While \(f\) itself is only unique almost everywhere, the measure with which \(f\) is associated is easily viewed - in a canonical way - both as a member of \(\text{Hom}(X, Y)\) and as a member of \(\text{Hom}(I, X \times Y)\).
A nuclear ideal for PRel

- It is straightforward to show that PRel is a \ast-tensor category.
- Consider objects (X, Σ_X, μ_X) and (Y, Σ_Y, μ_Y).
- Define $\mathcal{N}(X, Y)$ to be the set of all measures α on $X \times Y$ for which there exists a measurable function f such that

\[\int_C f(x, y) \, d\mu_{X \times Y}(x, y) = \alpha(C) \]

- It is immediate that the marginals are absolutely continuous with respect to μ_X and μ_Y.
- While f itself is only unique almost everywhere, the measure with which f is associated is easily viewed - in a canonical way - both as a member of $\text{Hom}(X, Y)$ and as a member of $\text{Hom}(I, X \times Y)$.
- Thus every element of the set $\text{Hom}(I, X \otimes Y)$ is associated with a measure that has a functional kernel which is in turn one of the members of the set $\mathcal{N}(X, Y)$.

What have we got?

- The nuclear ideal corresponds to the original naive idea of using real-valued functions as relations.
What have we got?

- The nuclear ideal corresponds to the original naive idea of using real-valued functions as relations.
- The putative identity is too singular to be a function, but we can realize it as a measure.
What have we got?

- The nuclear ideal corresponds to the original naive idea of using real-valued functions as relations.
- The putative identity is too singular to be a function, but we can realize it as a measure.
- The category we get by including such measures is not compact closed.
What have we got?

- The nuclear ideal corresponds to the original naive idea of using real-valued functions as relations.
- The putative identity is too singular to be a function, but we can realize it as a measure.
- The category we get by including such measures is not compact closed.
- But the original functions do form a nuclear ideal.
Simple examples

- One can easily construct a category of injective partial functions.
Simple examples

- One can easily construct a category of injective partial functions.
- It is easy to make it a $*$-tensor category.
Simple examples

- One can easily construct a category of injective partial functions.
- It is easy to make it a \ast-tensor category.
- One can construct a nuclear ideal by looking at functions whose domain consists of exactly one element and throw in the everywhere undefined function as well.
Using Schwartz distributions

Schwartz, and independently Gelfand and Shilov, were trying to make sense of “generalized functions” like the Dirac delta function and its derivatives.
Using Schwartz distributions

- Schwartz, and independently Gelfand and Shilov, were trying to make sense of “generalized functions” like the Dirac delta function and its derivatives.

- The Dirac delta function can be realized as a measure but its derivatives cannot.
Using Schwartz distributions

- Schwartz, and independently Gelfand and Shilov, were trying to make sense of “generalized functions” like the Dirac delta function and its derivatives.
- The Dirac delta function can be realized as a measure but its derivatives cannot.
- Such functions are formalized as continuous linear maps on a suitable topological vector space of “nice” functions.
Using Schwartz distributions

- Schwartz, and independently Gelfand and Shilov, were trying to make sense of “generalized functions” like the Dirac delta function and its derivatives.
- The Dirac delta function can be realized as a measure but its derivatives cannot.
- Such functions are formalized as continuous linear maps on a suitable topological vector space of “nice” functions.
- For example $\delta'(f) = -f'(0)$. Now we can differentiate these things!
Using Schwartz distributions

- Schwartz, and independently Gelfand and Shilov, were trying to make sense of “generalized functions” like the Dirac delta function and its derivatives.
- The Dirac delta function can be realized as a measure but its derivatives cannot.
- Such functions are formalized as continuous linear maps on a suitable topological vector space of “nice” functions.
- For example $\delta'(f) = -f'(0)$. Now we can differentiate these things!
- These distributions are perfect for studying differential equations.
Using Schwartz distributions

- Schwartz, and independently Gelfand and Shilov, were trying to make sense of “generalized functions” like the Dirac delta function and its derivatives.
- The Dirac delta function can be realized as a measure but its derivatives cannot.
- Such functions are formalized as continuous linear maps on a suitable topological vector space of “nice” functions.
- For example $\delta'(f) = -f'(0)$. Now we can differentiate these things!
- These distributions are perfect for studying differential equations.
- We developed another \ast-tensor category based on a special kind of distribution and showed that the functional versions of these distributions give a nuclear ideal.
Formalizing conformal field theory

- Segal gave a categorical formulation of conformal field theory and remarked in passing that his category lacked identity morphisms.
Segal gave a categorical formulation of conformal field theory and remarked in passing that his category lacked identity morphisms.

We showed that his “category” was actually a nuclear ideal inside a \ast-tensor category.
Formalizing conformal field theory

- Segal gave a categorical formulation of conformal field theory and remarked in passing that his category lacked identity morphisms.
- We showed that his “category” was actually a nuclear ideal inside a \ast-tensor category.
- This involved some interesting mathematics: cobordisms, Riemann surfaces etc.
Conclusions

- There are many natural examples of nuclear ideals in mathematics.
There are many natural examples of nuclear ideals in mathematics.

Beautiful theory, due to Blute (2007), of a general notion of nuclear ideals emphasizing that the identity maps are “too singular”: shape theory.
There are many natural examples of nuclear ideals in mathematics.

Beautiful theory, due to Blute (2007), of a general notion of nuclear ideals emphasizing that the identity maps are “too singular”: shape theory.

Is there a diagrammatic language for them?
Conclusions

- There are many natural examples of nuclear ideals in mathematics.
- Beautiful theory, due to Blute (2007), of a general notion of nuclear ideals emphasizing that the identity maps are “too singular”: shape theory.
- Is there a diagrammatic language for them?
- Would they be useful for formalizing infinite-dimensional quantum mechanics?
Conclusions

- There are many natural examples of nuclear ideals in mathematics.

- Beautiful theory, due to Blute (2007), of a general notion of nuclear ideals emphasizing that the identity maps are “too singular”: shape theory.

- Is there a diagrammatic language for them?

- Would they be useful for formalizing infinite-dimensional quantum mechanics?

- We defined trace ideals in terms of nuclear ideals. Is there a more intrinsic way?