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Heros of concurrency theory: Milner and Park
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Sources of Inspiration I: Dexter Kozen
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Behavioural equivalence is fundamental
• When do two states have exactly the same behaviour?

• What can one observe of the behaviour?
• What should be guaranteed?
• (i) If two states are equivalent we should not be able to

“see” any differences in observable behaviour.
• (ii) If two states are equivalent they should stay equivalent

as they evolve.
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A bit of history I
• Cantor and the back-and-forth argument

• Lumpability in Markov chains: 1960’s
• Bisimulation of nondeterministic automata 1970’s and

process algebras 1980’s: Milner and Park
• Probabilistic bisimulation, discrete systems: Larsen and

Skou 1989
• Adding durations: CTMC’s, timed Petri nets, PEPA Hillston

1993
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A bit of history II
• Bisimulation of Markov processes on continuous state

spaces: Desharnais, Edalat, P. 1997...

• Bisimulation metrics for Markov processes Desharnais,
Gupta, Jagadeesan, P. 1999

• Fixed-point version: van Breugel and Worrell 2001
• Bisimulation for MDP’s : Givan and Dean 2003
• Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004
• Representation learning using “metrics”: Castro, Kastner,

P. Rowland NeurIPS 2021
• Kernel perspective: Castro, Kastner, P. Rowland TMLR

2023
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Labelled transition systems
• A set of states S,

• a set of labels or actions, L or A and
• a transition relation ⊆ S ×A× S, usually written

→a⊆ S × S.

The transitions could be indeterminate (nondeterministic).

Notation
We write s a−−→ s′ for (s, s′) ∈→a
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Vending machine LTSs

Place cup

Insert money

Choose

WaitWait

Cup

£1

CoffeeTea

Dispense coffeeDispense tea
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Are the two LTSs equivalent?
• One gives us the choice whereas the other makes the

choice internally.

• The sequences that the machines can perform are
identical: [Cup;£1;(Cof + Tea)]∗

• We need to go beyond language equivalence.
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Formal definition

s s′

t ∃t′

∀a

a

Bisimulation definition
If s ∼ t then

∀s ∈ S, ∀a ∈ A, s a−−→ s′ ⇒ ∃t′, t a−−→ t′ with s′ ∼ t′

and vice versa with s and t interchanged.
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Discrete probabilistic transition systems
• Just like a labelled transition system with probabilities

associated with the transitions.

•
(S,A,∀a ∈ A Ta : S −→ Dist(S)).

• The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Probabilistic bisimulation : Larsen and Skou

s0

s1

s2

s3

a, 1
3

a, 1
3

a, 1
3

b, 1 c, 1 c, 1

t0

t1 t2

a, 1
3 a, 2

3

b, 1 c, 1
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Are s0 and t0 bisimilar?

Yes, but one needs to add up the probabilities to s2 and s3.

If s is a state, a an action and C a set of states, we write
Ta(s,C) =

∑
s′∈S Ta(s, s′) for the probability of jumping on an

a-action to one of the states in C.

Definition
R is a bisimulation relation if whenever sRt and C is an
equivalence class of R then Ta(s,C) = Ta(t,C).
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Markov decision processes?
• Markov decision processes are probabilistic versions of

labelled transition systems. Labelled transition systems
where the final state is governed by a probability
distribution - no other indeterminacy.

• There is a reward associated with each transition.
• We observe the interactions and the rewards - not the

internal states.
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Markov decision processes: formal definition

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

where
S : the state space, we will take it to be a finite set.
A : the actions, a finite set
Pa : the transition function; D(S) denotes distributions over S
R : the reward, could readily make it stochastic.
Will write Pa(s,C) for Pa(s)(C).
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Policies

MDP

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

We control the choice of action; it is not some external
scheduler.

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to
find or approximate the optimal policy.
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Bisimulation
• Let R be an equivalence relation. R is a bisimulation if: s R t

if (∀ a) and all equivalence classes C of R:

(i) R(a, s) = R(a, t)
(ii) Pa(s,C) = Pa(t,C)

• Basic pattern: immediate rewards match (initiation), stay
related after the transition (coinduction).

• Bisimulation can be defined as the greatest fixed point of a
relation transformer.
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Continuous state spaces: why?
• Software controllers attached to physical devices or

sensors - robots, controllers.

• Continuous state space but discrete time.
• Applications to control systems.
• Applications to probabilistic programming languages.
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Some remarks on the use of continuous spaces
• Can be used for reasoning - but much better if we could

have a finite-state version.

• Why not discretize right away and never worry about the
continuous case?

• How can we say that our discrete approximation is
“accurate”?

• We lose the ability to refine the model later.
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The Need for Measure Theory
• Basic fact: There are subsets of R for which no sensible

notion of size can be defined.

• More precisely, there is no translation-invariant measure
defined on all the subsets of the reals.
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Logical Characterization
• Very austere logic:

L ::== T|ϕ1 ∧ ϕ2|⟨a⟩qϕ

• s |= ⟨a⟩qϕ means that if the system is in state s, then after
the action a, with probability at least q the new state will
satisfy the formula ϕ.

• Two systems are bisimilar iff they obey the same formulas
of L. [DEP 1998 LICS, I and C 2002]

• No finite branching assumption.
• No negation in the logic,
• The proof uses tools from descriptive set theory and

measure theory.
• Such a theorem originally proved for (non-probabilistic)

systems with finite-branching restrictions by Hennessy and
Milner in 1977 and van Benthem in 1976.
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The proof “engine” Josée Desharnais



Introduction Bisimulation for LTS’s Probabilistic bisimulation Continuous state spaces Metrics Representation learning The MICo Distance Experimental results Conclusions

But...
• In the context of probability is exact equivalence

reasonable?

• We say “no”. A small change in the probability distributions
may result in bisimilar processes no longer being bisimilar
though they may be very “close” in behaviour.

• Instead one should have a (pseudo)metric for probabilistic
processes.
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A metric-based approximate viewpoint
• Move from equality between processes to distances

between processes (Jou and Smolka 1990).

• Quantitative measurement of the distinction between
processes.
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In lieu of several slides of greek letters and symbols
• If two states are not bisimilar there is a some observation

on which they disagree.

• They may diasagree on the reward or on the probability
distribution that results from a transition.

• We need to measure the latter, we use the Wasserstein
Kantorovich metric between probability distributions.

• Intuitively, if the difference shows up only after a long and
elaborate observation then we should make the states
“nearby” in the bisimulation metric.



Introduction Bisimulation for LTS’s Probabilistic bisimulation Continuous state spaces Metrics Representation learning The MICo Distance Experimental results Conclusions

In lieu of several slides of greek letters and symbols
• If two states are not bisimilar there is a some observation

on which they disagree.
• They may diasagree on the reward or on the probability

distribution that results from a transition.

• We need to measure the latter, we use the Wasserstein
Kantorovich metric between probability distributions.

• Intuitively, if the difference shows up only after a long and
elaborate observation then we should make the states
“nearby” in the bisimulation metric.



Introduction Bisimulation for LTS’s Probabilistic bisimulation Continuous state spaces Metrics Representation learning The MICo Distance Experimental results Conclusions

In lieu of several slides of greek letters and symbols
• If two states are not bisimilar there is a some observation

on which they disagree.
• They may diasagree on the reward or on the probability

distribution that results from a transition.
• We need to measure the latter, we use the Wasserstein

Kantorovich metric between probability distributions.

• Intuitively, if the difference shows up only after a long and
elaborate observation then we should make the states
“nearby” in the bisimulation metric.



Introduction Bisimulation for LTS’s Probabilistic bisimulation Continuous state spaces Metrics Representation learning The MICo Distance Experimental results Conclusions

In lieu of several slides of greek letters and symbols
• If two states are not bisimilar there is a some observation

on which they disagree.
• They may diasagree on the reward or on the probability

distribution that results from a transition.
• We need to measure the latter, we use the Wasserstein

Kantorovich metric between probability distributions.
• Intuitively, if the difference shows up only after a long and

elaborate observation then we should make the states
“nearby” in the bisimulation metric.



Introduction Bisimulation for LTS’s Probabilistic bisimulation Continuous state spaces Metrics Representation learning The MICo Distance Experimental results Conclusions

In lieu ... continued
• All this can be formalized and was originally done by

Desharnais et al. and later with a beautiful fixed-point
construction by van Breugel and Worrell.

• Ferns et al. added rewards and showed that the
bisimulation metric bounds the difference in optimal value
functions in different states.

• |V∗(x)− V∗(y)| ≤ Cd(x, y).
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Basic goals in RL
• We are often dealing with large or infinite transition

systems whose behaviour is probabilistic.

• The system responds to stimuli (actions) and moves to a
new state probabilistically and outputs a (possibly) random
reward.

• We seek optimal policies for extracting the largest possible
reward in expectation.

• A plethora of algorithms and techniques, but the cost
depends on the size of the state space.

• Can we learn representations of the state space that
accelerate the learning process?
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Representation learning
• For large state spaces, learning value functions S ×A −→ R

is not feasible.

• Instead we define a new space of features M and try to
come up with an embedding ϕ : S −→ RM.

• Then we can try to use this to predict values associated
with state,action pairs.

• Representation learning means learning such a ϕ.
• The elements of M are the “features” that are chosen.

They can be based on any kind of knowledge or
experience about the task at hand.
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The MICo distance
• The Kantorovich metric is expensive to compute and

difficult to estimate from samples.

• We (Castro et al.) invented a version that is easy to
estimate from samples.

• In spirit it is closely related to the bisimulation metric but it
is a crude approximation

• and is not even technically a metric!
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A new type of distance

Diffuse metric

1. d(x, y) ≥ 0

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y)

4. Do not require d(x, x) = 0
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MICo loss
• Nearly all machine learning algorithms are optimization

algorithms.

• One often introduces extra terms into the objective function
that push the solution in a desired direction.

• We defined a loss term based on the MICo distance.
• For details read
https://psc-g.github.io/posts/research/rl/mico/
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Experiments
• Added the MICo loss term to a variety of existing agents:

all those available in the Dopamine Library; 5 in all.

• Ran each game 5 times with new seeds so 300 runs for
each agent.

• Each game is run for 200 million environment interactions.
• We look at final scores and learning curve.
• We tried each agent with and without the MICo loss term

on 60 different Atari games.
• Every agent performed better on about 2

3 of the games.
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Results for Rainbow
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Results for DQN
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Other developments
• Approximation of continuous-state-space systems by

finite-state systems.

• Capturing the notion of distance in an equational setting.
• Categorical mumbo jumbo.
• Exploiting symmetry.
• Continuous space and time: Feller-Dynkin processes.
• A new kernel perspective on MiCo (TMLR 2023) shows

where it “really” comes from.
• Normalizing flows on hyperbolic spaces.
• Generative algorithm based on solving SDE’s on

Riemannian manifolds.
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Conclusions
• Bisimulation has a rich and venerable history.

• The metric analogue holds promise for quantitative
reasoning and approximation.

• Research is alive and well and there are new areas where
bisimulation is being “discovered”.
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