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Quantum Computing

Uses qubits: 2 dimensional quantum systems,

exploits entanglement, 

requires implementing precise 
transformations on the qubits. 
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The Trouble with Qubits

We need to be able to make exquisitely 
delicate manipulations of qubits,

while preserving entanglement and 

ensuring absence of decoherence.

A tall order!
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We need stability

Kitaev’s great idea: use topologically 
nontrivial configurations to represent qubits.

The topology will keep the configuration 
from coming apart.

Where do we find quantum braids or knots?
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Quantum Statistics

You have two boxes, A and B, and two 
particles that can each be in either box with 
equal probability.  What is the probability 
that there is one particle in each box?

If you answered 1/2 you are correct 
classically, but this is not what happens in 
quantum mechanics!

Depending on the type of particle the 
answer could be 1/3 (bosons) or 0 (fermions).
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Symmetry 

A symmetry of a system is a transformation 
that leaves the system looking unchanged.

Symmetries can be composed, there is an 
identity, there is an inverse for every 
symmetry and composition is associative.

Symmetries form a group.
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Symmetry in QM

If a quantum system has a symmetry group 
G, then applying elements of G to the state 
space H must cause some transformation of 
H.

In short, the state space carries a 
representation of the group.  

ρ : G→ GL(H)
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Identical particles

In QM particles are absolutely identical.  You 
cannot label them and use arguments that 
mention “the first particle” or “the second 
particle.”

The permutation group is a symmetry of a 
quantum system: the system looks the same 
if you interchange particles of the same 
type.
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Representations of the 
Permutation Group

The simplest two representations possible:

the trivial representation: every permutation 
is mapped onto the identity element of 
GL(H),

or the alternating representation: a 
permutation P is mapped to +1 or -1 
according to whether P is odd or even.
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What nature does

Nature has chosen to implement these basic 
representations and no others, as far as we 
know.

The state vector of a system either changes sign 
under an interchange of any pair of identical 
particles (fermions) or does not (bosons).

Systems that transform according to other 
representations are said to exhibit parastatistics.

We have never seen parastatistics in nature.
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vector describing two identical particles in 
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Consequences 1

If the state vector changes sign under an 
interchange of identical particles, but must 
also look the same if they are in the same 
state, we have v = -v; where v is the state 
vector describing two identical particles in 
the same state.

In short v = 0!

With fermions two particles cannot be in 
exactly the same state: Pauli exclusion 
principle.  The reason for chemistry!!
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Consequences 2

Bosons can indeed be packed into the same 
state.

The fundamental reason for early quantum 
mechanics.

The explanation of black-body radiation, 
lasers, superconductivity, BE condensation 
and many other collective phenomena.
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Spin in Quantum Mechanics

• Quantum systems are rotationally symmetric.

• Therefore the rotation group must act on them.

• This group is called SO(3): the group of 3× 3
orthogonal matrices with determinant +1.

• To describe a member of the group we need an angle
and a unit vector pointing along the axis of rotation.

• The group can be viewed as a solid ball of radius π.
The angle of rotation is the distance from the centre.

• We have to identify a rotation of θ and π − θ, so we
identify antipodal points on the surface of the ball.

• The resulting group is not simply connected: there
are loops that cannot be continuously deformed to a point.
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A picture of SO(3) showing a loop that can be shrunk to a point
and one that cannot.

SO(3) is not simply connected.
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matrices with determinant 1.
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There is another group SU(2): the group of unitary 2× 2
matrices with determinant 1.

There is a homomorphism from SU(2) to SO(3) which is
onto and 2 to 1 and which locally looks just like SO(3)
but globally is simply connected.
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Now which is the relevant
symmetry group for quantum mechanics?
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Nature implements the representations of SU(2).

Some representations of SU(2) behave like representations
of SO(3) but others behave strangely.

The representations of SU(2) can be classified by
a number j which can be either an integer
or half an integer.

The second type of representations correspond to objects
that change sign under rotation of 2π: they are called spinors.

Nature has two types of particles: those for which a 2π rotation
is the identity and those for which a 4π rotation is the identity.

The quantity j is called the spin of the particle.
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The Spin-Statistics Theorem

In any relativistic quantum field theory particles have half-integer spin
if and only if they are fermions and have integer spin iff they are bosons.

Note that this is a general theorem.
No truly topological proof exists.

All this is true in three dimensions.

What happens in two dimensions?
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Two dimensional physics

Now the rotation group is SO(2), which is just a circle.

Though a simpler group, the topology is much more complicated.

There are infinitely many classes of loops (homotopy classes).
So a rotation by 4π is not necessarily the identity and a
rotation by 2π is not necessarily a multiplication by ±1.

A rotation of 2π may result in a phase change eiθ that could
be anything.

Such entities are called anyons.
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What happened to the Spin-Statistics theorem?

It still holds in two dimensions! The relevant group
is no longer the permutation group but the braid group.

To understand why we need to think about the physics of
two dimensional entities.

In the laboratory we get 2D physics with a thin gas of free
electrons trapped between two semiconductor layers.

A strong magnetic field is applied in the perpendicular direction
confining the “gas” to a 2D layer.

Excited states of this system are not electrons but
virtual particles with strange properties.
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Imagine some (5 in the picture) particles and consider what happens when some
of them are exchanged.

Here 1 !→ 4, 2 !→ 1, 3 !→ 3, 4 !→ 5 and 5 !→ 2

In 3D the strands can always be disentangled;
the only thing that matters is the start and end
point. So we can describe the effect just by giving
a permutation.

In 2D the entangling matters. One has to
distinguish between different braidings.
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Here the permutations are the same but the braiding is different.
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The Braid Group
Fix n and consider n points on a line with another n points on a line below.
We connect them with strands. The generators of the group are interchanges
of adjacent strands.

This is an element of B6.

Much richer theory than the permutation group.
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8 P. Panangaden and É. O. Paquette

are a much richer collection and we have the possibility of many more kinds
of statistics in two dimensions: these particles are the anyons.

There is still a spin-statistics connection, however, it is now more compli-
cated. As we have seen there are more than two possibilities for the “statis-
tics”: interchanging particles can cause arbitrary phase shifts. The rotation
group in two dimensions is SO(2). This group has the same homotopy group
as a circle so it has an infinite family of types of “spin.”

There is another new feature to be considered. As we have mentioned
before, the physical quasi-particles that arise in the fractional quantum Hall
effect are extended objects with charge and tubes of magnetic flux. Not only
is there braiding but also twisting. Later, when we formalize the theory cat-
egorically we will introduce additional algebraic structure: the aptly named
ribbon structure to capture this. For the moment we confine our attention to
braiding.

The braid group can be described by giving generators and relations. We
think of there being a fixed set of n points along a line segment and we
visualize an element of the braid group as a set of strands connecting two
such collections of n points. Each strand must go from one of the lower points
to one of the upper points. The generators are interchanges of two adjacent
strands: this can happen in two ways, the strand of particle i crosses over the
strand of particle i+1 – we call this bi – or it can cross under, we call this b−1

i .
For n points the generators are b1 to bn−1 and their inverses. The generators
obey the following equations:

bibj = bjbi for |i − j| ≥ 2 (1)

bibi+1bi = bi+1bibi+1 for 1 ≤ i ≤ n − 1. (2)

which respectively depicts as:

=

i i + 1 j j + 1

...... ...

i i + 1 j j + 1

...... ...

and

=

i i + 1

... ...

i + 2i i + 1

... ...

i + 2
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Generalized Spin-Statistics theorem holds in dimensions 2 and 3.

See the paper by Froelich and Gabbiani : Local Quantum Theory and Braid
Group Statistics.

There is a lot more to be said about knots, braids, physics and related things
but we need to get on with the main story.
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Combining Anyons

We can associate a type with anyons according to the phase they pick up during
an exchange.

What happens if we combine n anyons of type θ? What is the resulting type?

Consider the exchange process. If we exchange two clusters of n anyons (of type
θ) each, we get a phase change of n2θ. Thus we have a particle of type n2θ.

This is an example of what is called a fusion rule.

Thus if we have a cluster of n anyons and another cluster of m anyons (all
the basic anyons are type θ) when we combine them we get a cluster of type
(n + m)2θ.

Not all anyons are so simple!
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Representations of the braid group.

Physical systems in 2D have to carry representations of the braid group. What
do they look like?

The braid groups are infinite and there are infinitely many irreducible represen-
tations.

Let us consider 1D representations. A 1D vector space is just a copy of C. So
every linear map on C is just a complex number. So every generator bj of the
braid group looks like eiθj in a 1D rep.

One of the basic equations in the braid group is:
bjbj+1bj = bj+1bjbj+1

The Yang-Baxter equation.

Applying this we get that eiθj+iθj+1+iθj = eiθj+1+iθj+iθj+1

or θj = θj+1. All the generators of the group produce the same phase shift.

However, there are more interesting representations.
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Non-abelian anyons
There are (we hope!) anyons that transform according to higher-dimensional
representations of the braid group. This happens when the ground state of the
system is degenerate and the actions of the braid group elements are given by
matrices.
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Non-abelian anyons
There are (we hope!) anyons that transform according to higher-dimensional
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There are (we hope!) anyons that transform according to higher-dimensional
representations of the braid group. This happens when the ground state of the
system is degenerate and the actions of the braid group elements are given by
matrices.

Now we can hope to implement non-trivial unitary transformations by braiding
these anyons together.

We have got to have non-abelian anyons in order to use them for quantum
computation.

There are candidates but there are no definite laboratory demonstrations of
non-abelian anyons.
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What happens when we combine anyons of different types? Write [a, b] for the
combination of a type-a anyon and a type-b anyon.

We get general fusion rules of the form [a, b] =
∑

c N c
abc; where the Ns are just

natural numbers.

Thus a rule like [a, b] = 2a + b + 3c means that fusing an a and a b produces
either an a – and this can happen in two ways – or a b or a c, which last can
happen in 3 ways.

It is the space of fusion possibilities that describes the qubits! If [a, b] = 2c we
use the 2D fusion space of the resulting c anyon to encode a qubit.

How do we describe all this complicated algebra? There are different types of
things that combine in non-trivial ways. We have essentially an exotic type
theory.
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We need a system of types. Physicists call them “charges.”

We need to capture the idea of combining types and getting new types as a
result. We also need the idea of “putting together” and “or”.

We need to have the ability to describe braids.

In fact, the anyons are extended objects with more than “string-like” structure.
We need braided ribbons that may have twists in them.

We need braided monoidal categories. The tensor product structure gives the
fusion possibility. The additive structure gives the different possibilities.

To accomodate everything we use what are called modular tensor categories.
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Modular Tensor Categories
in a Nutshell

A collection of “primitive” (simple) objects to stand for
the basic charges (types).

A way of building up compound systems: tensor product.

A condition that says everything is a combination
of the basic charges: semi-simplicity.

A way of capturing braiding and twisting: ribbon structure.

A way of capturing “anti-particles”: conjugation, rigid
structure.
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In particular, semisimplicity captures the following ideas:

- The charge of an anyon is elementary i.e., it cannot be
decomposed into other elementary entities. In categorical
terms, the charge of an anyon has no other subobjects
other than 0 and itself.

- The set of endomorphisms of a charge (a simple object)
is isomorphic to the complex field.

Finally, this structure entails that given two different simple
charges S1 and S2, Hom(S1, S2) = {0}.
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We consider a special class of semisimple ribbon categories
called modular tensor categories. Such categories have
only a finite number of simple objects i.e. possible charges
for an anyon. Moreover, its defining conditions ensure that
the braids are not degenerate.
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What is an anyonic model?
A (finite) list of charges: a, b, c, . . .

A set of fusion rules: [a, b] =
∑

c N c
abc.

A set of rules that describe when one anyon is wrapped
around another: braiding.

The anyons transform according to a representation
of the braid group.

These could be 1-dimensional representations in which case
it amounts to a phase: abelian anyons

or it could be higher-dimensional, in which case we have
non-abelian anyons.
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Fusion in more detail

[a, b] = [b, a] =
∑

c

N c
abc

Think of a + b→ c as a reaction, but do not think of
N cab as the number of copies of c produced.

Rather, it is the number of ways in which a c can be
produced. Thus, there is a vector space of possible
c states and N c

ab is its dimension.
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Finiteness of the number of charges

The matrix Si,j := tr(bXi,X,j ◦ bXj ,Xi) is a symmetric
n× n matrix. The b are the braiding isos.

The fusion coefficients are determined by the entries
of the S matrix: Verlinde formula.

The columns of this matrix are eigenvectors of the
fusion matrices and the dimensions of the simple
objects are the eigenvalues.
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Recoupling for SU(2)
Coupling of angular momenta: two spin 1

2 particles
can be aligned (spin 1) or anti-aligned (spin 0).

Spin l gives a space of dimension 2l + 1.
So in terms of spaces: V2 ⊗ V2 yields V1 ⊕ V3.

Mathematically: how do we decompose tensor products
of irreps into irreps? Answer is well known: plethysm.

For SU(2) there is an irrep for every dimension.

If we combine spin l1 and l2 the spectrum
of possible total spins is: |l1 − l2|, . . . , l1 + l2 in steps of 1.
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If we are coupling l1, l2, l3 we can combine l1, l2
and then l3 or l1 with the result of l2, l3. We
get isomorphic (“same”) spaces but different bases.
The coefficients of the transformation are called 3j
symbols or Wigner-Racah coefficients.
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[1, 1] = 0
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In our example: [[ 12 ,
1
2 ], [

1
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An Example
Three basic charges: 0, 1

2 , 1.

Fusion rules:
[ 12 ,

1
2 ] = 0 + 1

[ 12 , 1] = 1
2

[1, 1] = 0
[0, x] = x for x = 0, 1

2 , 1.

In our example: [[ 12 ,
1
2 ], [

1
2 ,

1
2 ]] = 2 · 0 + 2 · 1

Compare with SU(2):
[ 12 ,

1
2 ] = 0 + 1

[ 12 , 1] = 1
2 + 3

2
[1, 1] = 0 + 1 + 2

(Ising Anyon)

There are infinitely many irreps of SU(2);
so definitely not a modular tensor category.
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Rigid Structure
[a, b] = c means [[a, b], c] = 0

a + b→ c means a + b + c→ 0

a + 0→ a means a + a→ 0

These notations are very confusing: the
“chemical reaction” plus symbol is not a
direct sum nor even a tensor product.
We are combining labels not vector spaces.
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The F -matrix
In the category (a⊗ b)⊗ c is isomorphic to a⊗ (b⊗ c), but

what is the isomorphism?

a b
c

d

e

a

b
c

f

e

We must have Nd
abN

e
dc = Nf

bcN
e
af := Ne

abc
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The two different orders of fusion give rise to isomorphic
spaces but the decomposition into the tensor products:

V e
abc = V d

ab ⊗ V e
dc " V e

af ⊗ V f
bc

is different and gives different bases.
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The two different orders of fusion give rise to isomorphic
spaces but the decomposition into the tensor products:

V e
abc = V d

ab ⊗ V e
dc " V e

af ⊗ V f
bc

is different and gives different bases.

It is only a concrete matrix when bases for the
two-anyon fusion spaces are chosen.

This is really our old friend the association isomorphism α.

These two bases are connected by a “matrix” called
the F -matrix: F e

abc

The pentagon equation gives an equation for F that can
(sometimes) be solved to obtain F explicitly.
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The R-matrix and braiding
Recall that a braided monoidal category has isomorphisms

γa,b : a⊗ b→ b⊗ a

However, unlike in a symmetric monoidal category,
γa,b is not the inverse of γb,a.

When we exchange two anyons, the fusion spaces are iso,
the isomorphism is given by a “matrix” called the R-matrix.

R : V c
ab → V c

ba.  

a b

c
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A categorical presentation of quantum computation with anyons 31

4.12 Categorical epilogue

This complete our categorical presentation of the algebra of a family of anyons.
Note that even if in what follows we will use only the semisimple ribbon struc-
ture in our description of topological quantum computation, specifying com-
pletely the modular tensor category structure was worth the work: Indeed,
specifying the simple objects, the fusion rules, the pentagon and hexagon ax-
ioms, the twist and the S-matrix completely determine the topological prop-
erties of a species of anyons!

5 An example: Fibonacci anyons

Our intended model to illustrate quantum computation with anyons is the
formal semisimple modular tensor category Fib which captures the rules of
Fibonacci anyons:

• These anyons have only two charges: 1 and τ , where 1 is the trivial charge,
• Both are their own conjugated charge,
• They satisfies the following fusion rules:

1 ⊗ 1 " 1

1 ⊗ τ " τ ⊗ 1 " τ

τ ⊗ τ " 1 ⊕ τ

Categorically, this says that the semisimple modular tensor category Fib has

• Two simple objects 1 and τ where 1 is the tensor unit,
• That they are their own dual i.e.: 1∗ = 1 and τ∗ = τ and,
• That 1 and τ satisfy the fusion rules given above.

Let us inspect the fusion rules. While the two first trivially hold, the third
one says that the charge resulting of the fusion of two anyons of charge τ is
either 1 or τ . It is precisely this third rule that tells us that our anyons are
non-abelians as they can fuse in two distinct ways.

Now, back to our model, consider three anyons of charge τ all lined up
(τ ⊗ τ) ⊗ τ and let them fuse in the order fixed by the bracketing. Such a
process is algebraically described by:

(τ ⊗ τ) ⊗ τ " (1 ⊕ τ) ⊗ τ

" (1 ⊗ τ) ⊕ (τ ⊗ τ)

" τ ⊕ (1 ⊕ τ)

" 1 ⊕ 2 · τ.

Hence, the fusion process for three τ anyons yields a final charge τ in 2 different
ways or 1 in a single way. These three scenarios depict as
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Here are the fusion rules.

Each anyon type is self-dual.
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Consider the following calculation:

Each anyon type is self-dual.
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We now pass to the context of finite-dimensional complex vector spaces via
the splitting spaces whose basis vector are dual to the fusion states described
above. Consider

Hom(b, (τ ⊗ τ) ⊗ τ) " Hom(b,1 ⊕ 2 · τ)

" Hom(b,1) ⊕ Hom(b, 2 · τ) and as 2 · τ := τ ⊕ τ this is

" Hom(b,1) ⊕ 2 · Hom(b, τ).

Now, using lemma 1 in conjunction with the property that for any b ∈ {1, τ},
End(b) " C; if we set b = 1 the last expression is isomorphic to C ⊕ 2 · 0.
Conversely if b = τ , then it is isomorphic to 0 ⊕ 2 · C.

From this, we conclude that considering the space of states with global
charge b ∈ {1, τ} is the same as considering

Hom(b, (τ ⊗ τ) ⊗ τ).

In its turns, such a consideration fixes either of the splitting spaces C or
2 · C := C2 as orthogonal subspaces of C3, the topological space representing
our triple of anyons. It is within this two-dimensional complex vector space
that we will simulate our qubit. Indeed, if b = τ , we are left with two degrees
of freedom which are the two possible outputs of the second splitting.

Remark 8. It is worth stressing that it takes three anyons of charge τ to sim-
ulate a single qubit. Moreover, we shall see later that braiding these anyons
together simulates a unitary transformation on such a simulated qubit.

Remark 9. Since Fib is rigid, we can apply proposition 1. We have

Hom(τ, (τ ⊗ τ) ⊗ τ) " Hom(1 ⊗ τ, (τ ⊗ τ) ⊗ τ)

" Hom(1, ((τ ⊗ τ) ⊗ τ) ⊗ τ).

Comparing this fact with what we got in example , we see that the two different
encoding are essentially the same. It is also because of this, some authors, for
instance J. Preskill in [31], prefer to encodes their qubit within a quadruple
of anyons of individual charge τ with global charge 1 instead. We choose the
former to align with the work of Bonesteel et al. [7] that we will explain in
section 6.

Now, consider a transformation f acting on a triple of anyons with total charge
b. This is:

In pictures

So when we fuse three τ anyons, we get a 2-dimensional
space of τ -anyon states; we do not get two τ anyons.

We may also get a 1 anyon which represents
“leakage” or “loss.”
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45Friday, June 11, 2010



How many dimensions in the quantum state space for n anyons?

n dim anyons fusion result
0 1 1 = 1
1 1 τ = τ
2 2 τ ⊗ τ = 1 + τ
3 3 τ ⊗ τ ⊗ τ = 1 + 2 · τ
4 5 τ4⊗ = 2 · 1 + 3 · τ
5 8 τ5⊗ = 3 · 1 + 5 · τ
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We now pass to the context of finite-dimensional complex vector spaces via the splitting spaces.
Consider

Hom(b, (τ ⊗ τ) ⊗ τ) " Hom(b,1 ⊕ 2 · τ)

" Hom(b,1) ⊕ Hom(b, 2 · τ) and as 2 · τ := τ ⊕ τ,

" Hom(b,1) ⊕ 2 · Hom(b, τ).

Now, since for different charges S1 and S2 we have Hom(S1, S2) = {0} and since for any S ∈ {1, τ},
End(S) " C; if we set S = 1, then the last expression is isomorphic to C ⊕ 2 · 0. Conversely if
S = τ , then it is isomorphic to 0⊕ 2 · C.

From this, we conclude that considering the space of states with global charge S ∈ {1, τ} is the
same as considering

Hom(S, (τ ⊗ τ) ⊗ τ).

In its turn, such a consideration fixes either of the splitting spaces C or 2 · C := C2 as orthogonal
subspaces of C3, the topological space representing our triple of anyons.

It is within the two-dimensional complex vector space (i.e. with S = τ as global charge) that we
will simulate our qubit. Indeed, with this global charge, we are left with two degrees of freedom
which are the two possible outputs of the second splitting. Of course, such a space is spanned by
the two possible scenarios of the splitting.

Remark: It is worth stressing that it takes three anyons of charge τ to simulate a single qubit.
Moreover, we shall see later that braiding these anyons together simulates a unitary transformation
on such a simulated qubit.

In order to ensure consistency of the model Fib, splitting has to be associative as expressed cate-
gorically via an incarnation of the pentagon axiom from the monoidal structure.

There are two distinct splitting spaces that can be obtained from a triple of anyons i.e.: (τ ⊗ τ)⊗ τ

and τ ⊗ (τ ⊗ τ).

Using splitting diagrams, we have:

=
P

b
(F STU

W
)ba

S T U

b

W

S T U

a

W

Considering the splitting diagram for fixed a and W as a basis vector, this is nothing but the
matrix expression of F . In order to obtain a solution for the F -matrix, we need to recast the
pentagon axiom from the monoidal structure in this context in such a way that we obtain a matrix
equation.

Consider

2
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It is within the two-dimensional complex vector space (i.e. with S = τ as global charge) that we
will simulate our qubit. Indeed, with this global charge, we are left with two degrees of freedom
which are the two possible outputs of the second splitting. Of course, such a space is spanned by
the two possible scenarios of the splitting.

Remark: It is worth stressing that it takes three anyons of charge τ to simulate a single qubit.
Moreover, we shall see later that braiding these anyons together simulates a unitary transformation
on such a simulated qubit.

In order to ensure consistency of the model Fib, splitting has to be associative as expressed cate-
gorically via an incarnation of the pentagon axiom from the monoidal structure.

There are two distinct splitting spaces that can be obtained from a triple of anyons i.e.: (τ ⊗ τ)⊗ τ
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If we use the pentagon equation for F and unitarity we get
where φ is the golden ratio.

Finally, combining the results for F τττ
τ and F τττ

1
yields

F =





1 0 0

0 φ−1
√

φ−1

0
√

φ−1 −φ−1





which is also unitary. The lower-right block induces a change of basis on the 2-dimensional split-
ting space while the upper-left block is the trivial transformation on the one-dimensional splitting
space.

We now express what will be the consequence of exchanging two anyons on the splitting space. As
such an exchange is represented categorically by a braiding, this will yield a representation of the
braid group in the splitting space.

The game here is very similar to the one for the F -matrix except that we use the hexagon axiom from
the braided monoidal structure instead. The R matrix is described, using splitting diagrams:

[RST
a ]aa

=

S T U

W

a

ST U

W

a

We already have the F -matrix thus, the hexagon needs to be solved only for the R-matrix. Recasted
with splitting diagrams, the hexagon axiom from the braided structure becomes:

S T U

W

a

F
F

R

F

R

S T U

W

b

ST U

W

ST U

W

c

ST U

W

b

R

ST U

W

c

a

Writing it as a matrix equation yields

RSU
c (F TSU

W )caR
ST
a =

∑

b

(F TUS
W )bcR

Sb
W (FSTU

W )ba.

For a triple of anyons with charge τ , explicit calculations of the R-matrix yields:





−e−2iπ/5 0 0
0 e−4iπ/5 0
0 0 −e−2iπ/5





4
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where φ is the “golden ratio”.

This is why we call them Fibonacci anyons:
they were invented by Lee and Yang.
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4

We need to find an R-matrix explicitly to do calculations.
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anyons. To exchange the two rightmost anyons we use:
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Such a diagonal form is not surprising: whether the global charge of a couple is 1 (resp. τ), it must
remain so even if we exchange the two components of the pair.

The R-matrix provided in the previous section give us a way to exchange the two leftmost anyons
in a set of three. We now need a way to find the matrix that exchanges the two rightmost anyons,
this will be the B-matrix and defined as:

B := F−1RF

Now, we have described a way to initialise a qubit as the two-dimensional subspace of the topological
space of a triple of anyons and we have both the R- and B-matrices as unitaries acting on such a
subspace. The goal now is to show that this is enough to describe a universal set of gates.

The basic idea to simulate quantum computation with anyons is given by the following steps:

1. Consider a compound system of anyons. We initialise a state in the splitting space by fixing
the charges of subsets of anyons according to the way they will fuse. This determines the
basis state in which the computation starts.

2. We braid the anyons together, it will induce a unitary action on the chosen splitting space.

3. Finally, we let the anyons fuse together and the way they fuse determines which state is
measured and this constitutes the output of our computation.

In fact, we are lucky. The set of R- and B-matrices and their inverses (the representation of the
inverse braiding) is dense in SU(2) thus satisfies the condition of Sovolay-Kitaev theorem. Thus,
to get an approximate universal set of gates, it just remains to construct a controlled-NOT gate.
We will do so by following the works of Bonesteel et al.

The idea is relatively simple: We start with two triplets of anyons. We need to intertwine a pair of
quasi-particles from the first triplet – the control pair – with the target triplet without disturbing

it ; as the braid operators are dense in SU(2), we will arrange such an intertwining so that its
representation in SU(2) is close enough to the identity. The next thing is to implement a NOT –
actually a i ·NOT – by braiding our two anyons of the control pair with those of the target triple.
Finally, we extract the control pair from the second triplet – again – without disturbing it.

The key point is the following: a braiding involving the trivial charge 1 with an anyon of arbitrary
charge does not change anything. Thus, when measuring the control pair, the i ·NOT will occur if
and only if the two anyons from the control pair fuse as an anyon of charge τ ; otherwise the control
pair only induces a trivial change on the system.

Consider the following braiding:

5
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The B-matrix

The R-matrix provided in the previous section give us a way to exchange the
two leftmost anyons in a set of three. We now need a way to find the matrix
that exchanges the two rightmost anyons, this will be the B-matrix and is
calculated from the R- and as

Hom(W, (S ⊗ T ) ⊗ U)
B !!

Hom(1W ,αS,T ;U )

""

Hom(W, (S ⊗ U) ⊗ T )

Hom(W,S ⊗ (T ⊗ U))
Hom(1W ,1S⊗σT,U )

!! Hom(W,S ⊗ (U ⊗ T ))

Hom(1W ,α−1
S,U;T )

##

As we found both the F and the R matrix in Fib, we can compute the B-
matrix as

B := F−1RF =





−e−2iπ/5 0 0

0 −φ−1e−iπ/5 −i
√

φ−1e−iπ/10

0 −i
√

φ−1e−iπ/10 −φ−1





6 Universal quantum computation with

Fibonacci anyons

The basic idea to simulate quantum computation with anyons is given by the
following steps:

1. Consider a compound system of anyons. We initialise a state in the split-
ting space by fixing the charges the subsets of anyons according to the way
they will fuse. This determines the basis state in which the computation
starts.

2. We braid the anyons together, it will induce a unitary action on the chosen
splitting space.

3. Finally, we let the anyon fuse together and the way they fuse determines
which state is measured and this constitutes the output of our computa-
tion.

Simulating qubits

First, the topological space for such a triple is a pair 〈C, C2〉 where the
2-dimensional space is spanned by the fusion states

|0〉 := |(τ ⊗ τ) ⊗ τ ; τ, 1〉 and |1〉 := |(τ ⊗ τ) ⊗ τ ; τ, 2〉,

and the space of dimension one is spanned by:

|NC〉 := |(τ ⊗ τ) ⊗ τ ;1, 1〉. 51Friday, June 11, 2010
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3. Finally, we let the anyon fuse together and the way they fuse determines
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2-dimensional space is spanned by the fusion states

|0〉 := |(τ ⊗ τ) ⊗ τ ; τ, 1〉 and |1〉 := |(τ ⊗ τ) ⊗ τ ; τ, 2〉,
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|NC〉 := |(τ ⊗ τ) ⊗ τ ;1, 1〉.

In fact it is possible to show that the Fibonacci anyons are universal for quantum
computation.
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As an action on the splitting space of the three anyons involved, this is, in the same order as
depicted in the picture:
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This tells us how the given braid inserts an anyon into a given triplet without disturbing it.

In fact, this stresses the distinction between the dynamics of the anyons and the consequences on
the splitting space. Indeed, even if we disturbed the initial configuration of anyons via multiple
braidings, the effect on the splitting space is approximately the identity.

Now, we implement an i ·NOT as the following braid:

The unitary acting on the splitting space of the initial triple is given by:

R
−2

B
−4

R
4
B

−2
R

2
B

2
R

−2
B

4
R

−2
B

4
R

2
B

−4
R

2
B

−2
R

2
B

−2
R

−2
∼

0

@

0 i 0
i 0 0
0 0 1

1

A

This combination of braids tells us how to implements a i · NOT gate on the two dimensional
fusion space of our triple of anyons. Again, this gate is approximated.

Finally, the i · CNOT gate acting on two topological qubits is realised as follows:

insert NOT
extract

Note that instead of inserting 1 anyon, we insert a couple that will be used as a test couple.

We claim that this implements a CNOT. Indeed, the test couple can fuse in two ways. If it fuse
as 1, then nothing happens as 1 is the trivial charge. If it fuse as τ , then we effectively apply the
i ·NOT gate.

Thus, this indeed implements a controlled-NOT which, together with our four braiding operations
define an approximate universal set of transformations.

In conclusion, using a set of anyons we can:

• Simulate a qubit,

• Approximate any unitary tranformation on a set of qubits and

• Measure the system using fusion,

from which we can simulate quantum computation with anyons.
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the splitting space. Indeed, even if we disturbed the initial configuration of anyons via multiple
braidings, the effect on the splitting space is approximately the identity.

Now, we implement an i ·NOT as the following braid:

The unitary acting on the splitting space of the initial triple is given by:
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This combination of braids tells us how to implements a i · NOT gate on the two dimensional
fusion space of our triple of anyons. Again, this gate is approximated.

Finally, the i · CNOT gate acting on two topological qubits is realised as follows:

insert NOT
extract

Note that instead of inserting 1 anyon, we insert a couple that will be used as a test couple.

We claim that this implements a CNOT. Indeed, the test couple can fuse in two ways. If it fuse
as 1, then nothing happens as 1 is the trivial charge. If it fuse as τ , then we effectively apply the
i ·NOT gate.

Thus, this indeed implements a controlled-NOT which, together with our four braiding operations
define an approximate universal set of transformations.

In conclusion, using a set of anyons we can:

• Simulate a qubit,

• Approximate any unitary tranformation on a set of qubits and

• Measure the system using fusion,

from which we can simulate quantum computation with anyons.
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Note that instead of inserting 1 anyon, we insert a couple that will be used as a test couple.

We claim that this implements a CNOT. Indeed, the test couple can fuse in two ways. If it fuses
as 1, then nothing happens as 1 is the trivial charge. If it fuses as τ , then we effectively apply the
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Who needs categories?
Surely some algebra and representation theory
of the braid group is enough? We can look at
the action of the braid group on some space
and it tells us everything we need to know.

No! We create and destroy and fuse anyons. It is
not enough to look at one representation.

We need to understand the category of representations.
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What was all the category theory for?

It tells you the algebraic structure that one needs
to formulate an anyon model.

It is a nice framework, but one still needs other
mathematics in order to find concrete examples.

So, where can one find MTCs?

Representations of quantum groups!

Question: What fusion rules will give one universal
quantum computation?

59Friday, June 11, 2010



The Yang-Baxter Equation

Given a vector space V and c ∈ End(V ⊗ V ):

(c⊗ idV )(idV ⊗ c)(c⊗ idV ) = (idv ⊗ c)(c⊗ idV )(idV ⊗ c)

is called the Yang-Baxter equation.
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The Yang-Baxter Equation

Given a vector space V and c ∈ End(V ⊗ V ):

(c⊗ idV )(idV ⊗ c)(c⊗ idV ) = (idv ⊗ c)(c⊗ idV )(idV ⊗ c)

is called the Yang-Baxter equation.

Not easy to solve this equation but in fact many
solutions are known.

Many solutions are found by finding
braidings in monoidal categories.

Categories of representations of quasi-triangular Hopf algebras.
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Some Solutions of the YBE

A boring solution, “twist”: τ : V ⊗ V → V ⊗ V .



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









q 0 0 0
0 q 0 0
0 0 0 1
0 0 1 (q − q−1)





A deformed twist:
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From Solutions of the Yang-Baxter Equation
to Braid Group Representations

The YBE is exactly one of the defining relations of the braid group.
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From Solutions of the Yang-Baxter Equation
to Braid Group Representations

The YBE is exactly one of the defining relations of the braid group.

Given c solving the YBE we define a representation of Bn on V n⊗:

ci = idV ⊗ . . . (i− 1) . . . idV ⊗ c⊗ idV ⊗ . . . (n− i− 1) . . .⊗ idV .

The representation ρ : Bn → End(V n⊗) is given by ρ(σi) = ci.

From such representations we get knot invariants by taking traces.
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What is to be done?
What does it take to have universal quantum computation?
We know that something as simple as the Fibonacci anyon
gives UCC.

The knot invariants defined by the MTC describing the
Fibonacci anyon cannot be that easy to compute.
What are they?

What is the topological “signal” or algebraic structure
needed to guarantee that one has UCC?
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