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Introduction

Quantum programming languages

Quantum Turing machines: very messy!

Circuits: low level, OK for algorithm design. Very flexible.
Quantum λ-calculus: hard to give semantics.
Measurement calculus: low-level, close to implementation.
Selinger’s Quantum Programming Language: Quantum data and
classical control.
There are more.
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Introduction

Example

Simple program
input b:bit;
input p, q:qbit;
b := measure p;
if b then q := N(q) else p := N(p);
output p, q

N is the NOT operation on a qubit.
bit and qbit separate datatypes.
The conditional is based on a classical boolean.
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Introduction

What about quantum alternation?

Simple program
input p, q:qbit;
q =

∣∣0〉;
q := H(q);
if q then skip else p := N(p);
output p, q

Here H is the one-qubit Hadamard gate.
q is in the state 1√

2
[
∣∣0〉+

∣∣1〉] just before the conditional.

The if is producing a controlled not.
Does this make sense?
Quantum alternation is problematic in general.
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Basic background

Cones and positive elements

A cone C in a vector space V is a subset of V such that

1 if x, y ∈ C then x + y in C,
2 if x ∈ C and r ∈ R+ then r · x ∈ C and
3 if x ∈ C and −x ∈ C then x = 0.

Given a cone we can define a notion of positive element by saying
x is positive if x ∈ C.
We induce a partial order ≤C by x ≤C y if y− x ∈ C.
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Basic background

Positive operators

Let H be a Hilbert space. An operator A : H → H is positive if for
all x ∈ H we have (x,Ax) ≥ 0.

The positive operators are automatically Hermitian and form a
cone.
Density matrices are positive operators with trace ≤ 1.
Thus, we have a natural order structure on density matrices.
We write B(H) for the bounded linear operators on H.
A positive map is a map from B(H) to itself such that it takes
positive operators to positive operators.
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Basic background

Completely positive maps

An operator representing a physical transformation has to be
positive, because it must take density matrices to density matrices.

It should also be trace non-increasing (trace preserving if we want
normalized density matrices).
Is this enough?
It is possible to have a positive map A from B(H)→ B(H), such
that A⊗ IK : B(H⊗K)→ B(H⊗K) is not positive.
This is unphysical.
A positive map such that its tensor product with any identity map
is positive is called completely positive.
Maps describing physical processes (e.g. channels) must be
completely positive maps (cp maps).
A superoperator is a cp map that is also trace non-increasing.
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Superoperators: Kraus, Choi and Stinespring

Notation

We write Mnm for n by m (complex) matrices.

If n = m (square matrices) we write Mn.
We write CP(Mn,Mk) for completely positive maps from Mn to Mk.
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Superoperators: Kraus, Choi and Stinespring

C* algebras

A C∗ algebra abstracts properties of operators.

An algebra is a vector space with a multiplication operation
obeying obvious laws.
An algebra may be equipped with a norm || · || obeying usual
norm axioms. It must satisfy || ab ||≤|| a || · || b ||.
If it is complete in the norm we have a Banach algebra.
A ∗-algebra is an algebra equipped with a unary operation ∗ such
that: (i) a∗∗ = a, (ii) (ab)∗ = b∗a∗ and (iii) (λa)∗ = λa∗, where λ ∈ C.
A C∗-algebra is a ∗-algebra and a Banach algebra satisfying
|| a∗a ||=|| a ||2.
The matrix algebras Mn are all C∗-algebras with the ∗ being †
(adjoint).
The bounded operators on a Hilbert space form a C∗-algebra.
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Superoperators: Kraus, Choi and Stinespring

About C∗-algebras

A homomorphism of C∗-algebras is a linear map ψ : A → D such
that the operations (∗ and product) are preserved.

A positive element is an element of the form a∗a.
There is a unique norm on a C∗-algebra.
One can define completely positive maps between C∗-algebras
just as between spaces of operators or matrices.
Every commutative unital C∗-algebra is isomorphic to the set of
continuous functions on a compact Hausdorff space (Gelfand
duality).
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Superoperators: Kraus, Choi and Stinespring

Representations

C∗-algebras seem like a very abstract concept.

However, abstract C∗-algebras can be represented in a concrete
way as a subalgebra of B(H).
A representation of a C∗-algebra A is a homomorphism
π : A → B(H) for some Hilbert space.
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Superoperators: Kraus, Choi and Stinespring

Three ways to understand CP maps

Let us consider maps on spaces of matrices. Suppose that φ is a CP
map and A is a matrix:

Kraus: φ(A) =
∑

i

K†i AKi where Ki are matrices satisfying∑
i

KiK
†
i ≤ I.

This decomposition is not unique. If φ is Mn → Mk then Ki are all
n× k and there are fewer than n · k of them.
Choi: The action of φ ∈ CP(Mn,Mk) can be given explicitly as a
matrix in Mnk depending on the particular Kraus decomposition.
Stinespring: For any completely positive map θ : A → B(H) there
is a triple (π,V,K) where K is a Hilbert space, π : A → B(K) is a
representation and V : H → K such that

θ(a) = V†π(a)V.
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Superoperators: Kraus, Choi and Stinespring

Stinespring

Any completely positive map can be realized as a “twisted”
homomorphism.

There is even a special minimal such Stinespring representation.
For quantum information theory this tells one that any completely
positive map can be realized as a unitary on an expanded space:
purification.
If θ ∈ CP(Mn,Mk) then the minimal Stinespring representation is in
Mm where m ≤ n2k.
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Superoperators: Kraus, Choi and Stinespring

Stinespring to Kraus

Let H and K be two finite-dimensional Hilbert spaces and
B(H),B(K) the Banach algebras of bounded linear operators.

Let E : B(H)→ B(K) be a superoperator.
By Stinespring, there exists an ancilla A and an operator
V : K → H⊗A such that

E(ρ) = V∗(ρ⊗ IA)V.

Choose a basis {ei}k
i=1for A and define Vi : K → H by

∀ψ ∈ K, Vψ =

k∑
i=1

(Viψ)⊗ ei.

Easy to check E(ρ) =
∑k

i=1 V∗i ρVi.
The Vi give a Kraus representation for E .
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Classical control and quantum data

Löwner order on density matrices

Recall that the positive operators form a cone, hence define a
partial order: the Löwner order.

A v B if B− A is positive.
Recall density matrices are defined to have trace ≤ 1, so the zero
matrix is the smallest element in this order.
In this order, every increasing sequence has a least upper bound
(lub). Such a structure is called a directed-complete partial order
(dcpo).
Note it is not a lattice.
Least upper bounds of increasing sequences co-incide with
topological limits in the euclidean topology.
Any order preserving function on the operators will preserve lubs
of increasing sequences if it is topologically continuous.
A function from a dcpo to another dcpo is called Scott
continuous if it preserves lubs of increasing sequences.
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Classical control and quantum data

Iteration

Loop in the flowchart.

When the loop is unwound one gets “formally” an infinite flowchart.
The meaning of this is given by an infinite sum.
This sum can be proven to converge yielding a density matrix with
trace ≤ 1.
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Classical control and quantum data

Recursion

Part of the program can call itself.

The recursive call may allocate new qubits.
The recursion can be partially unwound.
The successive unwindings are given by F(0),F2(0), . . .

Each unwinding is less than the next in the Löwner order, because
F is monotone.
The meaning is given by a least upper bound of the increasing
sequence.
Because the density matrices form a dcpo we are sure that the
lubs exist.
Recursion can implement iteration but not the other way around.
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Quantum control: ideas

What do we want?

Suppose we have a qubit q and two superoperators
S,T : B(H)→ B(K) then the quantum alternation (qAlt)(q; S,T)
should be a superoperator from B(Q⊗H)→ B(Q⊗K).

We want this to be compositional, so we can then use this new
superoperator in any context without looking inside it.
We want it to only depend on the superoperator and not on how
the superoperator is described, e.g. through a specific Kraus form.
We want the operation to be monotone so we can use this inside
recursions.
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Quantum control: ideas

Can we really do all this?

No!

It is not possible to make it compositional and stick with
superoperators.
Can we define it in a monotone way?
I am almost sure this is impossible.
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Quantum control: ideas

Basic scheme

H Hilbert space with orthonormal basis {ei}n
i=1, K another Hilbert

space.

Let Πi be the projection onto the subspace spanned by ei.
For each i ∈ {1, 2, . . . , k − 1, k} we have a unitary Ui acting on K.
The quantum alternation of the Ui controlled by a state in H is
defined to be the following unitary:

k∑
i=1

ΠiUi : H⊗K → H⊗K.

If H is a qubit then we have (| 0 〉〈 0 | ⊗U0) + (| 1 〉〈 1 | ⊗U1).
Action: (

∑
i ei ⊗ ψi) 7→ (

∑
i ei ⊗ Uiψi).
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Quantum control: ideas

Examples I

Syntax: if q then U0 else U1.

Controlled NOT: if q then skip else q1∗ = N.
Controlled Hadamard: if q then skip else q1∗ = H.
Controlled phase if q then U0 else q1∗ = eiθ.
Toffoli gate uses nested if:
if q0 then skip else if q1 then skip else q2∗ = N.
Very useful for describing algorithms especially if there are only
unitaries.
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Quantum control: ideas

Examples II: Deutsch’s algorithm

Given a function f : {0, 1} → {0, 1} we can determine if f is a
constant function or not, f (0) = f (1) or not using only one
computaiton of f .

Use qubits
∣∣0〉, ∣∣1〉 and build quantum circuit to compute

f (0)⊕ f (1) using one call to f . Measure the output.
Let Ui, i = 1, 2 be unitaries mapping

∣∣0〉 to
∣∣f (i)

〉
.

new qbit x, y
x∗ = H
y∗ = N; H
if x then y∗ = U0 else y∗ = U1
x∗ = H
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Quantum control: ideas

Example III: Quantum Fourier transform

for i = 1 to n do
qi ∗= H

for k = 2 to n− i + 1 do
if qk+i−1 then skip else qi ∗= Rk

Here Rk is the phase shift gate defined by Rk = Π0 + eiθΠ1 with
θ = 2π/2k.

Simple and intuitive, but
can we extend it to quantum operations that are not unitaries?
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Quantum control: semantics

What is a Kraus form?

A superoperator describes the most general physical
transformation of a system.

According to Stinespring, every transformation can be regarded as
a unitary acting on an enlarged space followed by a partial trace.
This extra space is the environment which interacts with the
system.
A superoperator is always represented by a Kraus form, but this is
not unique.
A particular Kraus form comes from a particular choice of basis of
the environment, as we saw.
A basis corresponds to a particular choice of measurement. Thus
the particular Kraus representation is dictated by how the
experimenter chooses to describe the environment.
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Quantum control: semantics

Semantics in terms of Kraus forms

Our position: Do not try to give semantics in terms of
superoperators, give the semantics in terms of the Kraus forms.

Basic idea: we can form quantum alternation of the Kraus
operators just as we did for unitaries; details on the next slide.
Idea (Mingsheng Ying): Define quantum alternation by using all
possible Kraus forms for a superoperator and define the meaning
of quantum alternation to be the set of all possible combinations of
quantum alternations of Kraus forms.
Not compositional, already noted by M. Ying.
Our claim: No compositional semantics in terms of superoperators
is possible.
We give compositional semantics but in terms of specific choices
of Kraus operators, we do not try to give compositional
superoperator semantics.
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Quantum control: semantics

Quantum alternation of unitaries

Given unitary operators U,V on H and a qubit q (space Q) we define

| 0 〉〈 0 | ⊗U+ | 1 〉〈 1 | ⊗V =

(
U 0
0 V

)
as the quantum alternation of U and V.
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Quantum control: semantics

Alternation of Kraus forms

Given superoperators E ,F with Kraus forms

Eρ =
m∑

i=1

E∗i ρEi and Fρ =
n∑

j=1

F∗j ρFj,

we define a family of operators Ki,j by

Ki,j =| 0 〉〈 0 | ⊗(
1√
n

Ei)+ | 1 〉〈 1 | ⊗(
1√
m

)Fj) =

(
1√
n Ei 0
0 1√

m Fj

)
.

This defines a superoperator

S(ρ) =
∑

i,j

K∗i,jρKi,j.
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Quantum control: semantics

What Stinespring says

If one looks at the Stinespring dilation corresponding to the above
construction we see that the ancilla spaces (environments) of the two
Kraus forms are tensored together.
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Quantum control: semantics

Kraus semantics

We think of a superoperator as being given by a specific Kraus
form.

We write the composition of Kraus forms as S • T where S and T
are specific Kraus forms for the superoperators.
We interpret commands in the quantum programming language
as specific Kraus forms. So we can think of a superoperator as a
set of Kraus operators.
The meaning of a construct will be given by a set of Kraus
operators.
Sequential composition

JP; QK = JQK ◦ JPK = {Ei ◦ Fj | Ei ∈ JPK,Fj ∈ JQK}.

Applying a unitary
Jq∗ = UK = {U}.
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Quantum control: semantics

More semantics

Measure q, this has type τ → τ ⊕ τ

Jmeasure qK = {in0 ◦Π0, in1 ◦Π1}.

Quantum alternation Jif q then P else QK =

JPK • JQK.

We do not give semantics for loops and conditionals.
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Quantum control: semantics

Quantum alternation cannot be compositional

More precisely: If the semantics is based on superoperators it
cannot be compositional.

consider P ≡ eiθI and I, as superoperators these are identical.
But if q then I else P is definitely not the same as if q then I else I;
the latter is clearly the same as I and the first is the
controlled-phase gate.
This example arose from discussions with Mingsheng Ying and
Yuan Feng at UTS Sydney based on an example due to Nengkun
Yu.
One can think of quantum alternation as an algorithmic notation, it
is not clear what it means physically.
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Quantum control: semantics

Non-monotonicity

Theorem
Quantum control even with just unitary operators, is not monotone with
respect to the Löwner order.

Let U,V be one-qubit unitaries and λ, µ ∈ [0, 1].
Let S(ρ) = UρU†, T(ρ) = VρV† be associated superoperators.
We have λ2S ≤ S and µ2T ≤ T in the Löwner order.
Define R(σ) = WσW† where

W =

(
U 0
0 V

)
Define Define R′(σ) = W ′σW ′† where

W =

(
λU 0
0 µV

)
By explicit calculation we can show that R′ 6≤ R.
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Quantum control: semantics

Canonical Kraus form?

Is there any way to choose a canonical Kraus form?

Yes, mathematically there is, but does it mean anything physically?
There is an operator-algebra version of the Radon-Nikodym
theorem due to Belavkin and Arveson (BARN).
One can show that every CP map is uniformly dominated by the
tracial map from Mn to Mk: trmap(C) = 1

n tr(C)Ik.
The BARN then gives a Kraus decomposition.
One can give a denotational semantics based on these
“canonical” Kraus forms but there is little reason to think that this
has physical significance.
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Quantum control: semantics

Grattage-Altenkirch 2005

Defined a language and type system for quantum alternation.

They used a notion of “orthogonality” and only allow orthogonal
terms to be put in quantum alternation.
However, they did not give complete rules. For example, one
cannot nest quantum conditionals.
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Quantum control: semantics

Ying-Yu-Feng 2014

Inspired by quantum random walks.

Defined a superoperator semantics and noted lack of
compositionality.
Implicit in their superoparator semantics is our Kraus semantics.
Perhaps one should view the superoparator semantics as an
abstract interpretation of the Kraus semantics.
Did not note non-monotonicity but had a different approach to
recursion based on Fock space [Ying 2015].
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Conclusions

Summary

Quantum alternation is troublesome: non-compositional and
non-monotone.

Is it a sensible thing to even consider? It came from programming
languages without thinking about physics.
One should look at real physical situations, e.g. Mach-Zehnder
interferometers and extract a notion of quantum alternation.
Hines-Scott develop a notion of conditional iteration along these
lines.
Perhaps quantum alternation and recursion is not allowed in
nature!
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Conclusions

Thank you!
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