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@ Proof nets as an algebra under cut (LRA)
@ Feynman diagrams
@ The phi-calculus

@ Does it mean anything?

Monday, May 11, 2009 2



Linear Logic

Resource-sensitive logic

with a constructive reading and marvelous symmetries.
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Exponentials
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Renewable resources modelled as modalities.

Why are they called exponentials?
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Proot Nets
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More Prootft Nets
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Proof Rule|Operation|Constraint Sort
Axiom I . {x,y}
Cut P-.Q FN(P) NFN(Q) = {z} FN(P)UFN(Q) \ {x}
Unit U, {x}
Perp 1y (P) x & FN(P) FN(P) U {x}
x € FN(P),y € FN(Q)
Times RTY(P,Q) |FN(P)N FN(Q) =0 FN(P)UFN(Q) \ {z,y} U{z}
z & FN( ) U FN( )
x,y € FN(P)
Par w2V (P) T #y FN(P) \ {z,y} U{z}
z & FN(P)
Plus Left L% (P) x € FN(P), z € FN(P) FN(P)\ {z} U{z}
Plus Right |RZ(P) x € FN(P), z € FN(P) FN(P)\ {z} u{z}
, oy r € FN(P),y € FN(Q) N i
With 1T e )\ {2} = @)\ gy [N N W U
Dereliction |D3(P) x € FN(P), z & FN(P) FN(P)\ {x} U{z}
Weakening (W, (P) z & FN(P) FN(P)U{z}
x,y € FN(P)

Contraction [C7Y(P) T £y FN(P)\ {z,y} U{z}
z & FN(P)

Of course '2(P) x € FN(P), z ¢ FN(P) FN(P)\ {x} U{z}
Vu € FN(P)\ {z}.u
is introduced by
dereliction, weakening
or contraction.
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. PrI"z:A QFI" z:A"
Identlty GI‘OU-p Ix,y = AJ_, Y : A PxQ - ]—1/’ 1—1//
Multiplicative

' PHTI
Units U, Fz:1 T.Fz LT
/ . 1" . / ) ]
MultiplicativesPFF’I'A QFIy:B|_ PFITx:Ay:B

QALY P, QI T" 2: AR B

STV(PYF 17, 2: A9B

P-Iz: A
LZ(PYFT z: A®B
Additives LR Prlne:A QFIy:B
R*(P)F I,z : A®B
PrHTI'x: A
DE(P)FI,z:7A
E tial PHTI P x: A
FPORENEAT | W.(P)F T2 74 [Z(P)F 7,2: 1A

PHI'z:7A,y:7A
C;Y(P)F1T,z:7A
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Reduction Rules
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Cz 7 (P)-. ! (Q) —Cg = (P iE( )
where FN(Q) )\{x}—az

(R9) 1Z(P)-u!%(Q)— 1 Z(P-, 1 2(Q)), if u € FN(P).

z u * u u

These reductions can be applied in any context.

P—Q
ClP|=CQ]

and are performed modulo structural congruence.

P=P P—Q Q=@
P—Q)

Q" /x])),
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Feynman’s Brilliant Intuition

Think in terms of particles and their trajectories.

Particles coast freely until they interact. For a given type of
theory the interaction is always the same.

Coasting particles are represented by straight lines;
interactions by vertices.

The pictures define integrals that express the
probability (amplitude) for the process shown.
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A Typical Feynman Diagram

Two particles enter at x and y they interact at z and
scatter to v and wv.

In this diagram every vertex has degree 4.
This is a first-order diagram (one vertex) of A¢?* theory.
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A More Complex Feynman Diagram

In this diagram every vertex has degree 4.
This is a fourth-order diagram (four vertices) of \¢* theory.

The nature of the theory determines the type and degree of the vertices.
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Feynman Propagators

The pictures are just mnemonics for certain integrals that arise in QFT.

The lines are functions that
describe how particles are propagated.

The vertices represent integrals.

I will not describe how these are calculated here.
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Sum Over Paths

G(x,y) is obtained by summing over all paths from z to .

G(z,y) = [ G(z,2)G(z,y)dz
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Functional Integrals

In QFT one uses an integration over all field configurations.

This is not well defined and is used as a formal device.

I will use formal integrals, but

they will be analogues of ordinary integrals.
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Variational Derivatives

These are derivatives of functionals with respect to functions.

They are perfectly well defined and have been used
since the 17th century in the calculus of variations.

I will use formal analogues of them.
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The ¢-calculus

Locations: which play the same role as the locations in the located sequents
of LRA.

Definition 1. We assume that there are countably many distinct symbols,
called locations for each basic type. We assume that there are the following
operations on locations: if x and y are locations of types A and B respectively,

then (x,y) and [x,y] are locations of type A ® B and Ao B respectively. We
use the usual sequent notation x : A,y : BF (z,y): A® B and « - Ayy: BF
[z, y] : A8 B to express this.

Basic terms: which, for the multiplicative fragment, play the role of LRA
terms.

Operators: Which act on basic terms and which play the role of terms in the

full LRA.
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Fxpressions

Definition 2. The collection of expressions is given by the following induc-
tive definition. We also define, at the same time, the notion of the sort of an

expression, which is the set of free locations, and their types, that appear in
the expression.

1. Any real number r is an expression of sort ().

2. Given any two distinct locations, x : A andy : A+ §(x,y) is an expression

of sort {x: A,y: At}

3. Gwen any two expressions P and (), PQ) and P + () are expressions of
sort S(P) U S(Q).

4. Given any expression P and any location x : A in P, the expression f Pdx
is an expression of sort S(P) \ {x : A}.

Monday, May 11, 2009
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Fquations

1. 6(x,y) = o(y, )

Associativity and commutativity for + and -.

11. [ P(...,z,..)0(z,y)de = P(...,y/x,...)

12. 6(|x,yl|, (u,v)) = 6(x,u)d(y,v).
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Interpreting LRA in ¢

Proof Rule |LRA Term| |®-Calculus
Axiom [Lzy] =|0(z,y)
Cut P-. @ |=|/ [PlQld
Tensor 77 (P, Q=| [ [PIIQI3 (= («, y))dady
Par o2 (P)] =) [P16(2, [z, y])dxdy
| | | |
T u v Y
CuT
Ix,u'u,vIv,y — /(5(x,u)5(u,v)5(v,y)dudv

Using rule 11 we get d(z,y) which is I, ,.
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r: At u: Bt v:B y:A p: At r: Bt s:B q¢g:A

2 AR B w: AbgBT t:A®Q B

CUT

| 1 dalz, y)dp(u,v)d(z, (y, v))dvdy]
[/ 6a(p,@)dB(r, 5)d(t, (g, s))d(w, [p, r])dpdqdrds]
O(w, z)dwdz.

Simplifies to /5A(x, q)0p(u,s)o(t,{q,s))dqds
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Exponentials

Intuition: model the box by the exponential power series!

Model dereliction by a derivative probing an exponential.

Key analogies: %eaﬂx:o = a

exp(a%)ebx\xzo = exp(a%ebx)\mzo

This is “nesting of boxes”!
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Operators

1. If M 1is any expression M is an operator of the same sort as M.

2. If v A is a location then b (z)=0 s an operator of sort x ZA.
3. If x ZA is a location then ﬁ;(x) 1s an operator of sort x ZA.

4. If P and @) are operators then so are P +(Q) and P o () their sort is the
union of the individual sorts.

5. If P is an operator then so is | Pdx; its sort is S(P) \ {z}.

1. If ¢ and y are distinct locations then %(x)a(y) = 0.
2. If a(x) does not occur in the expression M then %@)M = 0.

5 ) 5
da(x) M N da(x) M da(x) N
) ) )
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Exponential Series

S0 M /E!

Lemma 4.2 If the expression M contains no occurrence of a(x) then:

5 ) .

2. (([la)=o) © 52=7) exp(Ma(z)) = M;

8. (([Na@)=0) © 5a5x) ©...M...0 M(zx))exp(Moz(x)) = M".
O...

)

n...053m is often written %.

(
The combination %(x)
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Lemma 4.3 Suppose that M is an expression, the following equations hold.
1. %(x) exp(Ma(x)) = M - exp(Ma(x)).

2. ([exp(M)]]a(z)=0) = exp(([M]|a(z)=0))-
3. exp(0) = 1.
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Symmetrization

In fact the above definition of exponentials overlooks a subtlety which makes
a difference as soon as we exponentiate operators. The factors of the form
1/(n!) are not just numerical factors, they indicate symmetrization. This is
the key ingredient needed to model contraction in linear logic. We introduce
a new syntactic primitive for symmetrization and give its rules.

NG C I TRy I
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equals

Monday, May 11, 2009

29



1. fA(k)<:E17 . 7xk;x)M(‘/E7yla' . '7yl) dr =
k i i [
STy M/, vy, -y /ol Tl—y AWy, oyl g) dyt - dyy

2. fA(k)(xlw"7xk;x)A(m+1)(m7xk+17°"7xk—|—m;y) dx
— A(k—i_m)(xla'"7xk7x/€+17°"7$k-|—m;y)°

3. fA(k)(ul,...,uk;x)A(k)(ul,...,uk;y) duy ...dur = 0(z,y).

Connecting the principal ports

/A(k)(xl,...,xk;x)A(k)(yl,...,yk;x)dx

— Zaéperm{l ----- k}é(xl’ ya(l)) " 5(Xk’ ya(end))
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exp(Q) =14+ Q(x1,...,Tm)+
(1/2) /Q Ty T ) QY @ ) ATy, @15 1) - ATy, Ty T
da?’l...da:’ dxy ...dz!
+ (1/(kD) /Q <k>)...Q(x§k>,...,xg§>)
Af el i) AR e )

da?(l)...d:c%)...d:cgk)...daiglrf)+...

We prove all the analogues of the exponential identities

for these formal power series and our formal derivatives.

Monday, May 11, 2009

31



Interpreting Exponentials

Dereliction  [ID2(P)] [P/l (a0 © 22mn
Weakening [W.(P)] [P] o W(z)([-]la(z)=0) 5045(2)
Contraction  |[C7Y] =| [ [P]A(=, y; z)dzdy
Exponentiation|[ !} (P)] exp([Ply/z|]aa(y))

The exponential identities immediately show that the LRA equations hold.
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CcuT
[ 865 (Ulaw=0) s expla(3(a,v) ([lagey=0) 53510(s: w)dyda

Now the last integral can be done with the convolution property of § and we
get

52, 0) ([l aw)=0) 52357

which is what we expect from the cut-free proof.
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What does it all mean?

Combinatorial coincidence?

I think there are interesting suggestive analogies that are
more than coincidence.

The combinatorics of exponentials in linear logic are based on
the same intuitions as the use of exponential power series.

There are too many artificial syntactic devices for my taste.
It was a big mistake to be so obsessed with linear logic!

The real question:
what is the “logic” of Feynman diagrams as they are?
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