
Proof Nets as Formal
Feynman Diagrams

Prakash Panangaden
joint work with

Richard F. Blute

1Monday, May 11, 2009

Proof nets as an algebra under cut (LRA)

Feynman diagrams

The phi-calculus

Does it mean anything?

Outline

2Monday, May 11, 2009

Linear Logic
Resource-sensitive logic

with a constructive reading and marvelous symmetries.

Linear Logic Pages. July 3, 1999.

Sequents and rules

Sequents are of the form ! Γ where Γ is a (possibly empty) sequence of formulas A1, . . . , An. In practise,
the sequent ! Γ is identified with the sequence Γ, and a sequent consisting of a single formula is identified
with this formula. Γ⊥ stands for A⊥

1 , . . . , A⊥
n

(respectively !Γ for !A1, . . . , !An and ?Γ for ?A1, . . . , ?An),
and if ∆ is another sequence of formulas, Γ ! ∆ stands for ! Γ⊥, ∆.

A sequent is provable if it can be derived using the following rules:

! Γ, A, B,∆
x

! Γ, B, A,∆
id

! A, A⊥

! A,Γ ! A⊥, ∆
cut

! Γ, ∆

! A,Γ ! B, ∆
⊗

! A ⊗ B, Γ, ∆

! A, B,Γ

! A B, Γ
1

! 1

! Γ
⊥

! ⊥, Γ

! A,Γ ! B, Γ
&

! A & B, Γ

! A,Γ
⊕1

! A ⊕ B, Γ

! B, Γ
⊕2

! A ⊕ B, Γ
%

! %, Γ

! A, ?Γ
!

! !A, ?Γ

! A,Γ
?d

! ?A,Γ

! ?A, ?A,Γ
?c

! ?A,Γ

! Γ
?w

! ?A,Γ

! A,Γ
∀

! ∀ξ.A,Γ

! A[τ/ξ], Γ
∃

! ∃ξ.A,Γ

Note that exchange is the only structural rule. The rules for exponentials are respectively called promo-
tion, dereliction, contraction, and weakening. In the ∀-rule, ξ must have no free occurrence in Γ, but it is
well understood that a bound variable can always be renamed. In the ∃-rule, τ is a first order term (if ξ
is a first order variable) or a formula (if ξ is a second order variable).

By exchange, any permutation of Γ can be derived from Γ, so that in practise, sequents are considered
as finite multisets, and exchange is implicit. Similarly, the following rules are derivable:

! Γ, ∆
?D

! ?Γ, ∆

! ?Γ, ?Γ, ∆
?C

! ?Γ, ∆

! ∆
?W

! ?Γ, ∆

Linear Logic Pages. July 3, 1999.

Sequents and rules

Sequents are of the form ! Γ where Γ is a (possibly empty) sequence of formulas A1, . . . , An. In practise,
the sequent ! Γ is identified with the sequence Γ, and a sequent consisting of a single formula is identified
with this formula. Γ⊥ stands for A⊥

1 , . . . , A⊥
n

(respectively !Γ for !A1, . . . , !An and ?Γ for ?A1, . . . , ?An),
and if ∆ is another sequence of formulas, Γ ! ∆ stands for ! Γ⊥, ∆.

A sequent is provable if it can be derived using the following rules:

! Γ, A, B,∆
x

! Γ, B, A,∆
id

! A, A⊥

! A,Γ ! A⊥, ∆
cut

! Γ, ∆

! A,Γ ! B, ∆
⊗

! A ⊗ B, Γ, ∆

! A, B,Γ

! A B, Γ
1

! 1

! Γ
⊥

! ⊥, Γ

! A,Γ ! B, Γ
&

! A & B, Γ

! A,Γ
⊕1

! A ⊕ B, Γ

! B, Γ
⊕2

! A ⊕ B, Γ
%

! %, Γ

! A, ?Γ
!

! !A, ?Γ

! A,Γ
?d

! ?A,Γ

! ?A, ?A,Γ
?c

! ?A,Γ

! Γ
?w

! ?A,Γ

! A,Γ
∀

! ∀ξ.A,Γ

! A[τ/ξ], Γ
∃

! ∃ξ.A,Γ

Note that exchange is the only structural rule. The rules for exponentials are respectively called promo-
tion, dereliction, contraction, and weakening. In the ∀-rule, ξ must have no free occurrence in Γ, but it is
well understood that a bound variable can always be renamed. In the ∃-rule, τ is a first order term (if ξ
is a first order variable) or a formula (if ξ is a second order variable).

By exchange, any permutation of Γ can be derived from Γ, so that in practise, sequents are considered
as finite multisets, and exchange is implicit. Similarly, the following rules are derivable:

! Γ, ∆
?D

! ?Γ, ∆

! ?Γ, ?Γ, ∆
?C

! ?Γ, ∆

! ∆
?W

! ?Γ, ∆

Linear Logic Pages. July 3, 1999.

Sequents and rules

Sequents are of the form ! Γ where Γ is a (possibly empty) sequence of formulas A1, . . . , An. In practise,
the sequent ! Γ is identified with the sequence Γ, and a sequent consisting of a single formula is identified
with this formula. Γ⊥ stands for A⊥

1 , . . . , A⊥
n

(respectively !Γ for !A1, . . . , !An and ?Γ for ?A1, . . . , ?An),
and if ∆ is another sequence of formulas, Γ ! ∆ stands for ! Γ⊥, ∆.

A sequent is provable if it can be derived using the following rules:

! Γ, A, B,∆
x

! Γ, B, A,∆
id

! A, A⊥

! A,Γ ! A⊥, ∆
cut

! Γ, ∆

! A,Γ ! B, ∆
⊗

! A ⊗ B, Γ, ∆

! A, B,Γ

! A B, Γ
1

! 1

! Γ
⊥

! ⊥, Γ

! A,Γ ! B, Γ
&

! A & B, Γ

! A,Γ
⊕1

! A ⊕ B, Γ

! B, Γ
⊕2

! A ⊕ B, Γ
%

! %, Γ

! A, ?Γ
!

! !A, ?Γ

! A,Γ
?d

! ?A,Γ

! ?A, ?A,Γ
?c

! ?A,Γ

! Γ
?w

! ?A,Γ

! A,Γ
∀

! ∀ξ.A,Γ

! A[τ/ξ], Γ
∃

! ∃ξ.A,Γ

Note that exchange is the only structural rule. The rules for exponentials are respectively called promo-
tion, dereliction, contraction, and weakening. In the ∀-rule, ξ must have no free occurrence in Γ, but it is
well understood that a bound variable can always be renamed. In the ∃-rule, τ is a first order term (if ξ
is a first order variable) or a formula (if ξ is a second order variable).

By exchange, any permutation of Γ can be derived from Γ, so that in practise, sequents are considered
as finite multisets, and exchange is implicit. Similarly, the following rules are derivable:

! Γ, ∆
?D

! ?Γ, ∆

! ?Γ, ?Γ, ∆
?C

! ?Γ, ∆

! ∆
?W

! ?Γ, ∆

A, B,Γ
A!B, Γ

(!)

1

Linear Logic Pages. July 3, 1999.

Sequents and rules

Sequents are of the form ! Γ where Γ is a (possibly empty) sequence of formulas A1, . . . , An. In practise,
the sequent ! Γ is identified with the sequence Γ, and a sequent consisting of a single formula is identified
with this formula. Γ⊥ stands for A⊥

1 , . . . , A⊥
n

(respectively !Γ for !A1, . . . , !An and ?Γ for ?A1, . . . , ?An),
and if ∆ is another sequence of formulas, Γ ! ∆ stands for ! Γ⊥, ∆.

A sequent is provable if it can be derived using the following rules:

! Γ, A, B,∆
x

! Γ, B, A,∆
id

! A, A⊥

! A,Γ ! A⊥, ∆
cut

! Γ, ∆

! A,Γ ! B, ∆
⊗

! A ⊗ B, Γ, ∆

! A, B,Γ

! A B, Γ
1

! 1

! Γ
⊥

! ⊥, Γ

! A,Γ ! B, Γ
&

! A & B, Γ

! A,Γ
⊕1

! A ⊕ B, Γ

! B, Γ
⊕2

! A ⊕ B, Γ
%

! %, Γ

! A, ?Γ
!

! !A, ?Γ

! A,Γ
?d

! ?A,Γ

! ?A, ?A,Γ
?c

! ?A,Γ

! Γ
?w

! ?A,Γ

! A,Γ
∀

! ∀ξ.A,Γ

! A[τ/ξ], Γ
∃

! ∃ξ.A,Γ

Note that exchange is the only structural rule. The rules for exponentials are respectively called promo-
tion, dereliction, contraction, and weakening. In the ∀-rule, ξ must have no free occurrence in Γ, but it is
well understood that a bound variable can always be renamed. In the ∃-rule, τ is a first order term (if ξ
is a first order variable) or a formula (if ξ is a second order variable).

By exchange, any permutation of Γ can be derived from Γ, so that in practise, sequents are considered
as finite multisets, and exchange is implicit. Similarly, the following rules are derivable:

! Γ, ∆
?D

! ?Γ, ∆

! ?Γ, ?Γ, ∆
?C

! ?Γ, ∆

! ∆
?W

! ?Γ, ∆

3Monday, May 11, 2009

Exponentials

Linear Logic Pages. July 3, 1999.

Sequents and rules

Sequents are of the form ! Γ where Γ is a (possibly empty) sequence of formulas A1, . . . , An. In practise,
the sequent ! Γ is identified with the sequence Γ, and a sequent consisting of a single formula is identified
with this formula. Γ⊥ stands for A⊥

1 , . . . , A⊥
n

(respectively !Γ for !A1, . . . , !An and ?Γ for ?A1, . . . , ?An),
and if ∆ is another sequence of formulas, Γ ! ∆ stands for ! Γ⊥, ∆.

A sequent is provable if it can be derived using the following rules:

! Γ, A, B,∆
x

! Γ, B, A,∆
id

! A, A⊥

! A,Γ ! A⊥, ∆
cut

! Γ, ∆

! A,Γ ! B, ∆
⊗

! A ⊗ B, Γ, ∆

! A, B,Γ

! A B, Γ
1

! 1

! Γ
⊥

! ⊥, Γ

! A,Γ ! B, Γ
&

! A & B, Γ

! A,Γ
⊕1

! A ⊕ B, Γ

! B, Γ
⊕2

! A ⊕ B, Γ
%

! %, Γ

! A, ?Γ
!

! !A, ?Γ

! A,Γ
?d

! ?A,Γ

! ?A, ?A,Γ
?c

! ?A,Γ

! Γ
?w

! ?A,Γ

! A,Γ
∀

! ∀ξ.A,Γ

! A[τ/ξ], Γ
∃

! ∃ξ.A,Γ

Note that exchange is the only structural rule. The rules for exponentials are respectively called promo-
tion, dereliction, contraction, and weakening. In the ∀-rule, ξ must have no free occurrence in Γ, but it is
well understood that a bound variable can always be renamed. In the ∃-rule, τ is a first order term (if ξ
is a first order variable) or a formula (if ξ is a second order variable).

By exchange, any permutation of Γ can be derived from Γ, so that in practise, sequents are considered
as finite multisets, and exchange is implicit. Similarly, the following rules are derivable:

! Γ, ∆
?D

! ?Γ, ∆

! ?Γ, ?Γ, ∆
?C

! ?Γ, ∆

! ∆
?W

! ?Γ, ∆

Renewable resources modelled as modalities.

Why are they called exponentials?

4Monday, May 11, 2009

Proof Nets

A A⊥

1

Linear Logic Pages. July 3, 1999.

Sequents and rules

Sequents are of the form ! Γ where Γ is a (possibly empty) sequence of formulas A1, . . . , An. In practise,
the sequent ! Γ is identified with the sequence Γ, and a sequent consisting of a single formula is identified
with this formula. Γ⊥ stands for A⊥

1 , . . . , A⊥
n

(respectively !Γ for !A1, . . . , !An and ?Γ for ?A1, . . . , ?An),
and if ∆ is another sequence of formulas, Γ ! ∆ stands for ! Γ⊥, ∆.

A sequent is provable if it can be derived using the following rules:

! Γ, A, B,∆
x

! Γ, B, A,∆
id

! A, A⊥

! A,Γ ! A⊥, ∆
cut

! Γ, ∆

! A,Γ ! B, ∆
⊗

! A ⊗ B, Γ, ∆

! A, B,Γ

! A B, Γ
1

! 1

! Γ
⊥

! ⊥, Γ

! A,Γ ! B, Γ
&

! A & B, Γ

! A,Γ
⊕1

! A ⊕ B, Γ

! B, Γ
⊕2

! A ⊕ B, Γ
%

! %, Γ

! A, ?Γ
!

! !A, ?Γ

! A,Γ
?d

! ?A,Γ

! ?A, ?A,Γ
?c

! ?A,Γ

! Γ
?w

! ?A,Γ

! A,Γ
∀

! ∀ξ.A,Γ

! A[τ/ξ], Γ
∃

! ∃ξ.A,Γ

Note that exchange is the only structural rule. The rules for exponentials are respectively called promo-
tion, dereliction, contraction, and weakening. In the ∀-rule, ξ must have no free occurrence in Γ, but it is
well understood that a bound variable can always be renamed. In the ∃-rule, τ is a first order term (if ξ
is a first order variable) or a formula (if ξ is a second order variable).

By exchange, any permutation of Γ can be derived from Γ, so that in practise, sequents are considered
as finite multisets, and exchange is implicit. Similarly, the following rules are derivable:

! Γ, ∆
?D

! ?Γ, ∆

! ?Γ, ?Γ, ∆
?C

! ?Γ, ∆

! ∆
?W

! ?Γ, ∆

A A⊥

A A⊥

1

Linear Logic Pages. July 3, 1999.

Sequents and rules

Sequents are of the form ! Γ where Γ is a (possibly empty) sequence of formulas A1, . . . , An. In practise,
the sequent ! Γ is identified with the sequence Γ, and a sequent consisting of a single formula is identified
with this formula. Γ⊥ stands for A⊥

1 , . . . , A⊥
n

(respectively !Γ for !A1, . . . , !An and ?Γ for ?A1, . . . , ?An),
and if ∆ is another sequence of formulas, Γ ! ∆ stands for ! Γ⊥, ∆.

A sequent is provable if it can be derived using the following rules:

! Γ, A, B,∆
x

! Γ, B, A,∆
id

! A, A⊥

! A,Γ ! A⊥, ∆
cut

! Γ, ∆

! A,Γ ! B, ∆
⊗

! A ⊗ B, Γ, ∆

! A, B,Γ

! A B, Γ
1

! 1

! Γ
⊥

! ⊥, Γ

! A,Γ ! B, Γ
&

! A & B, Γ

! A,Γ
⊕1

! A ⊕ B, Γ

! B, Γ
⊕2

! A ⊕ B, Γ
%

! %, Γ

! A, ?Γ
!

! !A, ?Γ

! A,Γ
?d

! ?A,Γ

! ?A, ?A,Γ
?c

! ?A,Γ

! Γ
?w

! ?A,Γ

! A,Γ
∀

! ∀ξ.A,Γ

! A[τ/ξ], Γ
∃

! ∃ξ.A,Γ

Note that exchange is the only structural rule. The rules for exponentials are respectively called promo-
tion, dereliction, contraction, and weakening. In the ∀-rule, ξ must have no free occurrence in Γ, but it is
well understood that a bound variable can always be renamed. In the ∃-rule, τ is a first order term (if ξ
is a first order variable) or a formula (if ξ is a second order variable).

By exchange, any permutation of Γ can be derived from Γ, so that in practise, sequents are considered
as finite multisets, and exchange is implicit. Similarly, the following rules are derivable:

! Γ, ∆
?D

! ?Γ, ∆

! ?Γ, ?Γ, ∆
?C

! ?Γ, ∆

! ∆
?W

! ?Γ, ∆

B.3. PROOF NETS 155

which could also come from:

! A, A⊥ ! B, B⊥

⊗
! A⊗B, A⊥, B⊥

=============
! A⊥, B⊥, A⊗B

!
! A⊥ ! B⊥, A⊗B
===============
! A⊗B, A⊥ ! B⊥ ! C, C⊥

⊗
! (A⊗B)⊗ C, A⊥ ! B⊥, C⊥

Essentially, we lose the (inessential) application order of rules.

At this point, precise definitions are needed. A proof structure is just a graph
built from the following components:

• link :

A A⊥

• cut :

A A⊥

• logical rules:

A B

A⊗B

A B

A ! B 1 ⊥

Each formula must be the conclusion of exactly one rule and a premise of at
most one rule. Formulae which are not premises are called conclusions of the proof
structure: these conclusions are not ordered. Links and cuts are symmetrical.

5Monday, May 11, 2009

B.4. CUT ELIMINATION 159

A B

A⊗B

A⊥ B⊥

A⊥ ! B⊥

and similarly for 1 and ⊥. So we can also restrict links to atomic formulae.

Consider now a cut free proof net with fixed conclusions. Since the logical rules
follow faithfully the structure of these conclusions, our proof net is completely
determined by its (atomic) links. So our first example comes to

(A⊗B)⊗ C C⊥ A⊥ ! B⊥

which is just an involutive permutation, sending an (occurrence of) atom to (an
occurrence of) its negation.

The cut itself has a natural interpretation in terms of those permutations.
Instead of eliminating it in

A B

A⊗B C

(A⊗B)⊗ C C⊥ A⊥ ! B⊥ A⊗B B⊥ A⊥

you connect the permutations

(A⊗B)⊗ C C⊥ A⊥ ! B⊥ A⊗B B⊥ A⊥

to obtain the normal form by iteration:

(A⊗B)⊗ C C⊥ B⊥ A⊥

More Proof Nets

50 Richard Blute and Prakash Panangaden

CUT

x : A y : A⊥ u : A v : A⊥

y : ? A⊥ u : ! A v : ? A⊥

Fig. 8. The Simplest Possible Example with Exponentials

∫
δ(x, y)δ(y, v)([.]|α(v)=0)

δ
δα(v)dy.

Now the last integral can be done with the convolution property of G and we
get

δ(x, v)([.]|α(v)=0)
δ

δα(v)

which is what we expect from the cut-free proof.

An Example With Contraction

u:!A

!
!

...

x1 : A y1 : A⊥ u : A v : A

y1 :?A v : ? A

CUT

y2 : A

y2 :?A

x2 : A

x : A ⊗ A

CONTRACT

y : ? A

!

Fig. 9. An Example with Contraction

6Monday, May 11, 2009

Cut Elimination

B.4. CUT ELIMINATION 157

There is a funny correctness criterion (the long trip condition, see [Gir87]) to
characterise proof nets among proof structures. For example, the following proof
structure

A B

A ! BA⊥ B⊥

is not a proof net, and indeed, does not satisfy the long trip condition.
Unfortunately, this criterion works only for the (⊗, !,1) fragment of the logic
(not ⊥).

B.4 Cut elimination

Proofs nets provide a very nice framework for describing cut elimination.

Conversions are purely local:

A A⊥

···
A···

!
···
A···

···
A

···
B

A⊗B

···
A⊥

···
B⊥

A⊥ ! B⊥
!

···
A

···
A⊥

···
B

···
B⊥

1 ⊥ ! (nothing)

Proposition The conversions preserve the property of being a proof net.

To prove this, you show that conversions of proof nets reflect conversions of
sequent proofs, or alternatively, you make use of the long trip condition. "

Proposition Any proof net reduces to a (unique) cut free one.

B.4. CUT ELIMINATION 157

There is a funny correctness criterion (the long trip condition, see [Gir87]) to
characterise proof nets among proof structures. For example, the following proof
structure

A B

A ! BA⊥ B⊥

is not a proof net, and indeed, does not satisfy the long trip condition.
Unfortunately, this criterion works only for the (⊗, !,1) fragment of the logic
(not ⊥).

B.4 Cut elimination

Proofs nets provide a very nice framework for describing cut elimination.

Conversions are purely local:

A A⊥

···
A···

!
···
A···

···
A

···
B

A⊗B

···
A⊥

···
B⊥

A⊥ ! B⊥
!

···
A

···
A⊥

···
B

···
B⊥

1 ⊥ ! (nothing)

Proposition The conversions preserve the property of being a proof net.

To prove this, you show that conversions of proof nets reflect conversions of
sequent proofs, or alternatively, you make use of the long trip condition. "

Proposition Any proof net reduces to a (unique) cut free one.

7Monday, May 11, 2009

158 APPENDIX B. WHAT IS LINEAR LOGIC?

For example, the proof net

A B

A⊗B C

(A⊗B)⊗ C C⊥ A⊥ ! B⊥ A⊗B B⊥ A⊥

reduces (in three steps) to

A B

A⊗B C

(A⊗B)⊗ C C⊥ B⊥ A⊥

To prove the proposition, it is enough to see that ! defines a terminating and
confluent relation, and a normal form is necessarily cut free, unless it contains

A⊥ A

which is impossible in a proof net. Termination is obvious (the size decreases at
each step) and confluence comes from the fact that conversions are purely local,
the only possible conflicts being:

A A⊥ A A⊥ and

···
A⊥ A A⊥

···
A

The reader can easily check the confluence in both cases. "

It is important to notice that cuts are eliminated in arbitrary order: cut
elimination is a parallel process.

A link

A⊗B A⊥ ! B⊥

can always be replaced by

158 APPENDIX B. WHAT IS LINEAR LOGIC?

For example, the proof net

A B

A⊗B C

(A⊗B)⊗ C C⊥ A⊥ ! B⊥ A⊗B B⊥ A⊥

reduces (in three steps) to

A B

A⊗B C

(A⊗B)⊗ C C⊥ B⊥ A⊥

To prove the proposition, it is enough to see that ! defines a terminating and
confluent relation, and a normal form is necessarily cut free, unless it contains

A⊥ A

which is impossible in a proof net. Termination is obvious (the size decreases at
each step) and confluence comes from the fact that conversions are purely local,
the only possible conflicts being:

A A⊥ A A⊥ and

···
A⊥ A A⊥

···
A

The reader can easily check the confluence in both cases. "

It is important to notice that cuts are eliminated in arbitrary order: cut
elimination is a parallel process.

A link

A⊗B A⊥ ! B⊥

can always be replaced by

8Monday, May 11, 2009

Proof Nets as Formal Feynman Diagrams 29

! x1 : A1, . . . , xk : Ak

where the xi are distinct locations, and the Ai are formulas of CLL2. These
sequents are to understood as unordered, i.e. as functions from {x1, . . . , xk}-
the sort of the sequent- to the set of CLL2 formulae.

A syntax of terms (figure 3) is introduced , which will be used as realizers
for sequent proofs in CLL2. The symbols P, Q, R are used to range over these
terms, and write FN(P) for the set of names occurring freely in P - its sort.
With each term-forming operation one gives a linearity constraint on how it
can be applied, and specifies its sort. In the very last case, the so-called “of
course” modality, we have imposed a restriction that if a location is intro-
duced by an “of course” we will require that all the other variables have been
previously introduced by either derelictions, weakenings or contractions. We
are interested in terms that arise from proof nets so we think of our terms as
being typed; this is a major difference between our LRAs and those introduced
by Abramsky and Jagadeesan [AJ94b].

Proof Rule Operation Constraint Sort

Axiom Ix,y {x, y}
Cut P ·xQ FN(P) ∩ FN(Q) = {x} FN(P) ∪ FN(Q) \ {x}
Unit Ux {x}
Perp ⊥x (P) x $∈ FN(P) FN(P) ∪ {x}

Times ⊗x,y
z (P, Q)

x ∈ FN(P), y ∈ FN(Q)
FN(P) ∩ FN(Q) = ∅
z $∈ FN(P) ∪ FN(Q)

FN(P) ∪ FN(Q) \ {x, y} ∪ {z}

Par !
x,y
z (P)

x, y ∈ FN(P)
x $= y
z $∈ FN(P)

FN(P) \ {x, y} ∪ {z}

Plus Left Lx
z (P) x ∈ FN(P), z $∈ FN(P) FN(P) \ {x} ∪ {z}

Plus Right Rx
z (P) x ∈ FN(P), z $∈ FN(P) FN(P) \ {x} ∪ {z}

With &x,y
z (P)

x ∈ FN(P), y ∈ FN(Q)
FN(P) \ {x} = FN(Q) \ {y}

FN(P) \ {x} ∪ {z}

Dereliction Dx
z (P) x ∈ FN(P), z $∈ FN(P) FN(P) \ {x} ∪ {z}

Weakening Wz(P) z $∈ FN(P) FN(P) ∪ {z}

Contraction Cx,y
z (P)

x, y ∈ FN(P)
x $= y
z $∈ FN(P)

FN(P) \ {x, y} ∪ {z}

Of course ! x
z (P) x ∈ FN(P), z $∈ FN(P) FN(P) \ {x} ∪ {z}

∀u ∈ FN(P) \ {x}.u
is introduced by
dereliction, weakening
or contraction.

Fig. 1. Syntax: Linear Realizability Algebra 9Monday, May 11, 2009

30 Richard Blute and Prakash Panangaden

There is an evident notion of renaming P [x/y] and of α-conversion P ≡α

Q.

Terms are assigned to sequent proofs in CLL2 as in Figure 3.

Identity Group
Ix,y ! x : A⊥, y : A

P ! Γ ′, x : A Q ! Γ ′′, x : A⊥

P ·xQ ! Γ ′, Γ ′′

Multiplicative

Units Ux ! x : I
P ! Γ

⊥x! x :⊥, Γ

Multiplicatives P ! Γ ′, x : A Q ! Γ ′′, y : B
⊗x,y

z (P, Q) ! Γ ′, Γ ′′, z : A ⊗ B
P ! Γ ′, x : A, y : B

!
x,y
z (P) ! Γ ′, z : A!B

Additives

P ! Γ, x : A
Lx

z (P) ! Γ, z : A⊕B

P ! Γ, x : B
Rx

z (P) ! Γ, z : A⊕B

P ! Γ, x : A Q ! Γ, y : B
&(P, Q) ! Γ, z : A&B

Exponentials

P ! Γ, x : A
Dx

z (P) ! Γ, z : ?A

P ! Γ
Wz(P) ! Γ, z : ?A

P ! Γ, x : ?A, y : ?A
Cx,y

z (P) ! Γ, z : ?A

P ! ?Γ, x : A
! x

z (P) ! ?Γ, z : ! A

Fig. 2. Realizability semantics

The rewrite rules for terms, corresponding to cut-elimination of sequent
proofs, can now be given. This is factored into two parts, in the style of [BB90]:
a structural congruence ≡ and a reduction relation →.

The structural congruence is the least congruence≡ on terms such that:

(SC1) P ≡x Q⇒P ≡ Q

(SC2) P ·xQ ≡ Q·xP

(SC3) ω(P1, . . . , Pk) ≡ ω(P1, . . . , Pi·xQ, . . . , Pk), if x ∈ FN(Pi).

The reductions are as follows:

10Monday, May 11, 2009

Proof Nets as Formal Feynman Diagrams 31

(R1) P ·xIx,y→P [y/x].

(R3) !x,y
z (P)·z ⊗x,y

z (Q, R)→P ·xQ·yR.

(R4) Lx
z(P)·z&

x,y
z (Q, R)→P ·xQ.

(R5) Rx
z (P)·z&

x,y
z (Q, R)→P ·xR.

(R6) Dx
z (P)·z ! x

z (Q)→P ·xQ.

(R7) Wz(P)·z ! x
z (Q)→Wx(P), where FN(Q) \ {x} = x.

(R8) Cz′,z′′

z (P)·z ! x
z (Q)→Cx

′,x′′

x
(P ·z′ ! x

z′(Q[x′/x])·z′′ ! x
z′′(Q[x′′/x])),

where FN(Q) \ {x} = x.

(R9) ! x
z(P)·u ! v

u(Q)→ ! x
z (P ·u ! v

u(Q)), if u ∈ FN(P).

We are using the same numbering as in [AJ94b] and have left out R2, which
talks about units. We write bold face to stand for sequences of variables.

These reductions can be applied in any context.

P→Q
C[P]→C[Q]

and are performed modulo structural congruence.

P ′ ≡ P P→Q Q′ ≡ Q
P→Q

The basic theorem is that this algebra models cut elimination is classical linear
logic. The precise statement is

Proposition 3.1 (Abramsky) Let Π be a sequent proof of % Γ in CLL2 with
corresponding realizing term P . If P→Q, with Q cut-free (i.e. no occurrences
of ·α), then Π reduces under cut-elimination to a cut-free sequent proof Π ′

with corresponding realizing term Q.

In order to verify that one correctly models the process of cut-elimination in
linear logic it suffices to verify the LRA equations R1 through R9. In fact we
will also check the following equation:

&x,y
z (P, Q)·uR → &x,y

z (P ·uR, Q·uR) [u ∈ FN(P) ∩ FN(Q)]

This is the commutative with-reduction and is not satisfied in the extant
examples of LRA.

4 The φ-calculus

In this section we spell out the rules of our formal calculus. Briefly the ingre-
dients are

Reduction Rules
Proof Nets as Formal Feynman Diagrams 31

(R1) P ·xIx,y→P [y/x].

(R3) !x,y
z (P)·z ⊗x,y

z (Q, R)→P ·xQ·yR.

(R4) Lx
z(P)·z&

x,y
z (Q, R)→P ·xQ.

(R5) Rx
z (P)·z&

x,y
z (Q, R)→P ·xR.

(R6) Dx
z (P)·z ! x

z (Q)→P ·xQ.

(R7) Wz(P)·z ! x
z (Q)→Wx(P), where FN(Q) \ {x} = x.

(R8) Cz′,z′′

z (P)·z ! x
z (Q)→Cx

′,x′′

x
(P ·z′ ! x

z′(Q[x′/x])·z′′ ! x
z′′(Q[x′′/x])),

where FN(Q) \ {x} = x.

(R9) ! x
z(P)·u ! v

u(Q)→ ! x
z (P ·u ! v

u(Q)), if u ∈ FN(P).

We are using the same numbering as in [AJ94b] and have left out R2, which
talks about units. We write bold face to stand for sequences of variables.

These reductions can be applied in any context.

P→Q
C[P]→C[Q]

and are performed modulo structural congruence.

P ′ ≡ P P→Q Q′ ≡ Q
P→Q

The basic theorem is that this algebra models cut elimination is classical linear
logic. The precise statement is

Proposition 3.1 (Abramsky) Let Π be a sequent proof of % Γ in CLL2 with
corresponding realizing term P . If P→Q, with Q cut-free (i.e. no occurrences
of ·α), then Π reduces under cut-elimination to a cut-free sequent proof Π ′

with corresponding realizing term Q.

In order to verify that one correctly models the process of cut-elimination in
linear logic it suffices to verify the LRA equations R1 through R9. In fact we
will also check the following equation:

&x,y
z (P, Q)·uR → &x,y

z (P ·uR, Q·uR) [u ∈ FN(P) ∩ FN(Q)]

This is the commutative with-reduction and is not satisfied in the extant
examples of LRA.

4 The φ-calculus

In this section we spell out the rules of our formal calculus. Briefly the ingre-
dients are

11Monday, May 11, 2009

Feynman’s Brilliant Intuition

Think in terms of particles and their trajectories.

Particles coast freely until they interact. For a given type of
theory the interaction is always the same.

Coasting particles are represented by straight lines;
interactions by vertices.

The pictures define integrals that express the
probability (amplitude) for the process shown.

12Monday, May 11, 2009

A Typical Feynman Diagram

z

Two particles enter at x and y they interact at z and
scatter to u and v.

In this diagram every vertex has degree 4.
This is a first-order diagram (one vertex) of λφ4 theory.

x y

u v

1

13Monday, May 11, 2009

In this diagram every vertex has degree 4.
This is a fourth-order diagram (four vertices) of λφ4 theory.

x y

u v

1

The nature of the theory determines the type and degree of the vertices.

A More Complex Feynman Diagram

14Monday, May 11, 2009

Feynman Propagators

The pictures are just mnemonics for certain integrals that arise in QFT.

I will not describe how these are calculated here.

The vertices represent integrals.

The lines are functions that
describe how particles are propagated.

15Monday, May 11, 2009

Sum Over Paths

G(x, y) is obtained by summing over all paths from x to y.

G(x, y) =
∫

G(x, z)G(z, y)dz

x ·

· y
z1

z2

z3
·

•
•

16Monday, May 11, 2009

Functional Integrals

In QFT one uses an integration over all field configurations.

This is not well defined and is used as a formal device.

I will use formal integrals, but

they will be analogues of ordinary integrals.

17Monday, May 11, 2009

Variational Derivatives

These are derivatives of functionals with respect to functions.

They are perfectly well defined and have been used
since the 17th century in the calculus of variations.

I will use formal analogues of them.

18Monday, May 11, 2009

The φ-calculus
32 Richard Blute and Prakash Panangaden

Locations: which play the same role as the locations in the located sequents
of LRA.

Basic terms: which, for the multiplicative fragment, play the role of LRA
terms.

Operators: Which act on basic terms and which play the role of terms in the
full LRA.

In order to define the basic terms we need locations, formal distributions,
formal integrals and simple rules obeyed by these. In order to define operators
we need to introduce a formal analogue of the variational derivative. This
variational derivative construct is very closely modelled on the derivation of
Feynman diagrams from a generating functional.

We assume that we are modelling a typed linear realizability algebra with
given propositional atoms. We first formalize locations. We assume further
that axiom links are only introduced for basic propositional atoms. We use the
phrases “basic types” and “basic propositional atoms” interchangeably.

Definition 1. We assume that there are countably many distinct symbols,
called locations for each basic type. We assume that there are the following
operations on locations: if x and y are locations of types A and B respectively,
then 〈x, y〉 and [x, y] are locations of type A ⊗ B and A!B respectively. We
use the usual sequent notation x : A, y : B $ 〈x, y〉 : A ⊗ B and x : A, y : B $
[x, y] : A!B to express this.

Now we define expressions.

Definition 2. The collection of expressions is given by the following induc-
tive definition. We also define, at the same time, the notion of the sort of an
expression, which is the set of free locations, and their types, that appear in
the expression.

1. Any real number r is an expression of sort ∅.

2. Given any two distinct locations, x : A and y : A⊥ δ(x, y) is an expression
of sort {x : A, y : A⊥}.

3. Given any two expressions P and Q, PQ and P + Q are expressions of
sort S(P) ∪ S(Q).

4. Given any expression P and any location x : A in P , the expression
∫

Pdx
is an expression of sort S(P) \ {x : A}.

The expressions above look like the familiar expressions that one manipulates
in calculus. The sorts describe the free locations that occur in expressions. The
integral symbol is the only binding operator and is purely formal. Indeed any

32 Richard Blute and Prakash Panangaden

Locations: which play the same role as the locations in the located sequents
of LRA.

Basic terms: which, for the multiplicative fragment, play the role of LRA
terms.

Operators: Which act on basic terms and which play the role of terms in the
full LRA.

In order to define the basic terms we need locations, formal distributions,
formal integrals and simple rules obeyed by these. In order to define operators
we need to introduce a formal analogue of the variational derivative. This
variational derivative construct is very closely modelled on the derivation of
Feynman diagrams from a generating functional.

We assume that we are modelling a typed linear realizability algebra with
given propositional atoms. We first formalize locations. We assume further
that axiom links are only introduced for basic propositional atoms. We use the
phrases “basic types” and “basic propositional atoms” interchangeably.

Definition 1. We assume that there are countably many distinct symbols,
called locations for each basic type. We assume that there are the following
operations on locations: if x and y are locations of types A and B respectively,
then 〈x, y〉 and [x, y] are locations of type A ⊗ B and A!B respectively. We
use the usual sequent notation x : A, y : B $ 〈x, y〉 : A ⊗ B and x : A, y : B $
[x, y] : A!B to express this.

Now we define expressions.

Definition 2. The collection of expressions is given by the following induc-
tive definition. We also define, at the same time, the notion of the sort of an
expression, which is the set of free locations, and their types, that appear in
the expression.

1. Any real number r is an expression of sort ∅.

2. Given any two distinct locations, x : A and y : A⊥ δ(x, y) is an expression
of sort {x : A, y : A⊥}.

3. Given any two expressions P and Q, PQ and P + Q are expressions of
sort S(P) ∪ S(Q).

4. Given any expression P and any location x : A in P , the expression
∫

Pdx
is an expression of sort S(P) \ {x : A}.

The expressions above look like the familiar expressions that one manipulates
in calculus. The sorts describe the free locations that occur in expressions. The
integral symbol is the only binding operator and is purely formal. Indeed any

32 Richard Blute and Prakash Panangaden

Locations: which play the same role as the locations in the located sequents
of LRA.

Basic terms: which, for the multiplicative fragment, play the role of LRA
terms.

Operators: Which act on basic terms and which play the role of terms in the
full LRA.

In order to define the basic terms we need locations, formal distributions,
formal integrals and simple rules obeyed by these. In order to define operators
we need to introduce a formal analogue of the variational derivative. This
variational derivative construct is very closely modelled on the derivation of
Feynman diagrams from a generating functional.

We assume that we are modelling a typed linear realizability algebra with
given propositional atoms. We first formalize locations. We assume further
that axiom links are only introduced for basic propositional atoms. We use the
phrases “basic types” and “basic propositional atoms” interchangeably.

Definition 1. We assume that there are countably many distinct symbols,
called locations for each basic type. We assume that there are the following
operations on locations: if x and y are locations of types A and B respectively,
then 〈x, y〉 and [x, y] are locations of type A ⊗ B and A!B respectively. We
use the usual sequent notation x : A, y : B $ 〈x, y〉 : A ⊗ B and x : A, y : B $
[x, y] : A!B to express this.

Now we define expressions.

Definition 2. The collection of expressions is given by the following induc-
tive definition. We also define, at the same time, the notion of the sort of an
expression, which is the set of free locations, and their types, that appear in
the expression.

1. Any real number r is an expression of sort ∅.

2. Given any two distinct locations, x : A and y : A⊥ δ(x, y) is an expression
of sort {x : A, y : A⊥}.

3. Given any two expressions P and Q, PQ and P + Q are expressions of
sort S(P) ∪ S(Q).

4. Given any expression P and any location x : A in P , the expression
∫

Pdx
is an expression of sort S(P) \ {x : A}.

The expressions above look like the familiar expressions that one manipulates
in calculus. The sorts describe the free locations that occur in expressions. The
integral symbol is the only binding operator and is purely formal. Indeed any

32 Richard Blute and Prakash Panangaden

Locations: which play the same role as the locations in the located sequents
of LRA.

Basic terms: which, for the multiplicative fragment, play the role of LRA
terms.

Operators: Which act on basic terms and which play the role of terms in the
full LRA.

In order to define the basic terms we need locations, formal distributions,
formal integrals and simple rules obeyed by these. In order to define operators
we need to introduce a formal analogue of the variational derivative. This
variational derivative construct is very closely modelled on the derivation of
Feynman diagrams from a generating functional.

We assume that we are modelling a typed linear realizability algebra with
given propositional atoms. We first formalize locations. We assume further
that axiom links are only introduced for basic propositional atoms. We use the
phrases “basic types” and “basic propositional atoms” interchangeably.

Definition 1. We assume that there are countably many distinct symbols,
called locations for each basic type. We assume that there are the following
operations on locations: if x and y are locations of types A and B respectively,
then 〈x, y〉 and [x, y] are locations of type A ⊗ B and A!B respectively. We
use the usual sequent notation x : A, y : B $ 〈x, y〉 : A ⊗ B and x : A, y : B $
[x, y] : A!B to express this.

Now we define expressions.

Definition 2. The collection of expressions is given by the following induc-
tive definition. We also define, at the same time, the notion of the sort of an
expression, which is the set of free locations, and their types, that appear in
the expression.

1. Any real number r is an expression of sort ∅.

2. Given any two distinct locations, x : A and y : A⊥ δ(x, y) is an expression
of sort {x : A, y : A⊥}.

3. Given any two expressions P and Q, PQ and P + Q are expressions of
sort S(P) ∪ S(Q).

4. Given any expression P and any location x : A in P , the expression
∫

Pdx
is an expression of sort S(P) \ {x : A}.

The expressions above look like the familiar expressions that one manipulates
in calculus. The sorts describe the free locations that occur in expressions. The
integral symbol is the only binding operator and is purely formal. Indeed any

19Monday, May 11, 2009

Expressions

32 Richard Blute and Prakash Panangaden

Locations: which play the same role as the locations in the located sequents
of LRA.

Basic terms: which, for the multiplicative fragment, play the role of LRA
terms.

Operators: Which act on basic terms and which play the role of terms in the
full LRA.

In order to define the basic terms we need locations, formal distributions,
formal integrals and simple rules obeyed by these. In order to define operators
we need to introduce a formal analogue of the variational derivative. This
variational derivative construct is very closely modelled on the derivation of
Feynman diagrams from a generating functional.

We assume that we are modelling a typed linear realizability algebra with
given propositional atoms. We first formalize locations. We assume further
that axiom links are only introduced for basic propositional atoms. We use the
phrases “basic types” and “basic propositional atoms” interchangeably.

Definition 1. We assume that there are countably many distinct symbols,
called locations for each basic type. We assume that there are the following
operations on locations: if x and y are locations of types A and B respectively,
then 〈x, y〉 and [x, y] are locations of type A ⊗ B and A!B respectively. We
use the usual sequent notation x : A, y : B $ 〈x, y〉 : A ⊗ B and x : A, y : B $
[x, y] : A!B to express this.

Now we define expressions.

Definition 2. The collection of expressions is given by the following induc-
tive definition. We also define, at the same time, the notion of the sort of an
expression, which is the set of free locations, and their types, that appear in
the expression.

1. Any real number r is an expression of sort ∅.

2. Given any two distinct locations, x : A and y : A⊥ δ(x, y) is an expression
of sort {x : A, y : A⊥}.

3. Given any two expressions P and Q, PQ and P + Q are expressions of
sort S(P) ∪ S(Q).

4. Given any expression P and any location x : A in P , the expression
∫

Pdx
is an expression of sort S(P) \ {x : A}.

The expressions above look like the familiar expressions that one manipulates
in calculus. The sorts describe the free locations that occur in expressions. The
integral symbol is the only binding operator and is purely formal. Indeed any

20Monday, May 11, 2009

Equations

Proof Nets as Formal Feynman Diagrams 33

suitable notation for a binder will do, a more neutral one might be something
like Tr(e, x), which is more suggestive of a trace operation.

The equations obeyed by these expressions mirror the familiar rules of cal-
culus. The only exotic ingredients are that the δ behaves like a Dirac delta
“function”. We will actually present a rewrite system rather than an equa-
tional system but one can think of these as equations.

We use the familiar notation P (. . . , y/x, . . .) to mean the expression obtained
by replacing all free occurrences of x by y with appropriate renaming of bound
variables as needed to avoid capture; x and y must be of the same type of
course. We now define equations that the terms obey.

Definition 3. 1. δ(x, y) = δ(y, x)

2.
∫

(
∫

Pdx)dy =
∫

(
∫

Pdy)dx

3. (P + Q) + R = P + (Q + R)

4. (P + Q) = (Q + P)

5. P · (Q · R) = (P · Q) · R

6. P · Q = Q · P

7. P · (Q1 + Q2) = P · Q1 + P · Q2

8. P + 0 = P .

9. P · 1 = P .

10. P · 0 = 0.

11.
∫

P (. . . , x, . . .)δ(x, y)dx = P (. . . , y/x, . . .).

12. δ([x, y], 〈u, v〉) = δ(x, u)δ(y, v).

13. If P = P ′ then PQ = P ′Q.

14. If P = P ′ then P + Q = P ′ + Q.

15. If P = P ′ then
∫

Pdx =
∫

P ′dx.

These equations are very straightforward and can be viewed as basic properties
of functions and integration or about matrices and matrix multiplication.
The only point is that with ordinary functions one cannot obtain anything
with the behaviour of the δ-function; these are, however, easy to model with
distributions or measures.

In order to model the exponentials and additives we need a rather more elabo-
rate calculus. We introduce operators which are inspired by the use of generat-
ing functionals for Feynman diagrams in quantum field theory [IZ80, Ram81].

Associativity and commutativity for + and ·.

Proof Nets as Formal Feynman Diagrams 33

suitable notation for a binder will do, a more neutral one might be something
like Tr(e, x), which is more suggestive of a trace operation.

The equations obeyed by these expressions mirror the familiar rules of cal-
culus. The only exotic ingredients are that the δ behaves like a Dirac delta
“function”. We will actually present a rewrite system rather than an equa-
tional system but one can think of these as equations.

We use the familiar notation P (. . . , y/x, . . .) to mean the expression obtained
by replacing all free occurrences of x by y with appropriate renaming of bound
variables as needed to avoid capture; x and y must be of the same type of
course. We now define equations that the terms obey.

Definition 3. 1. δ(x, y) = δ(y, x)

2.
∫

(
∫

Pdx)dy =
∫

(
∫

Pdy)dx

3. (P + Q) + R = P + (Q + R)

4. (P + Q) = (Q + P)

5. P · (Q · R) = (P · Q) · R

6. P · Q = Q · P

7. P · (Q1 + Q2) = P · Q1 + P · Q2

8. P + 0 = P .

9. P · 1 = P .

10. P · 0 = 0.

11.
∫

P (. . . , x, . . .)δ(x, y)dx = P (. . . , y/x, . . .).

12. δ([x, y], 〈u, v〉) = δ(x, u)δ(y, v).

13. If P = P ′ then PQ = P ′Q.

14. If P = P ′ then P + Q = P ′ + Q.

15. If P = P ′ then
∫

Pdx =
∫

P ′dx.

These equations are very straightforward and can be viewed as basic properties
of functions and integration or about matrices and matrix multiplication.
The only point is that with ordinary functions one cannot obtain anything
with the behaviour of the δ-function; these are, however, easy to model with
distributions or measures.

In order to model the exponentials and additives we need a rather more elabo-
rate calculus. We introduce operators which are inspired by the use of generat-
ing functionals for Feynman diagrams in quantum field theory [IZ80, Ram81].

Proof Nets as Formal Feynman Diagrams 33

suitable notation for a binder will do, a more neutral one might be something
like Tr(e, x), which is more suggestive of a trace operation.

The equations obeyed by these expressions mirror the familiar rules of cal-
culus. The only exotic ingredients are that the δ behaves like a Dirac delta
“function”. We will actually present a rewrite system rather than an equa-
tional system but one can think of these as equations.

We use the familiar notation P (. . . , y/x, . . .) to mean the expression obtained
by replacing all free occurrences of x by y with appropriate renaming of bound
variables as needed to avoid capture; x and y must be of the same type of
course. We now define equations that the terms obey.

Definition 3. 1. δ(x, y) = δ(y, x)

2.
∫

(
∫

Pdx)dy =
∫

(
∫

Pdy)dx

3. (P + Q) + R = P + (Q + R)

4. (P + Q) = (Q + P)

5. P · (Q · R) = (P · Q) · R

6. P · Q = Q · P

7. P · (Q1 + Q2) = P · Q1 + P · Q2

8. P + 0 = P .

9. P · 1 = P .

10. P · 0 = 0.

11.
∫

P (. . . , x, . . .)δ(x, y)dx = P (. . . , y/x, . . .).

12. δ([x, y], 〈u, v〉) = δ(x, u)δ(y, v).

13. If P = P ′ then PQ = P ′Q.

14. If P = P ′ then P + Q = P ′ + Q.

15. If P = P ′ then
∫

Pdx =
∫

P ′dx.

These equations are very straightforward and can be viewed as basic properties
of functions and integration or about matrices and matrix multiplication.
The only point is that with ordinary functions one cannot obtain anything
with the behaviour of the δ-function; these are, however, easy to model with
distributions or measures.

In order to model the exponentials and additives we need a rather more elabo-
rate calculus. We introduce operators which are inspired by the use of generat-
ing functionals for Feynman diagrams in quantum field theory [IZ80, Ram81].

21Monday, May 11, 2009

Interpreting LRA in φ
Proof Nets as Formal Feynman Diagrams 45

Proof Rule LRA Term Φ-Calculus

Axiom [[Ixy]] = δ(x, y)
Cut [[P ·x Q]] =

R

[[P]][[Q]]dx
Tensor [[⊗x,y

z (P, Q)]] =
R

[[P]][[Q]]δ(z, 〈x, y〉)dxdy
Par [[!x,y

z (P)]] =
R

[[P]]δ(z, [x, y])dxdy
Dereliction [[Dx

z (P)]] = [[P [z/x]]]([.]|α(z)=0) ◦
δ

δα(z)

Weakening [[Wz(P)]] = [[P]] ◦ W (z)([.]|α(z)=0)
δ

δα(z)

Contraction [[Cx,y
z]] =

R

[[P]]∆(x, y; z)dxdy
Exponentiation [[! x

y(P)]] = exp([[P [y/x]]]αA(y))
In the last line A is the type of the location x.

Fig. 5. Translation of LRA terms to the Φ-Calculus

the common point (the interaction is local) and we integrate over the possi-
ble interactions. The par and tensor links are constructing composite objects.
They are modelled by using pairing of locations. The promotion corresponds
to an exponentiation and dereliction is a variational derivative which probes
for the presence of the α in an exponential. Weakening is like a dereliction,
except that there is a W to perform discarding. Finally contraction is effected
by a symmetrizer; we think of it like multiplexing.

We proceed to the formal soundness argument.

Theorem 6.1 The interpretation of linear realizability algebra terms in the
φ-calculus obeys the equations R1,R3,R6,R7,R8,R9.

Proof. The proof of R1 is immediate from the definition of the Dirac delta
function. For R3 we calculate as follows.

[[⊗x,y
z (P, Q)·z!u,v

z (M)]]

=

∫
δ(z, 〈x, y〉)δ(z, [u, v]) PQM dz dxyuv by definition

=

∫
δ(〈x, y〉, [u, v]) PQM dxyuv using δ to do the z integral

=

∫
δ(x, u)δ(y, v) PQM duvxy decomposition of δ

=

∫
P [u/x]MQ[v/y]dudv doing the x, y integrals

=[[P [u/x]·uM ·vQ[v/y]]] by definition.

For equation R6 we calculate as follows.

48 Richard Blute and Prakash Panangaden

A Basic Example with Cut

We reproduce the example from the section on multiplicatives. The simplest
possible example involves an axiom link cut with another axiom link shown
in figure 6.

ux v y

CUT

Fig. 6. Two axiom links CUT together.

The LRA term is Ix,u·u,vIv,y . The expression in the φ-calculus is

∫
δ(x, u)δ(u, v)δ(v, y)dudv.

Carrying out the v integration and getting rid of the δ we get
∫

δ(x, u)δ(u, y)du.
Using the convolution property of δ we get δ(x, y) which corresponds to the
axiom link Ix,y.

Tensor and Par

CUT

!
!!

"
""

!"
#$!
!!

"
""

!"
#$!
!!

"
""

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A ⊗ B w : A⊥
!B⊥

t : A ⊗ B

!"
#$

Fig. 7. Cutting a
N

link with a ! link.

48 Richard Blute and Prakash Panangaden

A Basic Example with Cut

We reproduce the example from the section on multiplicatives. The simplest
possible example involves an axiom link cut with another axiom link shown
in figure 6.

ux v y

CUT

Fig. 6. Two axiom links CUT together.

The LRA term is Ix,u·u,vIv,y . The expression in the φ-calculus is

∫
δ(x, u)δ(u, v)δ(v, y)dudv.

Carrying out the v integration and getting rid of the δ we get
∫

δ(x, u)δ(u, y)du.
Using the convolution property of δ we get δ(x, y) which corresponds to the
axiom link Ix,y.

Tensor and Par

CUT

!
!!

"
""

!"
#$!
!!

"
""

!"
#$!
!!

"
""

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A ⊗ B w : A⊥
!B⊥

t : A ⊗ B

!"
#$

Fig. 7. Cutting a
N

link with a ! link.

48 Richard Blute and Prakash Panangaden

A Basic Example with Cut

We reproduce the example from the section on multiplicatives. The simplest
possible example involves an axiom link cut with another axiom link shown
in figure 6.

ux v y

CUT

Fig. 6. Two axiom links CUT together.

The LRA term is Ix,u·u,vIv,y . The expression in the φ-calculus is

∫
δ(x, u)δ(u, v)δ(v, y)dudv.

Carrying out the v integration and getting rid of the δ we get
∫

δ(x, u)δ(u, y)du.
Using the convolution property of δ we get δ(x, y) which corresponds to the
axiom link Ix,y.

Tensor and Par

CUT

!
!!

"
""

!"
#$!
!!

"
""

!"
#$!
!!

"
""

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A ⊗ B w : A⊥
!B⊥

t : A ⊗ B

!"
#$

Fig. 7. Cutting a
N

link with a ! link.

46 Richard Blute and Prakash Panangaden

[[Dx
z (P)·z ! y

z(Q)]]

=

∫
P (x, . . .)δ(x, z)([.]|α(z)=0) ◦

δ
δα(z) δ(y, z) exp(α(z)Q) dzdxdy

by definition

=

∫
P (x, . . .)δ(x, z)([.]|α(z)=0) ◦

δ
δα(z) exp(α(z)Q[z/y]) dxdz

using δ(y, z) to do the z integral

=

∫
P (x, . . .)([.]|α(x)=0) ◦

δ
δα(x) exp(α(x)Q[x/y]) dx

using lemma 4.4 and δ(x, z)

=

∫
PQ[x/y] dx

using lemma 5.1

=[[P ·xQ[x/y]]]

by definition.

For R7 we have to show

[[Wz(P)·z ! y
z(Q)]] = [[Wu(P)]]

where u = {u1, . . . , uk} is the set of free locations in Q other than y and Wu is
shorthand for Wu1

. . . Wuk
. The linearity constraints ensure that u∩S(P) = ∅.

If we use the translation and use the simple exponential identity 5.1, part 1,
we get the formula below, which does not mention P ,

∫
W (z)([.]|α(z)=0) ◦

δ
δα(z) exp(α(z)Q[z/y]) dz =

∫
W (z)Q[z/y] dz.

In fact P has nothing to do with this rule so we will ignore it in the rest of
the discussion of this case. Now in order to complete the argument we must
prove the following lemma:

Lemma 6.2∫
Wφ(z)Q(z, u) dz =

∏
i

W (ui)([.]|α(ui)=0) ◦
δ

δα(ui)
.

We have explicitly shown the formula φ that is being weakened on the left-
hand side but not the subformulas of φ which are associated with the W s on
the right-hand side. We have implicitly used the decomposition formula for
W that says

WB(z)([.]|α(z)=0) ◦
δ

δα(z) = W ? B
(z).

Using rule 11 we get δ(x, y) which is Ix,y.

22Monday, May 11, 2009

48 Richard Blute and Prakash Panangaden

A Basic Example with Cut

We reproduce the example from the section on multiplicatives. The simplest
possible example involves an axiom link cut with another axiom link shown
in figure 6.

ux v y

CUT

Fig. 6. Two axiom links CUT together.

The LRA term is Ix,u·u,vIv,y . The expression in the φ-calculus is

∫
δ(x, u)δ(u, v)δ(v, y)dudv.

Carrying out the v integration and getting rid of the δ we get
∫

δ(x, u)δ(u, y)du.
Using the convolution property of δ we get δ(x, y) which corresponds to the
axiom link Ix,y.

Tensor and Par

CUT

!
!!

"
""

!"
#$!
!!

"
""

!"
#$!
!!

"
""

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A ⊗ B w : A⊥
!B⊥

t : A ⊗ B

!"
#$

Fig. 7. Cutting a
N

link with a ! link.

Simplifies to

26 Richard Blute and Prakash Panangaden

A Basic Example with Cut

We reproduce the example from the section on multiplicatives. The simplest
possible example involves an axiom link cut with another axiom link shown
in figure 6.

ux v y

CUT

Fig. 6. Two axiom links CUT together.

The LRA term is Ix,u·u,vIv,y . The expression in the φ-calculus is

∫
δ(x, u)δ(u, v)δ(v, y)dudv.

Carrying out the v integration and getting rid of the δ we get
∫

δ(x, u)δ(u, y)du.
Using the convolution property of δ we get δ(x, y) which corresponds to the
axiom link Ix,y.

Tensor and Par

Consider the proof net constructed as follows. We start with two axiom links,
one for A and one for B. We form a single net by tensoring together the A⊥

and the B⊥. Now consider a second proof net constructed in the same way.
With the second such net we introduce a par link connecting the A and the
B. Now we cut the first net with the second net in the evident way, shown in
figure 7.

The φ-calculus term, with locations introduced as appropriate is∫
[
∫

δA(x, y)δB(u, v)δ(z, 〈y, v〉)dvdy]
[
∫

δA(p, q)δB(r, s)δ(t, 〈q, s〉)δ(w, [p, r])dpdqdrds]
δ(w, z)dwdz.

We first do the w integral and eliminate the term δ(w, z). This will cause z to
replace w. Now we do the z integral and eliminate the term δ(z, 〈y, v〉). This
will yield the term δ(〈y, v〉, [p, r]), which can be decomposed into δ(y, p)δ(v, r).
The full term is now

∫
δA(x, y)δB(u, v)δA(p, q)δB(r, s)δ(y, p)δ(v, r)δ(t, 〈q, s〉)dydvdpdrdsdq.

Proof Nets as Formal Feynman Diagrams 27

CUT

!
!!

"
""

!"
#$!
!!

"
""

!"
#$!
!!

"
""

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A ⊗ B w : A⊥!B⊥

t : A ⊗ B

!"
#$

Fig. 7. Cutting a
N

link with a ! link.

This is the φ-calculus term that arises by translating the result of the first
step of the cut-elimination process. Note that it has two cuts on the simpler
formulas A and B. Now, as in the previous example we can perform the inte-
grations over y and v using the formula for the δ and then we can perform the
integrations over p and r using the convolution formula. The result is

∫
δA(x, q)δB(u, s)δ(t, 〈q, s〉)dqds,

which is indeed the form of the φ-calculus term that results from the cut-free
proof.

A Basic Exponential Example

We consider the simplest possible cut involving exponential types. Consider
the an axiom link for A, A⊥. We can perform dereliction on the A⊥. Now take
another copy of this net and exponentiate on A. Finally cut the ? A⊥ with
the !A. The proof net is shown in figure 8.

The result of translating this into the φ-calculus is (after some obvious sim-
plifications)

∫
δ(x, y)([.]|α(y)=0)

δ
δα(y) exp[α(u)δ(u, v)([.]|α(v)=0)

δ
δα(v)]δ(y, u)dydu.

We can perform the u integration and eliminate the term δ(y, u). Then we can
take the variational derivative of the exponential term which will yield

23Monday, May 11, 2009

Exponentials

Intuition: model the box by the exponential power series!

Model dereliction by a derivative probing an exponential.

Key analogies: d
dx e ax|x=0 = a

exp(a d
dx)ebx|x=0 = exp(a d

dxebx)|x=0

This is “nesting of boxes”!

24Monday, May 11, 2009

34 Richard Blute and Prakash Panangaden

The tw o ingredients are form alpow er series and variationalderivatives.In or-

der to m odelpure linear logic the form alpow er series thatar ise as pow er-series

expansions of exponentials are the only ones that are needed.We introduce a
formalanalogue ofthe variationalderivative operator,co m m o n l y u s ed in both

classicalandquantumfield theories [R am 81].For us the vari ationalderivative
playsthe role ofa m echanism thatextracts a term from an expo n ential.

Asbefore w e have locations and expressions.W e first introdu ce a new expres-
sionconstructor.

Definition 4. If x is a location of type A then αA(x)is an expression of sort
{x :A}.

The point ofα istoprovide a “probe”,w hich can be detected as needed. For

each type and location there is a differentα. W e w ill usually not indicate the
t y p e subscript on theαsunless they are necessary. The last ingredient that

we need in the w orld of expressions is an expression that play sthe role of a

“ d i s c a r d er”,used, of course, for w eakening.

Definition 5. If x is a location of type {x :A}, where A is a multiplicative
type, then WA(x)is an expression of sort {x :A}. This satisfies the equations

1. WA⊗B(〈x, y〉)= WA(x)WB(y),

2. WA!B([x, y])= WA(x)WB(y).

We can think of W(x)intuitively as “grounding” in the sense of electrical

circuits.Ine ffect it provides a socket into w hichx i s p l u g g ed but w hich is

i n t u r n c o n n ected to nothing else. So it is as ifx were “grounded”. If such
aW(x)isconnected to a w ire,

∫
W(x)δ(x, y)dx t he result w ill be the sam e

a s g r o u n d i n gy.The other tw o equations express the fact that a com plex W
canbe decom posed into sim pler ones. W e w ill introduce anoth er decom po-

s i t i o n r u l e forW after w e have described the variational derivatives and a

c o r r esponding operator for w eakening.

We introduce syntax for operators;these w illbe defined as m a psfromexpres-

sionstoexpressions.

Definition 6. Operators are given by the following inductive definition.

1. If M is any expression M̂ is an operator of the same sort as M .

2. If x :A is a location then ([.]|α(x)=0)is an operator of sort x :A.

3. If x :A is a location then δ
δα(x) is an operator of sort x :A.

4. If P and Q are operators then so are P +Q and P ◦ Q their sort is the
union of the individual sorts. Proof Nets as Formal Feynman Diagrams 35

5. If P is an operator then so is
∫

Pdx; its sort is S(P) \ {x}.

An operator of sort S acts on an expression of sort S′ if S ∩ S′ is not empty.

Operators map expressions to expressions. An important di erence between
the algebra of expressions and that of operators is that the (commutative)
multiplication of expressions has been replaced by the (non-commutative)
composition of operators.

The meaning of the operators above is given as follows. We use the meta-
variables M, N for expressions and P, Q for operators. We begin with the
definition of M̂ .

Definition 7. M̂(N) = M · N .

The notion of composition of operators is the standard one

Definition 8. [P ◦ Q](M) = P (Q(M)).

Clearly we have M̂ ◦ N̂ = M̂N ; thus we have an extension of the algebra of
expressions. We will write 1 and 0 rather than, for example, 1̂ to denote the
operators. The resulting ambiguity will rarely cause serious confusion.

The next set of rules define the operator ([.]|α(x)=0). Intuitively this is the
operation of “setting α(x) to 0” in an algebraic expression.

Definition 9. If M is an expression then the operator ([.]|α(x)=0) acts as
follows:

1. If α(x) does not appear in M then ([M]|α(x)=0) = M .

2. ([MN]|α(x)=0) = (([M]|α(x)=0))(([N]|α(x)=0)).

3. ([M + N]|α(x)=0) = (([M]|α(x)=0)) + (([N]|α(x)=0)).

4. ([Mα(x)]|α(x)=0) = 0.

The rules for the variational derivative formalize what one would expect from
a derivative, most notably the Leibniz rule, rule 5 below.

Definition 10. If M is an expression and x is a location we have the following
equations:

1. If x and y are distinct locations then δ
δα(x)α(y) = 0.

2. If α(x) does not occur in the expression M then δ
δα(x)M = 0.

3. δ
δα(x)α(x) = 1.

Proof Nets as Formal Feynman Diagrams 35

5. If P is an operator then so is
∫

Pdx; its sort is S(P) \ {x}.

An operator of sort S acts on an expression of sort S′ if S ∩ S′ is not empty.

Operators map expressions to expressions. An important difference between
the algebra of expressions and that of operators is that the (commutative)
multiplication of expressions has been replaced by the (non-commutative)
composition of operators.

The meaning of the operators above is given as follows. We use the meta-
variables M, N for expressions and P, Q for operators. We begin with the
definition of M̂ .

Definition 7. M̂(N) = M · N .

The notion of composition of operators is the standard one

Definition 8. [P ◦ Q](M) = P (Q(M)).

Clearly we have M̂ ◦ N̂ = M̂N ; thus we have an extension of the algebra of
expressions. We will write 1 and 0 rather than, for example, 1̂ to denote the
operators. The resulting ambiguity will rarely cause serious confusion.

The next set of rules define the operator ([.]|α(x)=0). Intuitively this is the
operation of “setting α(x) to 0” in an algebraic expression.

Definition 9. If M is an expression then the operator ([.]|α(x)=0) acts as
follows:

1. If α(x) does not appear in M then ([M]|α(x)=0) = M .

2. ([MN]|α(x)=0) = (([M]|α(x)=0))(([N]|α(x)=0)).

3. ([M + N]|α(x)=0) = (([M]|α(x)=0)) + (([N]|α(x)=0)).

4. ([Mα(x)]|α(x)=0) = 0.

The rules for the variational derivative formalize what one would expect from
a derivative, most notably the Leibniz rule, rule 5 below.

Definition 10. If M is an expression and x is a location we have the following
equations:

1. If x and y are distinct locations then δ
δα(x)α(y) = 0.

2. If α(x) does not occur in the expression M then δ
δα(x)M = 0.

3. δ
δα(x)α(x) = 1.

36 Richard Blute and Prakash Panangaden

4. δ
δα(x) M N δ

δα(x)M δ
δα(x)N .

5. δ
δα(x) MN M δ

δα(x)N δ
δα(x)M N .

 α

 . |α(x)=0 δ

δα(x)

Definition 11. Operators obey the following equations:

1. M .

2. M M .

3. P Q M P M Q M .

4.
∫

Pdx M
∫

P M dx, where x is not free in M .

Lemma 4.1 If x and y are distinct locations δ
δα(x) ◦ δ

δα(y) M δ
δα(y) ◦

δ
δα(x) M .

Definition 12. Two operators P and Q which satisfy P ◦Q Q ◦P are said
to commute.

Definition 13. If Mi|i ∈ I is an indexed family of expressions then ΣIMi

is an expression. If Pi|i ∈ I is an indexed family of operators then ΣIPi is
an operator. If I is a finite set, the result is the same as the ordinary sum; if
I is infinite, the result is called a formal power series.

Operators

25Monday, May 11, 2009

Exponential Series

Proof Nets as Formal Feynman Diagrams 37

One may question the use of the word “power” in “power series” since there
is nothing in the definition that says that we are working with powers of a
single entity. Nevertheless we use this suggestive term since the series we are
interested really are formal power series.

The meaning of a power series of operators is given in the evident way.

Definition 14. If Σi∈IPi is a formal power series of operators and M is an
expression then (Σi∈IPi)(M) = Σi∈I(Pi(M)).

The key power series that we use is the exponential. We first give a preliminary
account and then a more refined account.

Definition 15. If M is an expression then the exponential series is

Σk≥0M
k/k!

and is written exp(M); here Mk means the k-fold product of M with itself.

What we are not making precise at the moment is the meaning of Mn.

A number of properties follow immediately from the preceding definition.

Lemma 4.2 If the expression M contains no occurrence of α(x) then:

1. δ
δα(x) (MN) = M δ

δα(x) (N);

2. (([.]|α(x)=0) ◦
δ

δα(x)) exp(Mα(x)) = M ;

3. (([.]|α(x)=0) ◦
δ

δα(x) ◦ . . . n . . . ◦ δ
δα(x)) exp(Mα(x)) = Mn.

The combination δ
δα(x) ◦ . . . n . . . ◦ δ

δα(x) is often written δn

δα(x)n .

The following facts about exponentials recall the usual elementary ideas about
the exponential function from an introductory calculus course.

Lemma 4.3 Suppose that M is an expression, the following equations hold.

1. δ
δα(x) exp(Mα(x)) = M · exp(Mα(x)).

2. ([exp(M)]|α(x)=0) = exp(([M]|α(x)=0)).

3. exp(0) = 1.

In fact the above definition of exponentials overlooks a subtlety which makes
a difference as soon as we exponentiate operators. The factors of the form
1/(n!) are not just numerical factors, they indicate symmetrization. This is
the key ingredient needed to model contraction in linear logic. We introduce
a new syntactic primitive for symmetrization and give its rules.

Proof Nets as Formal Feynman Diagrams 37

One may question the use of the word “power” in “power series” since there
is nothing in the definition that says that we are working with powers of a
single entity. Nevertheless we use this suggestive term since the series we are
interested really are formal power series.

The meaning of a power series of operators is given in the evident way.

Definition 14. If Σi∈IPi is a formal power series of operators and M is an
expression then (Σi∈IPi)(M) = Σi∈I(Pi(M)).

The key power series that we use is the exponential. We first give a preliminary
account and then a more refined account.

Definition 15. If M is an expression then the exponential series is

Σk≥0M
k/k!

and is written exp(M); here Mk means the k-fold product of M with itself.

What we are not making precise at the moment is the meaning of Mn.

A number of properties follow immediately from the preceding definition.

Lemma 4.2 If the expression M contains no occurrence of α(x) then:

1. δ
δα(x) (MN) = M δ

δα(x) (N);

2. (([.]|α(x)=0) ◦
δ

δα(x)) exp(Mα(x)) = M ;

3. (([.]|α(x)=0) ◦
δ

δα(x) ◦ . . . n . . . ◦ δ
δα(x)) exp(Mα(x)) = Mn.

The combination δ
δα(x) ◦ . . . n . . . ◦ δ

δα(x) is often written δn

δα(x)n .

The following facts about exponentials recall the usual elementary ideas about
the exponential function from an introductory calculus course.

Lemma 4.3 Suppose that M is an expression, the following equations hold.

1. δ
δα(x) exp(Mα(x)) = M · exp(Mα(x)).

2. ([exp(M)]|α(x)=0) = exp(([M]|α(x)=0)).

3. exp(0) = 1.

In fact the above definition of exponentials overlooks a subtlety which makes
a difference as soon as we exponentiate operators. The factors of the form
1/(n!) are not just numerical factors, they indicate symmetrization. This is
the key ingredient needed to model contraction in linear logic. We introduce
a new syntactic primitive for symmetrization and give its rules.

26Monday, May 11, 2009

Proof Nets as Formal Feynman Diagrams 37

One may question the use of the word “power” in “power series” since there
is nothing in the definition that says that we are working with powers of a
single entity. Nevertheless we use this suggestive term since the series we are
interested really are formal power series.

The meaning of a power series of operators is given in the evident way.

Definition 14. If Σi∈IPi is a formal power ser ies of operators and M is an
expression then (Σi∈IPi)(M) = Σi∈I(Pi(M)).

The key power series that we use is the exponential. We first give a preliminary
account and then a more refined account.

Definition 15. If M is an expression then the exponential series is

Σk≥0M
k/k!

and is wr itten exp(M); here Mk means the k-fold product of M with itself.

What we are not making precise at the moment is the meaning of Mn.

A number of properties follow immediately from the preceding definition.

Lemma 4.2 If the expression M contains no occur rence of α(x) then:

1. δ
δα(x) (MN) = M δ

δα(x) (N);

2. (([.]|α(x)=0) ◦
δ

δα(x)) exp(Mα(x)) = M ;

3. (([.]|α(x)=0) ◦
δ

δα(x) ◦ . . . n . . . ◦ δ
δα(x)) exp(Mα(x)) = Mn .

The combination δ
δα(x) ◦ . . . n . . . ◦ δ

δα(x) is often written δn

δα(x)n .

The following facts about exponentials recall the usual elementary ideas about
the exponential function from an introductory calculus course.

Lemma 4.3 Suppose that M is an expression, the fol lowing equations hold.

1. δ
δα(x) exp(Mα(x)) = M · exp(Mα(x)).

2. ([exp(M)]|α(x)=0) = exp(([M]|α(x)=0)).

3. exp(0) = 1.

In fact the above definition of exponentials overlooks a subtlety which makes
a difference as soon as we exponentiate operators. The factors of the form
1/(n!) are not just numerical factors, they indicate symmetrization. This is
the key ingredient needed to model contraction in linear logic. We introduce
a new syntactic primitive for symmetrization and give its rules.

27Monday, May 11, 2009

Symmetrization

Proof Nets as Formal Feynman Diagrams 37

One may question the use of the word “power” in “power series” since there
is nothing in the definition that says that we are working with powers of a
single entity. Nevertheless we use this suggestive term since the series we are
interested really are formal power series.

The meaning of a power series of operators is given in the evident way.

Definition 14. If Σi∈IPi is a formal power series of operators and M is an
expression then (Σi∈IPi)(M) = Σi∈I(Pi(M)).

The key power series that we use is the exponential. We first give a preliminary
account and then a more refined account.

Definition 15. If M is an expression then the exponential series is

Σk≥0M
k/k!

and is written exp(M); here Mk means the k-fold product of M with itself.

What we are not making precise at the moment is the meaning of Mn.

A number of properties follow immediately from the preceding definition.

Lemma 4.2 If the expression M contains no occurrence of α(x) then:

1. δ
δα(x) (MN) = M δ

δα(x) (N);

2. (([.]|α(x)=0) ◦
δ

δα(x)) exp(Mα(x)) = M ;

3. (([.]|α(x)=0) ◦
δ

δα(x) ◦ . . . n . . . ◦ δ
δα(x)) exp(Mα(x)) = Mn.

The combination δ
δα(x) ◦ . . . n . . . ◦ δ

δα(x) is often written δn

δα(x)n .

The following facts about exponentials recall the usual elementary ideas about
the exponential function from an introductory calculus course.

Lemma 4.3 Suppose that M is an expression, the following equations hold.

1. δ
δα(x) exp(Mα(x)) = M · exp(Mα(x)).

2. ([exp(M)]|α(x)=0) = exp(([M]|α(x)=0)).

3. exp(0) = 1.

In fact the above definition of exponentials overlooks a subtlety which makes
a difference as soon as we exponentiate operators. The factors of the form
1/(n!) are not just numerical factors, they indicate symmetrization. This is
the key ingredient needed to model contraction in linear logic. We introduce
a new syntactic primitive for symmetrization and give its rules.

∆(k)(x1, . . . , xk;x)

28Monday, May 11, 2009

equals

29Monday, May 11, 2009

38 Richard Blute and Prakash Panangaden

Definition 16. If k is a positive integer and x1, . . . , xk and x are distinct
locations then ∆k(x1, . . . , xk; x) is an expression, x is called the principal

location. It has the following behaviour; all differently-named locations are
assumed distinct.

1.
∫

∆(k)(x1, . . . , xk; x)M(x, y1, . . . , yl) dx =∫ ∏k
i=1 M [xi/x, yi

1/y1, . . . , yi
l/yl]

∏l
j=1 ∆(k)(y1

j , . . . , yk
j ; yj) dy1

1 . . . dyk
l .

2.
∫

∆(k)(x1, . . . , xk; x)∆(m+1)(x, xk+1, . . . , xk+m; y) dx
= ∆(k+m)(x1, . . . , xk, xk+1, . . . , xk+m; y).

3.
∫

∆(k)(u1, . . . , uk; x)∆(k)(u1, . . . , uk; y) du1 . . . duk = δ(x, y).

4.
∫

∆(k)(x1, . . . , xk; x)∆(m)(y1, . . . , ym; x)dx =
Σι∈inj({1,...,k},{1,...,m})δ(x1, yι(1)) . . . δ(xk, yι(k)),
where k ≤ m and if S and T are sets, inj(S, T) means injections from S
to T .

The idea is that the ∆ operators cause several previously distinct locations
to be identified. The ordinary δ allows renaming of one location of another
but the ∆ allows, in effect, several locations to be renamed to the same one.
The first rule says that when a location in an expression is connected to a
symmetrizer we can multiply the expression k-fold using fresh locations. These
locations are then symmetrized on the output. In other words this tells you
how to push expressions through symmetrizers. We often write just ∆ for ∆2

and of course we never use ∆1 since it is the ordinary δ. The important idea
is the the ∆s cause symmetrization of the locations being identified. The last
rule in the definition of ∆ is what makes it a symmetrizer. To see this more
clearly, note the following special case which arises when k = m.

∫
∆(k)(x1, . . . , xk; x)∆(k)(y1, . . . , yk; x)dx

= Σσ∈perm{1,...,k}δ(x1, yσ(1)) . . . δ(xk, yσ(end)).

Before we continue we emphasize that the rule for the δ expression applies to
operators as well. We formalize this as the following lemma.

Lemma 4.4 If P (x′, y) is an operator then
∫

δ(x, x′)Pdx′ = P [x/x′] in the
sense that for any expression M , with x not free in M , [

∫
δ(x, x′)Pdx′](M) =

P [x/x′](M [x/x′]).

Proof. We give a brief sketch. First note that we can prove, by structural
induction on M , for any expression M , that

∫
δ(x, x′) δ

δα(x′) (M)dx′ = δ
δα(x) (M [x/x′])

38 Richard Blute and Prakash Panangaden

Definition 16. If k is a positive integer and x1 , . . . , xk and x are distinct
locations then ∆k(x1 , . . . , xk; x) is an expression, x is called the principal

location. It has the following behaviour; all differently-named locations are
assumed distinct.

1.
∫

∆(k)(x1 , . . . , xk; x)M (x , y1 , . . . , yl) dx =∫ ∏k
i=1 M [xi / x , yi

1 / y1, . . . , yi
l / yl]

∏l
j=1 ∆(k)(y1

j , . . . , yk
j ; yj) dy1

1 . . . dyk
l .

2.
∫

∆(k)(x1 , . . . , xk; x)∆(m+1)(x , xk+1 , . . . , xk+m; y) dx
= ∆(k+m)(x1 , . . . , xk , xk+1 , . . . , xk+m; y).

3.
∫

∆(k)(u1 , . . . , uk; x)∆(k)(u1 , . . . , uk; y) du1 . . . duk = δ(x , y).

4.
∫

∆(k)(x1 , . . . , xk; x)∆(m)(y1 , . . . , ym; x)dx =
Σι∈inj({1,...,k},{1,...,m})δ(x1 , yι(1)) . . . δ(xk , yι(k)),
where k ≤ m and if S and T are sets, i n j (S, T) means injections from S
to T .

The idea is that the ∆ operators cause several previously distinct locations
to be identified. The ordinary δ allows renaming of one location of another
but the ∆ allows, in effect, several locations to be renamed to the same one.
The first rule says that when a location in an expression is connected to a
symmetrizer we can multiply the expression k-fold using fresh locations. These
locations are then symmetrized on the output. In other words this tells you
how to push expressions through symmetrizers. We often write just ∆ for ∆2

and of course we never use ∆1 since it is the ordinary δ. The important idea
is the the ∆s cause symmetrization of the locations being identified. The last
rule in the definition of ∆ is what makes it a symmetrizer. To see this more
clearly, note the following special case which arises when k = m.

∫
∆(k)(x1 , . . . , xk; x)∆(k)(y1 , . . . , yk; x)dx

= Σσ∈perm{1,...,k}δ(x1 , yσ(1)) . . . δ(xk , yσ(end)).

Before we continue we emphasize that the rule for the δ expression applies to
operators as well. We formalize this as the following lemma.

Lemma 4.4 If P (x′ , y) is an operator then
∫

δ(x , x′)P dx′ = P [x / x′] in the
sense that for any expression M , with x not free in M , [

∫
δ(x , x′)P dx′](M) =

P [x / x′](M [x / x′]).

Proof. We give a brief sketch. First note that we can prove, by structural
induction on M , for any expression M , that

∫
δ(x , x′) δ

δα(x′) (M)dx′ = δ
δα(x) (M [x / x′])

Connecting the principal ports

30Monday, May 11, 2009

P roof N e ts as Formal Fey nman D iagrams 39

which justifies the operator equation
∫

δ(x, x′) δ
δα(x′)dx′ = δ

δα(x) . Similarly one

can show that
∫

δ(x, x′)([M]|α(x′)=0) = ([M [x/x′]]|α(x)=0). Now structural
induction on P establishes the result.

We record a useful but obvious fact about derivatives of operators.

Lemma 4.5 If α(x) does not occur in P then δ
δα(x) (PQ) = P δ

δα(x) (Q).

We are now ready to define the exponential of an operator.

Definition 17. Let Q(x1, . . . , xm) be an operator with its sort included in
{x1, . . . , xm}. The exponential of Q is the following power series, where we
have used juxtaposition to indicate composition of the Qs:

exp(Q) = 1 + Q(x1, . . . , xm)+

(1/2)

∫
Q(x′

1, . . . , x
′
m)Q(x′′

1 , . . . , x′′
m)∆(x′

1, x
′′
1 ; x1) . . .∆(x′

m, x′′
m; xm)

dx′
1 . . . dx′

mdx′′
1 . . . dx′′

m

+ . . .

+ (1/(k!))

∫
Q(x(1)

1 , . . . , x(k)
m) . . . Q(x(k)

1 , . . . , x(k)
m)

∆k(x(1)
1 , . . . , x(k)

1 ; x1) . . . ∆k(x(1)
m , . . . , x(k)

m ; xm)

dx(1)
1 . . . dx(1)

m . . . dx(k)
1 . . . dx(k)

m + . . .

The above series is just the usual one for the exponential. What we have
done is introduce the ∆ operators rather than just writing Qk for the k-fold
composition of Q with itself. This makes precise the intuitive notation Qk and
interprets it as k-fold symmetrization of k distinct copies of Q. However, if
we wish to speak informally, we can just forget about the ∆ operators and
pretend that we are working with the familiar notion of exponential power
series of a single variable.

We have an important lemma describing how the ∆s interacts with differen-
tiating and evaluating at 0.

Lemma 4.6 If M is an expression then

[

∫
∆k(x1, . . . , xk; x)(([.]|α(x1)=0) ◦

δ
δα(x1)) ◦ . . .

◦ (([.]|α(xk)=0) ◦
δ

δα(xk))dx1 . . . dxk](M)

= (1/(k!))(

∫
∆k(x1, . . . , xk; x)([.]|α(x)=0)(

δ
δα(x1)◦. . .◦

δ
δα(xk))dx1 . . . dxk)(M).

Thus, we can remove the M and assert the evident operator equation.

We prove all the analogues of the exponential identities
for these formal power series and our formal derivatives.

31Monday, May 11, 2009

Proof Nets as Formal Feynman Diagrams 45

Proof Rule LRA Term Φ-Calculus

Axiom [[Ixy]] = δ(x, y)
Cut [[P ·x Q]] =

R

[[P]][[Q]]dx
Tensor [[⊗x,y

z (P, Q)]] =
R

[[P]][[Q]]δ(z, 〈x, y〉)dxdy
Par [[!x,y

z (P)]] =
R

[[P]]δ(z, [x, y])dxdy
Dereliction [[Dx

z (P)]] = [[P [z/x]]]([.]|α(z)=0) ◦
δ

δα(z)

Weakening [[Wz(P)]] = [[P]] ◦ W (z)([.]|α(z)=0)
δ

δα(z)

Contraction [[Cx,y
z]] =

R

[[P]]∆(x, y; z)dxdy
Exponentiation [[! x

y(P)]] = exp([[P [y/x]]]αA(y))
In the last line A is the type of the location x.

Fig. 5. Translation of LRA terms to the Φ-Calculus

the common point (the interaction is local) and we integrate over the possi-
ble interactions. The par and tensor links are constructing composite objects.
They are modelled by using pairing of locations. The promotion corresponds
to an exponentiation and dereliction is a variational derivative which probes
for the presence of the α in an exponential. Weakening is like a dereliction,
except that there is a W to perform discarding. Finally contraction is effected
by a symmetrizer; we think of it like multiplexing.

We proceed to the formal soundness argument.

Theorem 6.1 The interpretation of linear realizability algebra terms in the
φ-calculus obeys the equations R1,R3,R6,R7,R8,R9.

Proof. The proof of R1 is immediate from the definition of the Dirac delta
function. For R3 we calculate as follows.

[[⊗x,y
z (P, Q)·z!u,v

z (M)]]

=

∫
δ(z, 〈x, y〉)δ(z, [u, v]) PQM dz dxyuv by definition

=

∫
δ(〈x, y〉, [u, v]) PQM dxyuv using δ to do the z integral

=

∫
δ(x, u)δ(y, v) PQM duvxy decomposition of δ

=

∫
P [u/x]MQ[v/y]dudv doing the x, y integrals

=[[P [u/x]·uM ·vQ[v/y]]] by definition.

For equation R6 we calculate as follows.

The exponential identities immediately show that the LRA equations hold.

Interpreting Exponentials

32Monday, May 11, 2009

50 R ichard B lu t e and P rakash Panangaden

CUT

x : A y : A⊥ u : A v : A⊥

y : ? A⊥ u : ! A v : ? A⊥

Fig. 8. T he Simplest Possible E x ample wi t h E x ponent ials

∫
δ(x, y)δ(y, v)([.]|α(v)=0)

δ
δα(v)dy.

Now the last integral can be done with the convolution property of δ and we
get

δ(x, v)([.]|α(v)=0)
δ

δα(v)

which is what we expect from the cut-free proof.

An Example With Contraction

u:!A

!
!

...

x1 : A y1 : A⊥ u : A v : A

y1 :?A v : ? A

CUT

y2 : A

y2 :?A

x2 : A

x : A ⊗ A

CONTRACT

y : ? A

!

Fig. 9. A n E x ample wi t h C ont rac t ion

50 Richard Blute and Prakash Panangaden

CUT

x : A y : A⊥ u : A v : A⊥

y : ? A⊥ u : ! A v : ? A⊥

Fig. 8. The Simplest Possible Example with Exponentials

∫
δ(x, y)δ(y, v)([.]|α(v)=0)

δ
δα(v)dy.

Now the last integral can be done with the convolution property of δ and we
get

δ(x, v)([.]|α(v)=0)
δ

δα(v)

which is what we expect from the cut-free proof.

An Example With Contraction

u:!A

!
!

...

x1 : A y1 : A⊥ u : A v : A

y1 :?A v : ? A

CUT

y2 : A

y2 :?A

x2 : A

x : A ⊗ A

CONTRACT

y : ? A

!

Fig. 9. An Example with Contraction

Proof Nets as Formal Feynman Diagrams 27

CUT

!
!!

"
""

!"
#$!
!!

"
""

!"
#$!
!!

"
""

x : A⊥ u : B⊥ v : B y : A p : A⊥ r : B⊥ s : B q : A

z : A B w : A⊥!B⊥

t : A B

!"
#$

Fig. 7. Cutting a
N

link with a ! link.

This is the φ-calculus term that arises by translating the result of the first
step of the cut-elimination process. Note that it has two cuts on the simpler
formulas A and B. Now, as in the previous example we can perform the inte-
grations over y and v using the formula for the δ and then we can perform the
integrations over p and r using the convolution formula. The result is

∫
δA(x, q)δB(u, s)δ(t, q, s)dqds,

which is indeed the form of the φ-calculus term that results from the cut-free
proof.

A Basic Exponential Example

We consider the simplest possible cut involving exponential types. Consider
the an axiom link for A, A⊥. We can perform dereliction on the A⊥. Now take
another copy of this net and exponentiate on A. Finally cut the ? A⊥ with
the !A. The proof net is shown in figure 8.

The result of translating this into the φ-calculus is (after some obvious sim-
plifications)

∫
δ(x, y)([.]|α(y)=0)

δ
δα(y) exp[α(u)δ(u, v)([.]|α(v)=0)

δ
δα(v)]δ(y, u)dydu.

We can perform the u integration and eliminate the term δ(y, u). Then we can
take the variational derivative of the exponential term which will yield

33Monday, May 11, 2009

What does it all mean?

Combinatorial coincidence?

I think there are interesting suggestive analogies that are
more than coincidence.

The combinatorics of exponentials in linear logic are based on
the same intuitions as the use of exponential power series.

There are too many artificial syntactic devices for my taste.

It was a big mistake to be so obsessed with linear logic!

The real question:
what is the “logic” of Feynman diagrams as they are?

34Monday, May 11, 2009

