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Ongoing work with Blute, Ivanov, Alessio 
Guglielmi and Lutz Strassburger

Motivated by an early paper by Fotini 
Markopoulou on causal evolution

Also motivated by desire to modify consistent 
histories to work on causal structures rather 
than sequences
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Causality is limited to the light cone: no 
superluminal communication possible

state is not local: entanglement is possible.

How do we guarantee causality automatically 
while allowing non-locality?

The Challenge
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Causal Structure

A partial order between events
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Slices in Discrete Spacetime

Slices are antichains - maximal antichains play

a special role.

One can order antichains (cf. Egli-Milner or-

dering).

6

slice

slice

not a slice

maximal

Slices are sets of edges.
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One can order antichains: X ! Y means ∀x ∈ X∃y ∈ Y x ≤ y.

X

Y

Z

Here X ! Y,Z but not Y ! Z.
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Another order on antichains

X ! Y if X " Y and ∀y ∈ Y ∃x ∈ X x ≤ y

This is called the Egli-Milner order.

X

Y
Y ′

Here X ! Y

and X ! Y

but not X ! Y ′

also X ! Y ′
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Posets are not enough: we

need Graphs

We need to keep track of “how effects propa-

gate”.

Directed acyclic graphs (DAGs).
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Here the red lines would not
be necessary if we were
just talking about posets.
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a b

ab

c d e

cde

f g
fg

The N diagram.

If we propagate along global slices:
ab, cde and fg,
how do we ensure that the
incoming b does not influence
c or f?
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If we propagate along local slices:
a, b, c, d, e, f ,
how do we ensure that the
correlations between b and c
is not lost?

a

b c

d e

f

The Diamond picture
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Evolution of a Quantum System

Evolution occurs at vertices, “observers” sit

at edges and “see” the local subsystem as de-

scribed by a density matrix. The observers are

only a figure of speech, they do not interact

with the system.

At each vertex

• either one has ordinary quantum evolution,

• or there is an interaction with

– either another quantum system,

– or a classical system (measurement),

• or the system breaks up into subsystems

that fly apart.
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What happens at vertices?

• A purely quantum evolution is described by

a unitary operator U acting on ρ by U†ρU .

• A measurement is described by a projection

operator (actually by a POVM).

• A system breaking up is described by trac-

ing.

• A number of independent systems coming

together is described by tensoring.

What does independent mean? No nonlocal correlations. If there
are correlations we need a different “conjunction.”

9 12Friday, June 19, 2009



Locative Slices 1

Fix any subset of incoming edges. These al-

ways form a slice.

Suppose S is a slice and v is a vertex such that

all the incoming edges of v are in S. Then

(S \ In(v)) ∪ Out(v)

is always a slice. It is the slice obtained by

propagating S through v.

14

13Friday, June 19, 2009



v

a
b

c

d

e
f

g

hOut(v) = {f, e}

In(v) = {b, d}

S = {h, b, d, g}

(S \ In(v)) ∪Out(v) = {h, f, g, e}
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Locative Slices 2

Def: A locative slice is defined by induction.

• Any subset of the incoming edges of the

graph forms a locative slice.

• If S is a locative slice and v is a vertex

with In(v) ⊂ S then the slice obtained by

propagating S through v is locative.

Intuition: If S is locative then the density ma-

trix on S can be computed without ever com-

puting partial traces: no information is lost.

15
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POVMs

Measurements are described by positive operator-

valued measures - the usual projective mea-

surements are a special case. Outcomes la-

belled by µ ∈ {i, . . . , N}, to every outcome we

have an operator Fµ. The transformation of

the density matrix is

ρ′ =
1

κµ
FµρF †

µ.

Let Eµ := F †
µFµ; these are positive operators.

For a measurement they satisfy
∑

µ Eµ = I

and the probability of observing outcome µ is

Tr(Eµρ) = κmu. Henceforth we write pµ rather

than κµ.

17
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Intervention Operators

More general interaction: part of the quan-

tum system gets discarded during the mea-

surement. The transformation of the density

matrix is given by:

ρ′µ =
1

pµ

∑

m
AµmρA†

µm

where µ labels the degrees of freedom observed,

m labels the degrees of freedom discarded and

each Aµm now maps between two Hilbert spaces

of (perhaps) different dimensionality.

18
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Propagating Density Matrices on

Locative Slices

Each edge - more generally, each slice - has
a density matrix. In a given family of slices
each vertex has an intervention operator.

19
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T1

a

c

d e

f

T2

b
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T1 : DM(Ha)→ DM(Hb ⊗Hc)

T2 : DM(Hb ⊗Hc)→ DM(Hd ⊗Hc)

T2 : DM(Hb ⊗He)→ DM(Hd ⊗He)

Propagating through T1 gives:

Propagating through T2 using the red slice gives:

Propagating through T2 using the green slice gives:

Each version of T2 is padded out with the appropriate identity operators, the
“real” action of the of T2 is to transform the b-piece of the density matrix into
the d-piece.
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Our Proposal - Summary

• Work with dags not just posets

• Density matrices on edges

• Propagation (interventions) at vertices

• Keep track of density matrices on “special”
(locative) slices

• Keep track of quantum nonlocal correla-
tions

• Evolve along locative slices

• Compute the density matrix for an edge
by first computing the density matrix on
the minimal locative slice containing that
edge, then take the appropriate partial traces.
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Slicing Independence

Intervention operators at spacelike related vertices commute

.

u

v

L

Lu
Lv

Luv
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Evolution: Proposal 1

To obtain the density matrix on an edge e (or any slice S): evolve along locative
slices up to the (unique) minimal locative slice containing e (S) then project
down to e (S) using partial traces.

We know that this is independent of the slicing.

Minimality captures causality.
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Evolution: Proposal 2

Evolve – using a different rule – along locative slices up to any locative slice
containing e then project using partial traces.

We have to do different things according as whether an event is to the past of
an edge or not.

Causality is built into the evolution prescription.
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e

Why causality holds with proposal 1.

Only vertices to the past of e will be covered by the minimal locative slice.
And we get all of them.
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Figure 4:

subsystems separate with no classical intervention. Therefore ρbc = ρa. The slice {eb, ec} is the
least locative slice for the edge eb and we can compute the density matrix associated to this edge:
ρb = Trcρbc = 1/2 (|ψ↑

1〉〈ψ
↑
1 |+ |ψ↓

1〉〈ψ
↓
1 |). Next, let the intervention at the second vertex be a mea-

surement on the corresponding subsystem with the result that the spin was found to be in the state
ψ↑

2 . The intervention operator is the projection operator on this state of the second subsystem:

T (ρ) = 2 P ↑
2 ρP ↑

2 . We obtain: ρbd = T (ρbc) = (|ψ↑
1〉 ⊗ |ψ↑

2〉)(〈ψ
↑
1 | ⊗ 〈ψ↑

2 |). If now we attempt to
trace ρbd over the subsystem associated with the edge ed, we will obtain an incorrect result for ρb,
namely |ψ↑

1〉〈ψ
↑
1 |. The resolution is well known. Since a classical observer located on the edge eb

is not aware of the result of the intervention at the second vertex, for him the density matrix ρbd

has evolved from ρbc by an operator T̃ which includes all possible outcomes of the measurement:
ρ̃bd = T̃ (ρbc) =

∑
s=↑,↓ P s

2 ρbcP s
2 . Tracing out the d-subsystem in the expression for ρ̃bd, we obtain

the correct expression for ρb, namely ρb = 1/2 (|ψ↑
1〉〈ψ

↑
1 | + |ψ↓

1〉〈ψ
↓
1 |).

Now we give another general prescription for computing the density matrix on an edge ei from
an arbitrary locative slice L containing this edge. We first compute a density matrix ρ̃L for the
slice L. This prescription has to deal with the possibility that some of the intervention operators
used are from vertices that are not to the past of the edge ei. As we saw in the example above, the
density matrix at ei cannot reflect the knowledge of the outcome of interactions at vertices that
are not to the causal past of ei.

This density matrix is computed from the initial data by applying intervention operators for
the events in the past of L as before. But now, we will consider two types of events in the past
of L: those that are to the past of ei and those that are not. For the events that are to the
past of the edge ei, we use our regular intervention operators without a summation over the set
of possible outcomes: ρ $→ 1/pµ

∑
m AµmρA†

µm. We do not sum over the outcomes in this case
precisely because the outcome is in fact known at ei. For the events that are to the past of the
slice L but not to the past of the edge ei, we use operators that sum over all possible outcomes:
ρ $→

∑
µm AµmρA†

µm. This time, of course, the summation is there because the outcome cannot be
known at ei since these events are not to the past of ei.

After we have obtained ρ̃L, we trace out those subsystems associated with edges in L except for
ei to obtain the density matrix ρ̃i. This is the density matrix associated with our preferred edge
ei, as computed from the slice L. The independence of the result on the choice of L is expressed in
the following proposition:

13

A simple scenario
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Let ρa = |ψa〉〈ψa| where

ψa = 1/
√

2 (ψ↑
1 ⊗ ψ↑

2 + ψ↓
1 ⊗ ψ↓

2).

Now ρbc = ρa. Since bc is the least locative

slice for b we have

ρb = Trcρbc = 1/2 (|ψ↑
1〉〈ψ

↑
1| + |ψ↓

1〉〈ψ
↓
1|).

At T we measure the spin of the second sub-

system and find it to be up.

T(ρ) = 2P ↑
2ρP ↑

2 .

Thus

ρbd = T(ρbc) = (|ψ↑
1〉 ⊗ |ψ↑

2〉)(〈ψ
↑
1| ⊗ 〈ψ↑

2|).

25
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Now bd is not the minimal locative slice for b

if we attempt

ρb = Trd(ρbd) = |ψ↑
1〉〈ψ

↑
1|

which is incorrect. We need to sum over all

possible outcomes since b is causally indepen-

dent of the intervention T and cannot be in-

fluenced by the outcome.

ρ̃bd = T̃(ρbc) =
∑

s=↑,↓
Ps
2ρbcP

s
2

now if we trace over the degrees of freedom at

d we get the right answer.
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Why causality holds 2

Proposal 2: The density matrix is computed

using variants of the intervention operators de-

pending on causal relations. Want to compute

a density matrix for an edge e from an arbitrary

locative slice L - not necessarily the minimal

one - containing e. Compute ρ̃L using:

• ρ !→ 1
pµ

AµρA†
µ

if the vertex is to the causal past of e

• ρ !→ 1
pµ

∑

µ AµρA†
µ

if the vertex is not to the causal past of e.

Now the causality is explicit in the evolution

prescription.

27
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The two proposals give the same result

Proof Idea: The vertices that are not to the

past of e can be systematically “peeled off” by

first using commutativity to move them out-

ermost and then using the cyclic property of

trace to rewrite

Tr(
∑

µ
AµρA†

µ)

as

Tr(
∑

µ
A†

µAµρ)

and then using the identity for POVMs

∑

µ
A†

µAµ = I.

Peeling off successively we reduce from L to

M .

28
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f
A1

An

B1

Bm
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However, this is a degenerate example. In polycats the comma on the right of
the arrow may be a “par” ! as in linear logic.
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Polycategories generated by DAGs

Each edge is an object.

Each vertex is a (poly)morphism.

Given a finite dag G. The free polycategory

generated by G, denoted P(G), is defined as

follows: given vertex v has incoming edges

A1, A2, . . . , An and outgoing edges B1, B2, . . . , Bm

then the polycategory will have a polymorphism

of the form fv:A1, A2, . . . , An −→ B1, B2, . . . , Bm.

One imposes closure under composition, exis-

tence of identities and other algebraic condi-

tions.

47
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Polycats of Interventions

The usual category of Hilbert spaces is monoidal
and hence defines a polycategory but this is not

the one that we use.

In our category called Conj: Objects are finite-
dimensional Hilbert spaces. A morphism from
H1 to H2 is a finite family of maps {Ai}i∈I of
linear maps Ai:H1 −→ H2.

Composition is then described as follows. If
we have the following pair of maps:

H1
{Ai}i∈I−−−−−−→ H2

{Bj}j∈J−−−−−−→ H3

then the composite is:

H1
{Bj ◦ Ai}〈i,j〉∈I×J−−−−−−−−−−−−→ H3
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We restrict the class of morphisms so that the conjugation is trace preserving.
Thus, we have superoperators. We call this category Supops. We write
P(Supops) for the associated polycategory.

A morphism in Conj acts as follows:

The objects are actually just labeled by the Hilbert spaces; they are really the
set of density matrices on the Hilbert space.

ρ !→
∑

m

AmρA†
m.
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Dynamics is a Polyfunctor

The evolution of density matrices is given by a rule for calculating them on a
locative slice given the density matrix on earlier locative slices. A polyfunctor
from the polycategory generated by the DAG to P(Supops) gives exactly such
a correspondence.

Polyfunctors are – in essence – monoidal and thus polyfunctoriality states that
one has slicing invariance.
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Conclusions

We have not dealt with beam-splitting experiments. (Ben Sprott is working
with me on this now).

There is a way of presenting all this as a deductive system in a logic called BV.

Edges are atomic propositions.

Vertices describe inferences
Slices are formulas

Locative slices are deducible formulas

Connectives express whether the edges are entangled or independent.
Subtleties arise with induced correlations.

Locativity captures exactly the slices needed to guarantee causal evolution
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