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The Challenge

@ Causality is limited to the light cone: no
superluminal communication possible

@ state is not local: entanglement is possible.

@ How do we guarantee causality automatically
while allowing non-locality?
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Causal Structure

A partial order between events
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Slices in Discrete Spacetime

maximal slice

Slices are sets of edges.
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One can order antichains: X <Y means Vx € XdyeY x <uy.
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Here X <Y, Z but not Y <X Z.
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Another order on antichains

XCY#H X XYandVyeY dre X <y

also X <Y’
but not X C Y’

Here X <Y
and X CY

This is called the Egli-Milner order.
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Posets are not enough: we

need Graphs
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I

Here the red lines would not
be necessary if we were
just talking about posets.

We need to keep track of “how effects propa-
gate’.
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If we propagate along global slices:
ab, cde and fg,

how do we ensure that the
incoming b does not influence

cor f?
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The Diamond picture

If we propagate along local slices:
a,b,c,d,e,f,

how do we ensure that the
correlations between b and c¢

is not lost?
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Evolution of a Quantum System
Evolution occurs at vertices, “observers’ sit
at edges and ‘'see” the local subsystem as de-
scribed by a density matrix. The observers are

only a figure of speech, they do not interact
with the system.

At each vertex

e either one has ordinary quantum evolution,

e Or there is an interaction with
— either another quantum system,

— or a classical system (measurement),

e Or the system breaks up into subsystems
that fly apart.
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What happens at vertices?

A purely quantum evolution is described by
a unitary operator U acting on p by UfpU.

A measurement is described by a projection
operator (actually by a POVM).

A system breaking up is described by trac-
ing.

A number of independent systems coming
together is described by tensoring.
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Locative Slices 1

FiX any subset of incoming edges. These al-
ways form a slice.

Suppose S is a slice and v is a vertex such that
all the incoming edges of v are in S. Then

(S'\ In(v)) UOut(v)

IS always a slice. It Is the slice obtained by
propagating S through v.
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(S\ In(v))UOut(v) =1{h, f,g,¢e}

S ={h,b,d, g}
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Locative Slices 2

Def: A locative slice is defined by induction.

e Any subset of the incoming edges of the
graph forms a locative slice.

o If S is a locative slice and v is a vertex
with In(v) C S then the slice obtained by
propagating S through v is locative.

Intuition: If S is locative then the density ma-
trix on S can be computed without ever com-
puting partial traces: no information is lost.
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POVMSs

Measurements are described by positive operator-
valued measures - the usual projective mea-
surements are a special case. Outcomes la-
belled by u € {7,..., N}, to every outcome we
have an operator Fj,. The transformation of
the density matrix Is

/ 1
p=—Fupk,.

Fop

Let B, 1= FJFM; these are positive operators.

For a measurement they satisfy ZuEu = ]
and the probability of observing outcome u is
Tr(Eup) = kmu. Henceforth we write p,, rather

than k.
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Intervention Operators

More general interaction: part of the quan-
tum system dgets discarded during the mea-
surement. The transformation of the density
matrix is given by:

1
ﬂ;L — Z A/meALm
Pu m

where u labels the degrees of freedom observed,
m labels the degrees of freedom discarded and
each A,m now maps between two Hilbert spaces
of (perhaps) different dimensionality.
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Propagating Density Matrices on
Locative Slices

Each edge - more generally, each slice - has
a density matrix. In a given family of slices
each vertex has an intervention operator.
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Propagating through 17 gives:

Ty : DM(H,) — DM (Hp @ H..)

Propagating through 75 using the red slice gives:

Ty : DM(Hy @ H,.) — DM(Hy @ H.)

Propagating through 75 using the green slice gives:

T2 . DM(Hb X 7'!

(e) — DM(h

(d @ F

{6)

Each version of T5 is padded out with the appropriate identity operators, the
“real” action of the of T is to transform the b-piece of the density matrix into

the d-piece.
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OQOur Proposal - Summary

e Work with dags not just posets

Density matrices on edges

Propagation (interventions) at vertices

Keep track of density matrices on ‘‘special”
(locative) slices

Evolve along locative slices

Compute the density matrix for an edge
by first computing the density matrix on
the minimal locative slice containing that
edge, then take the appropriate partial traces.
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Slicing Independence

Intervention operators at spacelike related vertices commute
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Slicing independence

Suppose L is a locative slice and u and v are
two minimal vertices above L. Clearly v and v
are acausal with respect to each other so the
Intervention operators commute. Thus we can
go L — Ly — Lyy O L — Ly — Lyow. Clearly
L., Ly and Ly, are all locative and the density
matrix on L, Will be the same calculated either
way. We can piece together such “diamonds”
iInductively.
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Evolution: Proposal 1

To obtain the density matrix on an edge e (or any slice S): evolve along locative
slices up to the (unique) minimal locative slice containing e (S) then project
down to e (S) using partial traces.

We know that this is independent of the slicing.

Minimality captures causality.
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Evolution: Proposal 2

Evolve — using a different rule — along locative slices up to any locative slice
containing e then project using partial traces.

We have to do different things according as whether an event is to the past of
an edge or not.

Causality is built into the evolution prescription.
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Why causality holds with proposal 1.

A

Only vertices to the past of e will be covered by the minimal locative slice.
And we get all of them.
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A simple scenario

Pd4
Pb I
/
Ly,

At T we measure the spin of the second sub-
system and find it to be up.

Friday, June 19, 2009

27



Let po = |Ya)(a| Where
Yo =1/V2 (] @+ 91 @ ¥3).

Now pp. = pa- Since bc is the least locative
slice for b we have

b = Trppe = 1/2 (|01 (]| + |01 (1)),

At T we measure the spin of the second sub-
system and find it to be up.

T(p) = 2Pl pP].

hus

oba = T(ppe) = (|01) @ [N (1] ® (wh)).
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Now bd is not the minimal locative slice for b
If we attempt

op = Tr(ppq) = 1) (]

which is incorrect. We need to sum over all
possible outcomes since b is causally indepen-
dent of the intervention T' and cannot be in-
fluenced by the outcome.

pra = T(ppe) = D Pipp.P3
s=T1,|
now if we trace over the degrees of freedom at
d we get the right answer.
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Why causality holds 2

Proposal 2: The density matrix is computed
using variants of the intervention operators de-
pending on causal relations. Want to compute
a density matrix for an edge e from an arbitrary
locative slice L - not necessarily the minimal
one - containing e. Compute py, using:

If the vertex is to the causal past of e

® P p%,JZH AM:OAL
if the vertex is not to the causal past of e.

Now the causality is explicit in the evolution
prescription.

Friday, June 19, 2009

30



The two proposals give the same result

Proof Idea: The vertices that are not to the
past of e can be systematically “peeled off” by
first using commutativity to move them out-
ermost and then using the cyclic property of
trace to rewrite

Tr(> A,uPAL)
3
as
Tr() ALAM,O)
3
and then using the identity for POVMSs

S AlAL =1
!

Peeling off successively we reduce from L to
M.
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Polycategories

Morphisms may connect many objects:

fIAl,AQ,...,An—>Bl,BQ,...,Bm
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Any monoidal category can be viewed as a
polycategory:

fIA1®A2®...®An4>Bl®BQ®...®Bm

but the polycategory view emphasizes the re-
lationship to (classical) deductive systems.

However, this is a degenerate example. In polycats the comma on the right of
the arrow may be a “par” ’@ as in linear logic.
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Polycategories generated by DAGSs

Each edge is an object.
Each vertex is a (poly)morphism.

Given a finite dag G. The free polycategory
generated by G, denoted P(G), is defined as
follows: given vertex v has incoming edges
Aq,Ao,..., Ay and outgoing edges By, By, ..., Bm
then the polycategory will have a polymorphism
of the form f,: A1, A>,..., Ay, — B1,B>,...,Bn.

One imposes closure under composition, exis-
tence of identities and other algebraic condi-
tions.
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Polycats of Interventions

T he usual category of Hilbert spaces is monoidal

and hence defines a polycategory but this is not
the one that we use.

In our category called Conj: Objects are finite-
dimensional Hilbert spaces. A morphism from
Hq to Ho is a finite family of maps {A4;};cy of
linear maps A;: " H1 — Ho.

Composition is then described as follows. If
we have the following pair of maps:

Ai}i Bjt;
Hl { }€[>H2 {J}]€J>H3

then the composite is:

{Bjo A} i, elxJ
H]_ J (i,7)EIX >H3
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The objects are actually just labeled by the Hilbert spaces; they are really the
set of density matrices on the Hilbert space.

A morphism in Conj acts as follows:

pr> Y AppAl,

We restrict the class of morphisms so that the conjugation is trace preserving.
Thus, we have superoperators. We call this category Supops. We write
P(Supops) for the associated polycategory.
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Dynamics is a Polyfunctor

The evolution of density matrices is given by a rule for calculating them on a
locative slice given the density matrix on earlier locative slices. A polyfunctor
from the polycategory generated by the DAG to P(Supops) gives exactly such
a correspondence.

Polyfunctors are — in essence — monoidal and thus polyfunctoriality states that
one has slicing invariance.
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Conclusions

Locativity captures exactly the slices needed to guarantee causal evolution

There is a way of presenting all this as a deductive system in a logic called BV.

Edges are atomic propositions.

Slices are formulas
Vertices describe inferences

Locative slices are deducible formulas

Connectives express whether the edges are entangled or independent.

Subtleties arise with induced correlations.

We have not dealt with beam-splitting experiments. (Ben Sprott is working
with me on this now).
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