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The basic idea

Approximate equations: s =ε t, s is within ε of t.
Definitely not an equivalence relation;
it defines a uniformity (but we won’t stress this point of view).
Quantitative analogue of equational reasoning.
completeness results, universality of free algebras, Birkhoff-like
variety theorem, monads ....
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History

Moggi 1988: How to incorporate “effects” into denotational
semantics?
(Strong) Monads!
Plotkin, Power (and then many others): view effects algebraically.
Monads are given by operations and equations.
Categorically: equational presentations are Lawvere theories (but
we won’t talk about them here either).
A monad of great interest: Lawvere (1964) The category of
probabilistic mappings.
Giry (1981): monad on measure spaces and also on Polish
spaces.
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Metrics

Probabilistic reasoning requires measure theory but,
measure theory works best on Polish spaces (topological space
underlying separable complete metric spaces).
Metric ideas present in semantics from the start: Jaco de Bakker’s
school.
Mardare, P., Plotkin (2016): Develop the theory of effects in a
metric setting (motivated by probability).
Algebras will come with metric structure and quantitative
equational theories will define monads on Met.
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Quantitative equations

Signature Ω, variables X we get terms TX.
Quantitative equations: V(TX):

s =ε t, s, t ∈ TX, ε ∈ Q ∩ [0, 1]

A substitution σ is a map X −→ TX; we write Σ(X) for the set of
substitutions.
Any σ extends to a map TX −→ TX.
Quantitative inferences: E(TX) = Pfin(V(TX))× V(TX)

{s1 =ε1 t1, . . . , sn =εn tn} ` s =ε t
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Deducibility relations

(Refl) ∅ ` t =0 t

(Symm) {t =ε s} ` s =ε t.
(Triang) {t =ε s, s =ε′ u} ` t =ε+ε′ u.

(Max) For e′ > 0, {t =ε s} ` t =ε+ε′ s.
(Arch) For all ε ≥ 0, {t =ε′ s | ε′ > ε} ` t =ε s. Infinitary!

(NExp) For f : n ∈ Ω,
{t1 =ε s1, . . . , tn =ε sn} ` f (t1, ..ti, ..tn) =ε f (s1, ..si, ..sn)

(Subst) If σ ∈ Σ(X), Γ ` t =ε s implies σ(Γ) ` σ(t) =ε σ(s).
(Cut) If Γ ` φ for all φ ∈ Γ′ and Γ′ ` ψ, then Γ ` ψ.

(Assumpt) If φ ∈ Γ, then Γ ` φ.
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Quantitative equational theories

Given S ⊂ E(TX), `S: smallest deducibility relation containing S.
Equational theory: U = `S

⋂
E(TX).
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Quantitative algebras

Ω: signature; A = (A, d),
A an Ω-algebra and (A, d) a metric space.
All functions in Ω are nonexpansive.
Morphisms are Ω-algebra homomorphisms that are nonexpansive.
TX is an Ω-algebra. σ : TX −→ A, Ω-homomorphism.
(A, d) satisfies {si =εi ti/i = 1, . . . , n} ` s =ε t if

∀σ, d(σ(si), σ(ti)) ≤ εi, i = 1, . . . , n
implies

d(σ(s), σ(t)) ≤ ε.

We write {si =εi ti/i = 1, . . . , n} |=A s =ε t.
We write K(U ,Ω) for the algebras satisfying U .
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A metric on TX

dU (s, t) = inf{ε | ∅ ` s =ε t ∈ U}

Why not use the following?

dU (s, t) = inf{ε | ∀V ∈ Pf (V(X)),V ` s =ε t ∈ U}

They are the same!
The (pseudo)metric can take on infinite values.
The kernel is a congruence for Ω.
If we take the quotient we get an (extended) metric space.
The resulting algebra is in K(Ω,U).
We can do this for any set M of generators and produce a “free”
quantitative algebra.
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Completeness

∀A ∈ K(U ,Ω), Γ |=A φ if and only if [Γ ` φ] ∈ U .

Analogue of the usual completeness theorem for equational logic.
Right to left is by definition.
Left to right is by a model construction.
The proof needs to deal with quantitative aspects and uses the
archimedean property.
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Free construction from a metric space

Starting from a metric space (M, d) we can define TM by adding
constants for each m ∈ M

and axioms ∅ ` m =e n for every rational e such that d(m, n) ≤ e.
Call this extended signature ΩM and the extended theory UM.
Any algebra in K(UM,UM) can be viewed as an algebra in K(Ω,U)
by forgetting about the interpretation of the constants from M.
Given any α : M −→ A non-expansive we can turn A = (A, d) into
an algebra in K(ΩM,UM) by interpreting each m ∈ M as α(m) ∈ A.
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Universal property

Met K(Ω,U)

(M, dM)

α

$$

ηM // T[M]

h
��

T[M]

h
��

(A, dA) A

UM is consistent if and only if the map ηM is an isometry.

We have a monad on Met.
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Birkhoff Variety Theorems

Three kinds of equations: (a) unconditional equations
(b) basic equations : assumptions of the form x =ε y, x, y variables.
(c) Horn clauses, assumptions may involve terms.
Usual variety theorem says: a class of algebras is equationally
definable if and only it it is closed under products, homomorphic
images and subalgebras.
We have to consider a new kind of closure property.
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Reflexive homomorphisms

A c-reflexive homomorphism f between QA’s A,B, where c is a
cardinal number, is a homomorphism with the property that for any
subset B′ ⊂ B with |B′| < c, there is a subset A′ ⊂ A with f (A′) = B′

and f restricted to A′ is an isometry.
If U is an unconditional theory then K(Ω,U) is closed under
homomorphic images.
If U is a basic equational theory with every conditional equation
having only finitely many assumptions then K(Ω,U) is closed
inder ℵ0-reflexive homomorphisms.
If U is a basic equational theory then K(Ω,U) is closed inder
ℵ1-reflexive homomorphisms.
A c-variety is a class of algebras closed under products,
subalgebras and c-reflexive homomorphisms.
A c-equational class is a class of algebras defined by c-basic
conditional equations.
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The main theorem

K is a c-variety if and only if it is a c-basic equational class.

K is an unconditional equational class iff it is a variety.
K is a finitary-basic equational class iff it is an ℵ0-variety.
K is a basic equational class iff it is an ℵ1-variety.
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