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The basic idea

@ Approximate equations: s =, ¢, s is within ¢ of ¢.

@ Definitely not an equivalence relation;

@ it defines a uniformity (but we won'’t stress this point of view).
@ Quantitative analogue of equational reasoning.

@ completeness results, universality of free algebras, Birkhoff-like
variety theorem, monads ....
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@ Moggi 1988: How to incorporate “effects” into denotational
semantics?

@ (Strong) Monads!

@ Plotkin, Power (and then many others): view effects algebraically.
Monads are given by operations and equations.

@ Categorically: equational presentations are Lawvere theories (but
we won'’t talk about them here either).

@ A monad of great interest: Lawvere (1964) The category of
probabilistic mappings.

@ Giry (1981): monad on measure spaces and also on Polish
spaces.
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@ Probabilistic reasoning requires measure theory but,

@ measure theory works best on Polish spaces (topological space
underlying separable complete metric spaces).

@ Metric ideas present in semantics from the start: Jaco de Bakker’s
school.

@ Mardare, P, Plotkin (2016): Develop the theory of effects in a
metric setting (motivated by probability).

@ Algebras will come with metric structure and quantitative
equational theories will define monads on Met.
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Quantitative equations

@ Signature (2, variables X we get terms TX.
@ Quantitative equations: V(TX):

s=ct, s,t€TX, e€Qn]0,1]

@ A substitution o is a map X — TX; we write X(X) for the set of
substitutions.
@ Any o extends to a map TX — TX.

@ Quantitative inferences: £(TX) = Psin(V(TX)) x V(TX)

{s1=c,t1,...,8n=¢, thf Fs=c1t
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Deducibility relations

(Refl) OFt=¢t
(Symm) {r=cs}ts=ct
(Triang) {t =cs,s = u} Ft=cic u.

(Max) Fore >0, {t=.s}Ft=cic s

(Arch) Foralle >0, {r=. s |& > e} 1t =cs. Infinitary!
(NExp) Forf:n e Q,

{t1 =c S1, .- th =e sn} B f(t1, iy . 1y) =c f(51, -8, -.8n)
(Subst) If 0 € ¥(X), I' -t =, simplies o(I") - o (1) = o(s).
(Cut) fT"'+¢forallp e IV and IV F 4, then T' F ).
(Assumpt) If ¢ € T', then T' - ¢.
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Quantitative equational theories

@ Given S C £(TX), Fg: smallest deducibility relation containing S.
@ Equational theory: U = s () E(TX).
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Quantitative algebras

@ (: signature; A = (A,d),
A an Q-algebra and (A, d) a metric space.
@ All functions in Q are nonexpansive.
@ Morphisms are (2-algebra homomorphisms that are nonexpansive.
@ TX is an Q-algebra. o : TX — A, Q-homomorphism.
@ (A,d) satisfies {s; =, 1;/i=1,...,n} Fs=ctif

Vo, d(a(si),a(t,-)) <eg,i=1,....n
implies
d(a(s),0()) < e.

e Wewrite {s; =, t;/i=1,...,n} Fas=:t
@ We write K(i, ?) for the algebras satisfying U.
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A metric on TX

d4(s,t) =inf{e | D F s =t €U} J

@ Why not use the following?

d(s,) = inf{e | YV € Pr(V(X)),V ks = t € U} J

@ They are the same!

@ The (pseudo)metric can take on infinite values.

@ The kernel is a congruence for €.

@ If we take the quotient we get an (extended) metric space.
@ The resulting algebra is in K(Q,4).

@ We can do this for any set M of generators and produce a “free”
quantitative algebra.
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Completeness

VA e KU,Q), T Eq¢ifandonly if [['F @] € U. J

@ Analogue of the usual completeness theorem for equational logic.
@ Right to left is by definition.
@ Left to right is by a model construction.

@ The proof needs to deal with quantitative aspects and uses the
archimedean property.
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Free construction from a metric space

@ Starting from a metric space (M, d) we can define TM by adding
constants foreach m ¢ M

@ and axioms () - m =, n for every rational e such that d(m,n) < e.

@ Call this extended signature €2, and the extended theory Uy,.

@ Any algebra in K(Uy,Upy) can be viewed as an algebra in K(Q,U)
by forgetting about the interpretation of the constants from M.

@ Given any a : M — A non-expansive we can turn A = (A,d) into
an algebra in K(4, Uy ) by interpreting each m € M as a(m) € A.
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Universal property

Met K(Q,U)
(M, d") = T[M] TM]
| |
\ L L
\ Y
(A,d%) A
Uy is consistent if and only if the map 7y, is an isometry. ]

We have a monad on Met.
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Birkhoff Variety Theorems

@ Three kinds of equations: (a) unconditional equations
@ (b) basic equations : assumptions of the form x =; y, x, y variables.
@ (c¢) Horn clauses, assumptions may involve terms.

@ Usual variety theorem says: a class of algebras is equationally
definable if and only it it is closed under products, homomorphic
images and subalgebras.

@ We have to consider a new kind of closure property.
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Reflexive homomorphisms

@ A c-reflexive homomorphism f between QA’s A, B, where ¢ is a
cardinal number, is a homomorphism with the property that for any
subset B’ C B with |B'| < ¢, there is a subset A’ C A with f(A’) = B’
and f restricted to A’ is an isometry.

@ If U is an unconditional theory then K(2,{) is closed under
homomorphic images.

@ If U/ is a basic equational theory with every conditional equation
having only finitely many assumptions then K(2,/) is closed
inder X-reflexive homomorphisms.

@ If U is a basic equational theory then K(2,4/) is closed inder
N;-reflexive homomorphisms.

@ A c-variety is a class of algebras closed under products,
subalgebras and c-reflexive homomorphisms.

@ A c-equational class is a class of algebras defined by c-basic
conditional equations.
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The main theorem

K is a c-variety if and only if it is a c-basic equational class. ]

@ K is an unconditional equational class iff it is a variety.
@ K is afinitary-basic equational class iff it is an Ry-variety.
@ K is a basic equational class iff it is an X;-variety.
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