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How do we define random processes on continuous state spaces?

How do we define conditional probabilities on continuous state spaces?

How do we define probabilities on continuous state spaces?

Points are useless!

The probability of a set may be 1 but the probability
of every single point could be 0.

We understand countable sums, but
uncountable sums are handled by integration.
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Consider the definition of conditional probability:

P (A|B) =
P (A ∩B)

P (B)
.

Of course this assumes that P (B) �= 0.

But we will want to write transition probabilities like
τ(x,A): the probability of landing in the set A given
that the system starts at x.

We can consider a family of sets B1 ⊃ B2 ⊃ . . .
with ∩iBi = {x} and try to define some kind of “limit”:

lim
i→∞

P (A ∩Bi)
P (Bi)

. This rarely makes sense!
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Introduction

Discrete probabilistic transition systems

Labelled Markov processes

Probabilistic bisimulation

Simulation

The Need for Measure Theory

Basic fact: There are subsets of R for which no sensible

notion of size can be defined.

More precisely, there is no translation-invariant measure

defined on all the subsets of the reals.
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What is measure theory?

Introduction

Bisimulation implies logical agreement

Measure theory

The gory details

Concluding remarks

What is measure theory?

We want to assign a “size” to sets so that we can use it for

quantitative purposes, like integration or probability.

We could count the number of points but this is useless for

the continuum.

We want to generalize the notion of “length” or “area.”

What is the “length” of the rational numbers between 0 and

1?

We want a consistent way of assigning sizes to these and

(all?) other sets.
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Introduction

Bisimulation implies logical agreement

Measure theory

The gory details

Concluding remarks

What are measurable sets anyway?

Alas! Not all sets can be given a sensible notion of size

that generalizes the notion of length of an interval.

We take a family of sets satisfying “reasonable” axioms

and deem them to be “measurable.”

Countable unions are the key.
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σ-algebras
A σ-algebra on a set X is a family Σ of subsets of X
satisfying:

• X, ∅ ∈ Σ

• A ∈ Σ implies Ac ∈ Σ
and

• Ai ∈ Σ where {Ai|i ∈ I} is a countable family,

implies that
�

i∈I

Ai ∈ Σ.

It follows that Σ is closed under countable intersections.
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Basic Facts

Introduction

Bisimulation implies logical agreement

Measure theory

The gory details

Concluding remarks

Basic facts

The intersection of any collection of σ-algebras on a set is
another σ-algebra.

Thus given any family of sets B there is a least σ-algebra
containing B: the σ-algebra generated by B.

Measurable sets are complicated beasts, we often want to

work with the sets of family of simpler sets that generate

the σ-algebra.

The σ-algebra generated by the intervals in R is called the

Borel algebra.

There is a larger σ-algebra containing the Borel sets called
the Lebesgue σ-algebra; we will not use it.
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Introduction

Bisimulation implies logical agreement

Measure theory

The gory details

Concluding remarks

Functions

What are the “right” functions between measurable

spaces?

Let f : X −→ Y be a function and let Σ be a σ-algebra on Y .
The sets of the form {f−1(A)|A ∈ Σ} form a σ-algebra on
X .

σ-algebras behave well under inverse image.

A function f from a σ-algebra (X ,ΣX ) to a σ-algebra
(Y ,ΣY ) is said to bemeasurable if f−1(B) ∈ ΣX whenever

B ∈ ΣY .
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Introduction

Bisimulation implies logical agreement

Measure theory

The gory details

Concluding remarks

Measures

A measure (probability measure) µ on a measurable space

(X ,Σ) is a function from Σ (a set function) to [0,∞] ([0,1]),
such that if {Ai |i ∈ I} is a countable family of pairwise disjoint
sets then

µ(
⋃

i∈I

Ai) =
∑

i∈I

µ(Ai).

In particular if I is empty we have

µ(∅) = 0.

A set equipped with a σ-algebra and a measure defined on it is
called a measure space.
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Proposition 14 (Monotonicity and Continuity)

1. If A ⊆ B then µ(A) ≤ µ(B).

2. If A1 ⊆ A2 ⊆ . . . An ⊆ . . . and ∪iAi = A then

limi→∞ µ(Ai) = µ(A).

3. If A1 ⊇ A2 ⊇ . . . An ⊇ . . . and ∩iAi = A then

limi→∞ µ(Ai) = µ(A), if µ(A1) is finite.

Corollary 15 (Convexity) For any countable

family of sets Bi we have µ(∪iBi) ≤
∑

i µ(Bi).

24

Properties of Measures

Convexity: µ(
�

i

Bi) ≤
�

i

µ(Bi)

Bi a countable family.
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Introduction

Bisimulation implies logical agreement

Measure theory

The gory details

Concluding remarks

Lebesgue measure on R

For any subset of R we define outer measure as the

infimum of the total length of the intervals of any covering

family of intervals.

The rationals have outer measure zero.

This is not additive so it does not give a measure defined

on all sets.

It does however give a measure on the Borel sets.
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Lebesgue Measure I

We begin as follows

m((a, b)) = m((a, b]) = m([a, b)) = m([a, b]) = b−a

where a and b are real numbers. If we have a

pairwise disjoint collection of intervals {Ik|k ∈

K} we define

m(
⋃

k∈K

Ik) =
∑

k∈K

m(Ik)

If A is arbitrary we define m∗(A) to be the inf

of m over all families of intervals that cover A.

Clearly (?) if A is countable m∗(A) is zero.

28

m∗ is not countably additive but it does satisfy convexity.
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What properties does µ∗ have? It is clearly
monotone but not countably additive. We claim
that it satisfies the convexity property

µ∗(∪iAi) ≤
∑

i

µ∗(Ai)

where {Ai} is a countable family not necessarily
pairwise disjoint.

Definition 19 An outer measure on a set X
is a set function µ∗ : P(X) −→ [0,∞], defined
on all subsets of X, such that

1. µ∗(∅) = 0,

2. A ⊆ B ⇒ µ∗(A) ≤ µ∗(B) and

3. for any countable family of subsets of X, say
{Ai}, we have

µ∗(∪iAi) ≤
∑

i

µ∗(Ai).

29

An outer measure µ∗ on a set X is a set-function
defined on all subsets such that:
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Theorem 20 Let X be a set and let µ∗ be an

outer measure defined on X. Denote by Σ the

collection of all subsets, say A, such that for

every subset E of X we have

µ∗(E) = µ∗(A ∩ E) + µ∗(Ac ∩ E).

For all A in Σ define µ(A) = µ∗(A). Then

(X,Σ, µ) is a measure space.

30
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This is how we construct the usual (Lesbesgue) measure on R.
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Consider the set of all infinite sequences from some alphabet A.

Let α be a finite sequence.Call this set S.

α ↑ def= {s ∈ S|α is a prefix of s}.

We define Σ on S as the σ-algebra generated by
all sets of the form α ↑.

The sets of the σ-algebra are a pain to describe, but the
generating sets are easy to describe.

One can show that measures defined on these generating

sets extend to a measure on the whole σ-algebra.

16Friday, June 11, 2010



Integration

Two approaches:

• Riemann: Divide up the domain, func-

tions have to be “well-behaved”; contin-

uous (Lebesgue)-almost everywhere. The

integral has poor convergence properties.

The basis of all numerical algorithms; much

more constructive in flavour.

• Lebesgue: Divide up the range, functions

can be perverse (measurable), very good

convergence properties. Hard to see how

to make it constructive.

31
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The strategy:

1. First define the integral of characteristic
functions

∫

χAµ =df µ(A).

2. Using linearity, define the integral of simple
functions

∫

sµ =
n

∑

i=1

aiµ(Ai)

where

s =
n

∑

i=1

aiχAi
.

3. Using the fact that all positive measurable
functions are sups of increasing sequences
of simple functions we define the integral
of a positive measurable function as a sup:
∫

fµ = sup{
∫

sµ : s is simple and s ≤ f}.

32
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Radon-Nikodym Theorem
If µ, ν are measures and for any measurable set A,
whenever ν(A) = 0 then also µ(A) = 0, we write µ << ν
and say that µ is absolutely continuous with respect to ν.

Theorem: If µ << ν then there is a measurable function
h such that for any measurable set B:

Any other function with the same property will agree with
h except on a set of points with ν-measure 0. We say that
h is almost unique.

�

B
hdµ = ν(B).

We write h = dµ
dν .
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Conditioning wrt a sub-σ-algebra
Suppose that (X,Σ, P ) is a probability space describing
a random process.

Suppose that you find out the following partial information
about the outcome: you know in which member of a
sub-σ-algebra Λ ⊂ Σ the outcome lies.

For B ∈ Λ and fixed A ∈ Σ define Q(B) = P (A ∩B).
Clearly Q << P . So by the Radon-Nikodym theorem:

∃f such that P (A ∩B) =
�

B
fdP, ∀B ∈ Λ.
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We write P [A||Λ](·) for f . This is called the
conditional probability for A given Λ.

Note that it is not unique, but defined up to sets of
P -measure 0. The different functions are called versions.

Note that it is a Λ-measurable function. Hence it is

“smoother” than a Σ-measurable function.
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Let Σ be the usual measurable sets in the plane and let
Λ be sets of the form A× Y where A is a measurable
subset of X.

X

Y P

Consider a joint distribution P of two continuous variables.

The conditional probability P [A||Λ](·) will be the estimate
of the distribution if you know perfectly the X result. Since
it is Λ-measurable, it has to be constant along the Y -axis.
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Markov Kernels
The previous example is ideally suited to the case where
the two variables are “the last state” and “the present
state” of a transition system.

We use the notation τ(x,A) to mean the conditional
probability density for the next state to be in the
set A given that the present state is x.

For fixed A it is a measurable function of x and for
fixed x it is a measure; almost everywhere.

With suitable topological assumptions ( Polish or analytic )
one can choose versions so that τ is a measure everywhere.

They are called Markov kernels or stochastic kernels.
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Probabilistic relations
I called them “probabilistic relations” in 1998 by analogy
with ordinary relations.

Even though they are not symmetric they are connected
to “fuzzy” powersets in the same way that relations
are connected to powersets.

They compose by integration.

They are also just like matrices.
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How do you get from x to A in two steps?

x dy
A

τ τ

τ (2)(x,A) =
�

S
τ(x,dy), τ(y,A).

����

for fixed A, τ
is a measurable
function.

����

for fixed x, τ
is a measure.
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Stochastic Processes

Definition 52 A stochastic process is an in-

dexed family of random variables Xt : Ω −→ R

where (Ω,B, P) is a probability space and t ∈ T

is the indexing set.

Alternatively: a functor from ω to SRel.

Joint distributions can be defined:

Pt1...tn(B) = P({x|(Xt1(x), . . . , Xtn(x)) ∈ B}).

79
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Think of Ω as the space of trajectories.

More generally, instead of R, we can have any
measurable space as the state space.

How does this connect with the state-transformation view?
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Stochastic Processes

Definition 52 A stochastic process is an in-

dexed family of random variables Xt : Ω −→ R
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First Kolmogorov consistency requirement

Pt1...tntn+1
(B × R) = Pt1...tn(B).

The second reqirement says that the distribu-

tions behave the way they should under per-

mutation of the variables.

Fundamental Theorem: Any family of finite-

dimensional probability distributions satisfying

these requirements can be realized as a stochas-

tic process.

80
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Markov Processes

We write P(An+1|x1, . . . , xn) for the conditional

probability that the system is in the set An+1

given that at time t1 it was at x1 etc.

In a Markov Process we only depend on the

last state:

P(An+1|x1, . . . , xn) = P(An+1|xn).

These are precisely what can be described as

matrices or stochastic kernels.

81
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