Equational reasoning for probabilistic programming Part I: (a) Basic equational logic (b) Metrics

Prakash Panangaden¹

¹School of Computer Science McGill University

Probabilistic Programming Languages 29th May - 2nd June 2017

- Equations are at the heart of mathamatical reasoning.
- Reasoning about programs is also based on program equivalences.
- A trinity of ideas: Equationally given algebras, Lawvere theories, Monads on Set
- The dawning of the age of quantitative reasoning.
- We want quantitative analogues of algebraic reasoning.
- (Pseudo)metrics instead of equivalence relations.
- Equality indexed by a real number $=_{\epsilon}$.
- Monads on Met.
- Enriched Lawvere theories?

- Summary of equational logic
- Monads
- Monads and computation
- Metrics for probabilistic systems

- Signature $\Omega = \{(Op_i, n_i) | i = 1 \dots k\}$
- Terms $t ::= x | Op(t_1, ..., t_n)$
- Equations s = t
- Axioms, sets of equations Ax
- Deduction $Ax \vdash s = t$
- Usual rules for deduction: equivalence relation, congruence,...
- Theories: set of equations closed under deduction.

Equational deduction rules

• Axiom $Ax \vdash s = t$ if $s = t \in Ax$

Equivalence

$$\overline{Ax \vdash t = t}$$

$$\underline{Ax \vdash s = t, Ax \vdash t = u}$$

$$\overline{Ax \vdash s = u}$$

$$\underline{Ax \vdash s = t}$$

$$\overline{Ax \vdash t = s}$$

Congruence

$$\frac{Ax \vdash t_1 = s_1, \dots, Ax \vdash t_n = s_n}{Ax \vdash Op(t_1, \dots, t_n) = Op(s_1, \dots, s_n)}$$

Substitution

$$\frac{Ax \vdash t = s}{Ax \vdash t[u/x] = s[u/x]}$$

- We assume that that there is one set of "basic things" one-sorted algebras.
- Fix a set Ω of *operations*, each with a fixed arity $n \in \mathbb{N}$. These include *constants* as arity zero "operations." Such an Ω is called a signature.
- Everything has finite arity.
- As Ω-algebra A is a set A to interpret the basic sort and, for each operation f of arity n a function f_A : Aⁿ → A.

- Can define homomorphisms and subalgebras easily.
- What about equations that are required to hold?
- Given a set X we define the term algebra generated by X, TX
- The elements of *X* are in *TX*.
- If t_1, \ldots, t_n are in *TX* and *f* has arity *n* then $f(t_1, \ldots, t_n)$ is in *TX*.

- Want to write things like $\forall x, y, z; f(x, f(y, z)) = f(f(x, y), z)$.
- X, set of variables.
- Let *s*, *t* be terms in *TX*, we say the equation s = t holds in an Ω -algebra \mathcal{A} if for every homomorphism $h : TX \to \mathcal{A}$ we have h(s) = h(t) where, in the latter, = means identity.
- Let *S* be a set of equations between pairs of terms in *TX*. We define a *congruence relation* ∼_S on *TX* in the evident way.

- Easy to check that if $t_1 \sim_S s_1, \ldots, t_n \sim_S s_n$ then $f(t_1, \ldots, t_n) \sim_S f(s_1, \ldots, s_n)$ we can define f_{\sim_S} on TX / \sim_S .
- Let [t] be an equivalence class of ∼_S; f_{∼S}([t₁],...,[t_n]) is well defined by [f(t₁,...,t_n)].
- A class of Ω-algebras satisfying a set of equations is called a variety of algebras (not the same as an algebraic variety!).
- When are a set of equations bad? If we can derive *x* = *y* from *S* then the only algebras have one element.

- Monoids, groups, rings, lattices, boolean algebras are all examples.
- Vector spaces have two sorts.
- Fields are annoying because we have to say *x* ≠ 0 implies *x*⁻¹ exists. Fields do not form an equational variety.
- Sometimes we need to state conditional equations; these are called *Horn clauses*. Example: cancellative monoids, x ⋅ y = x ⋅ z ⊢ y = z.
- Stacks are equationally definable but queues are not.

Example: barycentric algebras (Stone 1949)

• Signature:

$$\{+_{\epsilon}|\epsilon\in[0,1]\}$$

Axioms:

Universal properties

- Let K(Ω, S) be the collection of algebras satisfying the equations in S. K(Ω, S) becomes a category if we take the morphisms to be Ω-homomorphisms.
- Let X be a set of generators. We write T[X] for TX / ∼_S. There is a map η_X : X → T[X] given by η_X(x) = [x].
- Universal property.

Set
$$\mathbb{K}(\Omega, S)$$

Birkhoff

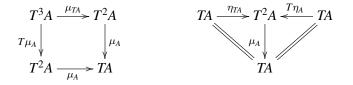
A collection of algebras is a variety of algebras if and only if it is closed under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses: quasivariety theorems.

Example

Consider $\mathbb{Z}_2 \times \mathbb{Z}_2$. It's not a field because, *e.g.* $(1,0) \times (0,1) = (0,0)$. Hence fields cannot be described by equations!

- Capturing universal algebra categorically.
- Data: (i) Endofunctor $T : C \to C$, (ii) $\eta : I \to T$ natural, and (iii) $\mu : T^2 \to T$ also natural.
- Some diagrams are required to commute.



• Examples: powerset, "free" constructions *e.g.* monoid, group, the Giry monad.

- From a monad *T* : C → C make a new category: the Kleisli category C_T.
- Objects, the same as those of C.
- Morphisms $f : A \to B$ in C_T are $f : A \to TB$ in C.
- Composition? $f : A \rightarrow TB$ and $g : B \rightarrow TC$ don't match.
- $f : A \to TB$ and $Tg : TB \to T^2C$ to match but we are in T^2C .
- Compose with $\mu_C : T^2C \to TC$ to get $A \to TC$.
- The Kleisli category of the powerset monad is the category of sets and relations.

- Mes: objects are sets equipped with a σ -algebra (X, Σ) , morphisms $f : (X, \Sigma) \to (Y, \Lambda)$ are functions $f : X \to Y$ such that $\forall B \in \Lambda, f^{-1}(B) \in \Sigma$.
- \mathcal{G} : Mes \rightarrow Mes, $\mathcal{G}(X, \Sigma) = \{p | p \text{ is a probability measure on } \Sigma\}.$
- For each $A \in \Sigma$, define $e_A : \mathcal{G}(X) \to [0,1]$ by $e_A(p) = p(A)$. Equip $\mathcal{G}(X)$ with the smallest σ -algebra making all the e_A measurable.
- $f: X \to Y$, $\mathcal{G}(f): \mathcal{G}(X) \to \mathcal{G}(Y)$ given by $\mathcal{G}(f)(p)(B \in \Lambda) = p(f^{-1}(B))$.

- $\eta_X : X \to \mathcal{G}(X)$ given by $\eta_X(x) = \delta_x$, where $\delta_x(A) = 1$ if $x \in A$ and 0 if $x \notin A$.
- $\mu_X(Q \in \mathcal{G}^2(X))(A) = \int e_A dQ$. Averaging over \mathcal{G} using Q.
- Probabilistic analogue of the powerset.

- Objects: Same as **Mes**, morphisms from *X* to *Y* are measurable functions from *X* to $\mathcal{G}(Y)$.
- Compose: h : X → G(Y), k : Y → G(Z) by the formula: (kõh) = (µ_Z) ∘ (G(k)) ∘ h where õ is the Kleisli composition and ∘ is composition in Mes.
- Curry the definition of morphism: $h: X \times \Sigma_Y \rightarrow [0, 1]$. Markov kernels. We call this category **Ker**. Probabilistic relations.
- Composition in terms of kernels: (kõh)(x, C ⊂ Z) = ∫ k(y, C)h(x, ·). Relational composition, matrix multiplication.

The Eilenberg-Moore category

- From *T* we can construct a category of algebras: objects $a : TA \rightarrow A$
- and morphisms $f : A \rightarrow B$ such that

$$TA \xrightarrow{a} A$$

$$Tf \downarrow \qquad \qquad \downarrow f$$

$$TB \xrightarrow{b} B$$

commute.

- Many categories of algebras (monoids, groups, rings, lattices) can be reconstructed this way.
- The Kleisli category = the category of "free" algebras.
- We get a monad on Set from X → T[X]. The Eilenberg-Moore category for this monad is isomorphic to K(Ω, S).
- Algebras for a monad ⇔ Algebras given by equations and operations.

- Quantitative analogue of an equivalence relation.
- Space *M*, (pseudo)metric $d: M \times M \rightarrow \mathbb{R}^{\geq 0}$
- d(x,x) = 0, d(x,y) = d(y,x) and $d(x,z) \le d(x,y) + d(y,z)$.
- If d(x, y) = 0 implies x = y we say d is a **metric**.
- We can define usual notions of convergence, completeness, topology, continuity etc.
- Maps: $f(X, d) \rightarrow (Y, d')$ are *nonexpansive* $d'(f(x), f(y)) \le d(x, y)$; automtically continuous
- We define Met: objects metric spaces, morphisms are nonexpansive functions.
- Quantitative equations give monads on Met.

Metrics between probability distributions

Let p, q be probability distributions on (X, d, Σ) .

• Total variation $tv(p,q) = \sup_{E \in \Sigma} |p(E) - q(E)|$.

• Kantorovich:
$$\kappa(p,q) = \sup_{f} |\int f dp - \int f dq|$$
 where *f* is nonexpansive.

- A coupling π between p, q is a distribution on X × X such that the marginals of π are p, q. Write C(p,q) for the space of couplings.
- Kantorovich: $\kappa(p,q) = \inf_{\mathcal{C}(p,q)} \int_{X \times X} d(x,y) d\pi(x,y).$ Kantorovich-Rubinshtein duality.
- Wasserstein: $W^{(l)}(p,q) = \inf_{\mathcal{C}(p,q)} [\int_{X \times X} d(x,y)^l d\pi(x,y)]^{1/l}$. l = 1 gives Kantorovich.
- $W^{(l)}(\delta_x, \delta_y) = d(x, y).$

- Basic operational semantics for probabilistic programming languages.
- $(S, \Sigma, \mathcal{A}, \forall a \in \mathcal{A}\tau_a : X \times \Sigma \rightarrow [0, 1].$
- τ_a are Markov kernels.

• Let *R* be an equivalence relation. *R* is a bisimulation if: *s R t* if $(\forall a)$:

$$\tau_a(s,C) = \tau_a(t,C)$$

where C is a measurable union of R-equivalence classes.

- We say *R* is *a* bisimulation relation.
- *s*, *t* are bisimilar if there is a bisimulation relating them.
- There is a maximum bisimulation relation.

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- There is a logical characterization of bisimulation.
- If two states are not bisimilar then some formula distinguishes them.
- If the *smallest* formula separating two states is "big" the states are "close."
- We can define a pseudometric such that distance is zero iff the states are bisimilar.

• *d* is a metric-bisimulation if: $d(s,t) < \epsilon \Rightarrow$:

$$\kappa(\tau(s,\cdot),\tau(t,\cdot)) < \epsilon$$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists.
- Uses basic fixed-point theory on the complete lattice of pseudometrics.

Develop a real-valued "modal logic" based on the analogy:

Probabilistic Logic	
Distribution μ	
Random Variable f	
$\int f \mathrm{d}\mu$	
	Distribution μ Random Variable f

- Define a metric based on how closely the random variables agree.
- Thm: *d* coincides with the fixed-point definition of metric-bisimulation.