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Basic ideas

Equations are at the heart of mathamatical reasoning.
Reasoning about programs is also based on program
equivalences.
A trinity of ideas: Equationally given algebras, Lawvere theories,
Monads on Set
The dawning of the age of quantitative reasoning.
We want quantitative analogues of algebraic reasoning.
(Pseudo)metrics instead of equivalence relations.
Equality indexed by a real number =ε.
Monads on Met.
Enriched Lawvere theories?
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Outline

Summary of equational logic
Monads
Monads and computation
Metrics for probabilistic systems
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Finitary equational theories

Signature Ω = {(Opi, ni)|i = 1 . . . k}
Terms t ::== x|Op(t1, . . . , tn)

Equations s = t

Axioms, sets of equations Ax

Deduction Ax ` s = t

Usual rules for deduction: equivalence relation, congruence,...
Theories: set of equations closed under deduction.
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Equational deduction rules

Axiom Ax ` s = t if s = t ∈ Ax
Equivalence

Ax ` t = t
Ax ` s = t,Ax ` t = u

Ax ` s = u
Ax ` s = t
Ax ` t = s

Congruence

Ax ` t1 = s1, . . .Ax ` tn = sn

Ax ` Op(t1, . . . , tn) = Op(s1, . . . , sn)

Substitution
Ax ` t = s

Ax ` t[u/x] = s[u/x]
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Algebras equationally I

We assume that that there is one set of “basic things” –
one-sorted algebras.
Fix a set Ω of operations, each with a fixed arity n ∈ N. These
include constants as arity zero “operations.” Such an Ω is called a
signature.
Everything has finite arity.
As Ω-algebra A is a set A to interpret the basic sort and, for each
operation f of arity n a function fA : An −→ A.
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Algebras equtionally II

Can define homomorphisms and subalgebras easily.
What about equations that are required to hold?
Given a set X we define the term algebra generated by X, TX

The elements of X are in TX.
If t1, . . . , tn are in TX and f has arity n then f (t1, . . . , tn) is in TX.
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Algebras from equations I

Want to write things like ∀x, y, z; f (x, f (y, z)) = f (f (x, y), z).
X, set of variables.
Let s, t be terms in TX, we say the equation s = t holds in an
Ω-algebra A if for every homomorphism h : TX −→ A we have
h(s) = h(t) where, in the latter, = means identity.
Let S be a set of equations between pairs of terms in TX. We
define a congruence relation ∼S on TX in the evident way.
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Algebras from equations II

Easy to check that if t1 ∼S s1, . . . , tn ∼S sn then
f (t1, . . . , tn) ∼S f (s1, . . . , sn) we can define f∼S on TX/ ∼S.
Let [t] be an equivalence class of ∼S; f∼S([t1], . . . , [tn]) is well
defined by [f (t1, . . . , tn)].
A class of Ω-algebras satisfying a set of equations is called a
variety of algebras (not the same as an algebraic variety!).
When are a set of equations bad? If we can derive x = y from S
then the only algebras have one element.
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Examples

Monoids, groups, rings, lattices, boolean algebras are all
examples.
Vector spaces have two sorts.
Fields are annoying because we have to say x 6= 0 implies x−1

exists. Fields do not form an equational variety.
Sometimes we need to state conditional equations; these are
called Horn clauses. Example: cancellative monoids,
x · y = x · z ` y = z.
Stacks are equationally definable but queues are not.
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Example: barycentric algebras (Stone 1949)

Signature:

{+ε|ε ∈ [0, 1]}

Axioms:
(B1) ` t +1 t′ = t
(B2) ` t +ε t = t
(SC) ` t +ε t′ = t′ +1−ε t
(SA) ` (t +ε t′) +ε′ t′′ = t +εε′ (t′ + ε′−εε′

1−εε′
t′′)
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Universal properties

Let K(Ω, S) be the collection of algebras satisfying the equations
in S. K(Ω, S) becomes a category if we take the morphisms to be
Ω-homomorphisms.
Let X be a set of generators. We write T[X] for TX/ ∼S. There is a
map ηX : X −→ T[X] given by ηX(x) = [x].
Universal property.

Set K(Ω, S)

X
α

""

ηX // T[X]

h
��

T[X]

h
��

A A
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Variety theorem

Birkhoff
A collection of algebras is a variety of algebras if and only if it is closed
under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses:
quasivariety theorems.

Example
Consider Z2 × Z2. It’s not a field because, e.g. (1, 0)× (0, 1) = (0, 0).
Hence fields cannot be described by equations!
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Monads

Capturing universal algebra categorically.
Data: (i) Endofunctor T : C −→ C, (ii) η : I −→ T natural, and (iii)
µ : T2 −→ T also natural.
Some diagrams are required to commute.

T3A
µTA //

TµA
��

T2A

µA

��

TA
ηTA // T2A

µA

��

TA
TηAoo

T2A µA
// TA TA

Examples: powerset, “free” constructions e.g. monoid, group, the
Giry monad.
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The Kleisli construction

From a monad T : C −→ C make a new category: the Kleisli
category CT .
Objects, the same as those of C.
Morphisms f : A −→ B in CT are f : A −→ TB in C.
Composition? f : A −→ TB and g : B −→ TC don’t match.
f : A −→ TB and Tg : TB −→ T2C to match but we are in T2C.
Compose with µC : T2C −→ TC to get A −→ TC.
The Kleisli category of the powerset monad is the category of sets
and relations.
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The Gìry monad I

Mes: objects are sets equipped with a σ-algebra (X,Σ),
morphisms f : (X,Σ) −→ (Y,Λ) are functions f : X −→ Y such that
∀B ∈ Λ, f−1(B) ∈ Σ.
G : Mes −→Mes, G(X,Σ) = {p|p is a probability measure on Σ}.
For each A ∈ Σ, define eA : G(X) −→ [0, 1] by eA(p) = p(A). Equip
G(X) with the smallest σ-algebra making all the eA measurable.
f : X −→ Y, G(f ) : G(X) −→ G(Y) given by
G(f )(p)(B ∈ Λ) = p(f−1(B)).
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The Giry monad II

ηX : X −→ G(X) given by ηX(x) = δx, where δx(A) = 1 if x ∈ A and 0
if x 6∈ A.
µX(Q ∈ G2(X))(A) =

∫
eAdQ. Averaging over G using Q.

Probabilistic analogue of the powerset.
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The Kleisli category of G

Objects: Same as Mes, morphisms from X to Y are measurable
functions from X to G(Y).
Compose: h : X −→ G(Y), k : Y −→ G(Z) by the formula:
(k◦̃h) = (µZ) ◦ (G(k)) ◦ h where ◦̃ is the Kleisli composition and ◦ is
composition in Mes.
Curry the definition of morphism: h : X × ΣY −→ [0, 1]. Markov
kernels. We call this category Ker. Probabilistic relations.
Composition in terms of kernels:
(k◦̃h)(x,C ⊂ Z) =

∫
k(y,C)h(x, ·). Relational composition, matrix

multiplication.
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The Eilenberg-Moore category

From T we can construct a category of algebras: objects a : TA
−→ A
and morphisms f : A −→ B such that

TA a //

Tf
��

A

f
��

TB
b
// B

commute.
Many categories of algebras (monoids, groups, rings, lattices) can
be reconstructed this way.
The Kleisli category = the category of “free” algebras.
We get a monad on Set from X 7→ T[X]. The Eilenberg-Moore
category for this monad is isomorphic to K(Ω, S).
Algebras for a monad⇔ Algebras given by equations and
operations.
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Pseudometrics

Quantitative analogue of an equivalence relation.
Space M, (pseudo)metric d : M ×M −→ R≥0

d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z).
If d(x, y) = 0 implies x = y we say d is a metric.
We can define usual notions of convergence, completeness,
topology, continuity etc.
Maps: f (X, d) −→ (Y, d′) are nonexpansive d′(f (x), f (y)) ≤ d(x, y);
automtically continuous
We define Met: objects metric spaces, morphisms are
nonexpansive functions.
Quantitative equations give monads on Met.
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Metrics between probability distributions

Let p, q be probability distributions on (X, d,Σ).
Total variation tv(p, q) = sup

E∈Σ
|p(E)− q(E)|.

Kantorovich: κ(p, q) = sup
f
|
∫

f dp−
∫

f dq| where f is

nonexpansive.
A coupling π between p, q is a distribution on X × X such that the
marginals of π are p, q. Write C(p, q) for the space of couplings.

Kantorovich: κ(p, q) = inf
C(p,q)

∫
X×X

d(x, y)dπ(x, y).

Kantorovich-Rubinshtein duality.

Wasserstein: W(l)(p, q) = inf
C(p,q)

[

∫
X×X

d(x, y)ldπ(x, y)]1/l. l = 1 gives

Kantorovich.
W(l)(δx, δy) = d(x, y).
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Markov processes

Basic operational semantics for probabilistic programming
languages.
(S,Σ,A,∀a ∈ Aτa : X × Σ −→ [0, 1].
τa are Markov kernels.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a):

τa(s,C) = τa(t,C)

where C is a measurable union of R-equivalence classes.
We say R is a bisimulation relation.
s, t are bisimilar if there is a bisimulation relating them.
There is a maximum bisimulation relation.
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A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).
There is a logical characterization of bisimulation.
If two states are not bisimilar then some formula distinguishes
them.
If the smallest formula separating two states is “big” the states are
“close.”
We can define a pseudometric such that distance is zero iff the
states are bisimilar.
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Metric “bisimulation”

d is a metric-bisimulation if: d(s, t) < ε⇒:

κ(τ(s, ·), τ(t, ·)) < ε

The required canonical metric on processes is the least such: ie.
the distances are the least possible.
Thm: Canonical least metric exists.
Uses basic fixed-point theory on the complete lattice of
pseudometrics.
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Real-valued modal logic I

Develop a real-valued “modal logic” based on the analogy:

Kozen’s analogy

Program Logic Probabilistic Logic
State s Distribution µ
Formula φ Random Variable f
Satisfaction s |= φ

∫
f dµ

Define a metric based on how closely the random variables agree.
Thm: d coincides with the fixed-point definition of
metric-bisimulation.
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