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Relativistic Quantum
Information Theory

® Does this make sense?

@ If we are going to use quanfum
communication on a large scale, relativistic
effects are essential.

@ Relativistic effects in classical information
theory had already been investigated as
early as 198l.
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Early Work

® Jarrett and Cover 1981: Relativistic classical
information theory.

@ Relativistic effects on transmission rates and
energy requirements.

@ Closely related to time dilation: special
relativity.
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Our direct inspiration

@ Alsing and Milburn 2002 : Entanglement and
Lorentz invariance. How does the
entanglement of maximally enfangled states
transform under Lorentz transformation?

@ Entanglement fidelity is preserved even
though the finite dimensional Lorentz
transformations are not unitary.

@ Remarks on the effect of Unruh or Hawking
radiation.
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“It is tantalizing to contemplate whether Unruh
and /or Hawking radiation might be derived
from an information theoretic point of view.”

Alsing and Milburn

Teleportation with a uniformly accelerated
partner : PRL Alsing and Milburn

We decided to investigate the information-
theoretic properties of the Unruh effect.
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Outline

@ QFT in curved spacetimes: the Unruh effect.

@ Private capacity and quantum private
capacity.

@ Private information via the Unruh effect.
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The accelerating observer and the inertial observer
will disagree about the vacuum.

The transtormation is given by

ar — arar + Pra,
where a is the accelerating observer’s annihilation operator.
The change of annihilation and creation operators
is called a Bogolioubov transformation

There will be modes corresponding to the inaccessible region,

so the accelerating observer’s density matrix will involve a partial trace
over the modes of the inaccessible region.
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Unruh Effect

The inertial observer’s vacuum will look like a bath
of thermal radiation to the accelerating observer.

The notion of “particle” is not absoute:

it only refers to the effects of a detector
interacting with a field.
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Scenarios for
Communication

® We consider the effect of the thermal noise
on communication in two scenarios.

@ Alice (inertial) sends messages to Bob
(accelerating); what is the channel capacity?

@ Alice sends messages to Bob (both inertial)
but Eve (accelerating) eavesdrops. How well
can she wiretap given the noise that she
detects?
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Scenario 1
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Scenario 2
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Surprises

1. The quantum capacity, i.e. the optimal rate
at which a sender can transmit qubits through
a noisy channel usually exhibits a threshold
behaviour. Not so with the Unruh channel:
the capacity is always positive and is zero
only in the limit of infinite acceleration.
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Surprises

2. The private quantum capacity also has no
threshold behaviour. Furthermore, it has a
single-letter tformula. This formula shows
that the private quantum capacity is exactly
the same as the entanglement-assisted
capacity to the eavesdropper’s environment,
even though there is no connection between
these two situations!

We have no idea what this means.
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Channel Capacity

® The basic measure of information
transmission.

@ Shannons coding theorem: All transmission
rates below the capacity are achievable with
asymptotically zero probability of error.
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Quantum Channels 1

@ We want to send quantum data from Alice to
Bob.

@ Sending classical data: choose a basis to
represent classical data and encode classical
data in a quantum state. Bob has to extract
the classical data from the quantum state.

@ Sending quantum data: Alice wants to send
the whole quantum state.
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Quantum Channels 2

@ New possibility: If Alice uses multiple copies
of the channel she could entangle the
quantum states across multiple uses of the
channel.

® We do not know how to compute the capacity
in This case!
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Quantum Channels 3

Restriction: Alice can only prepare product states:
P1 QP2 X ... Pn

One for each use of the channel

Ghl i the one-shot capacity

In this case we have the Holevo-Schumacher-Westmoreland
theorem, which gives us a ”"formula” for the capacity.
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Background on quantum
information theory

Quantum channel: completely positive,
trace-preserving linear map.

Trace norm: || X]||4  TrVXTX.

Trace distance: z||p — p'||1, where p, p’
are density matrices.

Fidelity: F(p, p') = ||/ov7'|[3.
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von Neumann entropy: —'Irplog, p

If pap is a density matrix defined on

Ha ® Hp we write py for Trppap
and H(A), for the vIN-entropy of p4.

Mutual information:
I(A; B)p — H(A)p + H(B)p — H(AB)p.

Conditional entropy:
H(A|B),=H(AB), — H(B),.

Coherent information:
I(A)B), = H(B), — H(AB), = —H(A|B),.
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Quantum capacity

Idea: Want to transmit qubits along a noisy
channel reliably (i.e. preserving the state)
and preserving pre-existing entanglement.

Use error-correcting codes to counteract the

noise and send 1t across the channel where
1t 1s decoded.

Define a rate in terms of the limit of many
uses of the channel and small error.

The capacity is the optimal achievable rate.
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von Neumann Entropy
H(p) = —tr(plogy p) = —>_; Ailogy A;

Holevo v quantity

If p =) . pip; then define
x(p) = H(p) — ZP@H(M)

Holevo bound: y is an upper bound
on accessible information in p.
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The Holevo-Schumacher-Westmoreland Theorem

CM(€) = max [H(ED pip;) — > _piH(E(p;))

J J J 7

p; are the possible input states.

Pure state ensembles suffice.

Friday, 15 October 2010



C

‘(I)zk> — 27 k/2 Z?; ]k> ‘k> will denote the maximally entangled state on k

pairs of qubits.

Definition 1. An (n, k, ) entanglement transmission code from Alice to Bob consists of
an encoding channel A taking a k-qubit system R’ into the input of N®" and a decoding
channel B taking the output of N®" to a k-qubit system C = R’ satisfying

|(id@B o N®™ o A)(Pgi) — Pos ||, < 0. 2)

A rate () is an achievable rate for entanglement transmission if for all 6 > 0 and suffi-
ciently large n there exist (n, |nQ |, ) entanglement transmission codes. The quantum
capacity Q(N) is the supremum of all the achievable rates.

Unknown how to compute a one-shot formula for this.
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Regularization

Quantum informatic quantities are usually computed by:

allowing n uses of the channel and computing

lim ~Q(n)

n—oo N

where () is the quantity of interest.

1. Easier to compute

2. Essentially using the law of large numbers
to get better behaviour

Friday, 15 October 2010



Single-letter formulas

In classical information theory Shannon gave
a formula for capacity that is calculated by
considering only a single use of the channel.

To get a similar formula in quantum
information theory is still an open question!

Recently Max Hastings disproved the additivity
conjecture which dashed hopes that the existing
approaches for finding such a formula would work
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Additivity Conjecture
X(2%") = nx(P)

This would clearly make regularization unnecessary.
More generally, X((I) X Q) = X((I)) -+ X(Q>
In terms of minimum output entropy:

Smin(P) = i%fs(q)( )

, 1
or Reny1 variant: Sp.min(P) = Hf-}f 1—p

Sp,min(q) X Q) — Sp,min(q)) + Sp,min(Q)
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The best general result

Theorem 2 (Lloyd-Shor-Devetak [33,40, 18]). Let ’¢> v 4 be apure state, N a quantum
channel from A to B and define p = (id 4 QN )(v). The quantum capacity Q(N') of N
is at least [(A")B) .

We can give an explicit single-letter

formula for the quantum capacity ot
the Unruh channel.
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Private Capacity

Quantum communication can be used
for establishing secret correlations. [BB&84

What is the capacity for sending private data?
Purely classical: Maurer (1994) and Ahlswede & Csiszar (1993)

What is the private capacity of a quantum channel for
communicating classical data? [Devetak 2005]

What is the private capacity of a quantum channel for
communicating quantum data? [Hayden et al. in progress]
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Private Quantum Communication

( — — ¢
A——{N] {D—"—~5
Noisy channel Decoder
A |¢>> Un >§| |9) . B

- > Kive

Eve cannot get a copy of ¢: automatic privacy.
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S/
N,

Quantum state is a density matrix on B ® E

Alice wants to send a message to Bob
so that with high probability Bob can decode it
and Eve is very unlikely to be able to decode it.

An (n,€) private channel code

of rate R allows Alice to send one of
messages,Bob can decode with error less than e
and Eve cannot find out more than € bits.

2nR
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Wiretap Channels

Definition 3. A quantum wiretap channel consists of a pair of quantum channels
(NMa_B,EA_ ) taking the density operators on A to those on B and E, respectively.

Wiretap channels apply to the Unruh
scenario but also to many other situations.
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Our Setting Today

® Quantum communication: Alice sending
quantum data fo Bob, and Eve intercepts.

@ However, Eve is accelerating so gets Unruh
noise.

@ What is the private capacity for Alice to Bob?
Can we use the Unruh noise?
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Eve intercepts.

Eve

Alice —— - ———> - —> - —> Bob

Eve

Alice > - — > - > Bob

Eve intercepts while accelerating.
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Alice — N — Bob
Alice > & > Eve

Eve is not a “part” of the environment |Fve € Env]

Does the Unruh effect give a channel
from Alice to Bob with nonzero
quantum and classical private capacity’
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Definition 4. An (n, k, J, €) private entanglement transmission code from Alice to Bob
consists of an encoding channel A taking a k-qubit system R’ into the input of N®™ and
a decoding channel B taking the output of N®™ to a k-qubit system C =2 R’ satisfying

1. Transmission: ||(id @B o N®™ o A)(Pgr) — Por||; < 9.

2. Privacy: ||(1d @E®™ o A)(Pgr) — mor @ (E¥™ 0 A)(mar)||; < €.

mor = /2" the maximally mixed state on k qubits.

A rate () is an achievable rate for private entanglement transmission if for all 6,e >
0 and sufficiently large n there exist (n, |nQ]|,d, €) private entanglement transmission

codes. The private quantum capacity QQ,(N , E) is the supremum of all the achievable
rates.
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The main result

Theorem 5 (Private quantum capacity). The private quantum capacity QQ,(id, E) when

the channel from Alice to Bob is noiseless is given by the formula max %I (A Ee)p,

where the maximization is over all pure states |1)) 4 and p = (Id ®E.) ().

If we can get the output in a simple enough
form we can hope to get a single-letter
formula for the private capacity:.
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The Unruh Channel

Alice and Bob have the same Fock space.

Alice uses two different modes of the quantum field to encode qubits.

Let the annihilation operators for the two modes be a and b.

A Bogolioubov transformation will change the modes to Eve’s Fock space.

Uabcd(T) = Uac(T) ® Ubd(r) = 87'(aTCT+deT)_T(aC+bd)

1 etanh r(atct+btdh)
cosh? r

e~ In cosh r(ata+bTb4cle+dl d) e~ tanh r(ac+bd)

X

The output density matrix is infinite dimensional and block diagonal.

The only hope: deal with it block by block.
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The output of the Unruh channel
for an input qudit is:

1 00 - C d 7; ]
7) ac = D tanh™=tedy S Bl + T[IW) 1),
k=1 | 1=1 i

cosh@tl -

Note: oo dimensional and block diagonal.
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Group theory to the rescue:

the blocks of the output density matrix
live in completely symmetric subspaces
because we are creating bosons.

In fact the Unruh channel “behaves well”
with respect to the Lie algebra sl(d, C),
the Lie algebra of SU(d).

Physicists’ approach:
guess the answer, then check!
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Theorem 12. Let the first block of o4 in Eq. (51) be written as
L
o) =1+ na A, (53)
a=1

where )\((11) are generators of the fundamental representation of the sl(d,C) algebra,

L = %d (d — 1) and ny are functions of B; Bj- Then the remaining blocks in Eq.(51) can

be expanded with the same coefficients n,
L
oV =14+ naad, (54)
a=1

where )\((Xk) are generators of the k'™ completely symmetric representation of the sl(d, C)

(k)

algebra. The blocks o~ are in general not normalized.
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What “well behaved” means.

Definition 16. Ler G be a group, H;n, Hout be Hilbert spaces and let r{ : G —
GL(Hin), r2 : G — GL(Hout) be unitary representations of the group. Let K :
DM (Hm) — DM (Hout) be a channel. We say that K is covariant with respect
to G, if

£ (r@er(@)") = r20)K(p)ra(0)’ (66)
holds for allg € G, p € DM (Hip).

Covariance signifies that certain equations
that hold in a representation, hold for

“Lie algebraic reasons” and not because

of some special property of the representation.
Thus we can diagonalize all the blocks

at the same time.
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Theorem 12 implies that:
The qudit Unruh channel is SU (d)-covariant.

In addition, the Unruh channel has a property
called conjugate degradability

If a channel is covariant and conjugate degradable
then the maximization in the formula for the channel
capacity is achieved for a maximally mixed input state.

We can explicitly calculate this and obtain
an explicit expression for the channel capacity
and for the private quantum capacity.
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Stinespring dilation: We call F the environment.
Every cptp map

N :DM(A) — DM (B) N¢ is the complementary
can be written as channel.

N (o) = Trg(UoUT) where
U:A— B®FE is unitary.

N is degradable if there exists a cptp map D such that:

A—N B Conjugate degradable means

:: that we get to throw in a
D: :De complex conjugation map C

Nc
Vo

F DoN =CoN€.
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Capacity for various values of d (the dimensionality of the
encoding space - qudits). The d = 2 case corresponds to the
lowest curve. The x axis gives the acceleration.
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'he private quantum capacity for various values of d.
'he d = 2 case corresponds to the lowest curve.
'he x axis gives the acceleration.
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The private quantum capacity for various values of d.
Here we are showing the results in dits.
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Conclusions

Surprises: absence of threshold behaviour and
strange coincidence between the explicit form
for the private quantum capacity and the
entanglement-assisted capacity.

How are these modified if we consider
acceleration for a finite time only?
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What next?

Can an accelerating observer prepare a pure
state? How will she cancel out Unruh noise?

Communication capacity in curved spacetime?
Information as a probe of geometry?”’

Black holes seem to be optimal cloners! Why??
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