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Relativistic Quantum 
Information Theory

Does this make sense?

If we are going to use quantum 
communication on a large scale, relativistic 
effects are essential.

Relativistic effects in classical information 
theory had already been investigated as 
early as 1981.
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Early Work

Jarrett and Cover 1981:  Relativistic classical 
information theory.  

Relativistic effects on transmission rates and 
energy requirements.

Closely related to time dilation: special 
relativity.
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Our direct inspiration

Alsing and Milburn 2002 : Entanglement and 
Lorentz invariance.  How does the 
entanglement of maximally entangled states 
transform under Lorentz transformation?

Entanglement fidelity is preserved even 
though the finite dimensional Lorentz 
transformations are not unitary.

Remarks on the effect of Unruh or Hawking 
radiation.
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“It is tantalizing to contemplate whether Unruh
and/or Hawking radiation might be derived
from an information theoretic point of view.”

We decided to investigate the information-
theoretic properties of the Unruh effect.

A lsing and M ilburn

Teleportation with a uniformly accelerated
partner : PRL Alsing and Milburn
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Outline

QFT in curved spacetimes: the Unruh effect.

Private capacity and quantum private 
capacity. 

Private information via the Unruh effect.
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Rindler spacetime.
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The accelerating observer and the inertial observer
will disagree about the vacuum.

The transformation is given by

ak !→ αkãk + βkã†k
where ã is the accelerating observer’s annihilation operator.

There will be modes corresponding to the inaccessible region,

so the accelerating observer’s density matrix will involve a partial trace
over the modes of the inaccessible region.

The change of annihilation and creation operators
is called a Bogolioubov transformation
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The inertial observer’s vacuum will look like a bath
of thermal radiation to the accelerating observer.

Unruh Effect

The notion of “particle” is not absoute:

it only refers to the effects of a detector
interacting with a field.
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Scenarios for 
Communication

We consider the effect of the thermal noise 
on communication in two scenarios.

Alice (inertial) sends messages to Bob 
(accelerating); what is the channel capacity?

Alice sends messages to Bob (both inertial) 
but Eve (accelerating) eavesdrops.  How well 
can she wiretap given the noise that she 
detects?
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Figure 1: Spacetime diagrams for the two communication scenarios. (a) Alice is an

inertial observer try to send quantum information to the uniformly accelerated Bob. The

wavy lines indicate transmission via wave packets and the d-rail qudit encoding. (b) In
the second diagram, Alice and the intended receiver, Bob, are both inertial observers.

In our idealized scenario, they are assumed to share an noiseless quantum channel. A

uniformly accelerated eavesdropper, Eve, attempts to wiretap Alice’s message to Bob.

ing on the scenario) intercepts this, but using an apparatus that detects excitations of the

quantum field defined according to the prescription of the Rindler quantum field theory.

So the state that she detects will be described by some infinite-dimensional density ma-

trix. A detailed analysis of this density matrix makes it possible to extract quantitative

information about the private and quantum capacities. We evaluate both the quantum

capacity from Alice to an accelerating Bob and the private capacity for inertial Alice

and Bob trying to exchange quantum information while simultaneously confounding an

accelerating eavesdropper. Figure 1 contains spacetime diagrams illustrating the two

communication scenarios.

Both quantities exhibit surprising behavior. The quantum capacity, the optimal rate

at which a sender can transmit qubits to a receiver through some noisy channel, usually

exhibits a threshold behavior; channels below some quality threshold have quantum ca-

pacity exactly zero. For the Unruh channels, however, we find that the quantum capacity

is strictly positive for all accelerations, reaching zero only in the limit of infinite acceler-

ation. It is therefore always possible to transmit quantum data to an accelerating receiver

provided the sender is not behind the receiver’s horizon. Careful choices of encoding

can therefore eliminate the degradation in fidelity known to occur if one uses a naive

teleportation protocol to communicate with an accelerating receiver [3] (see also [39]).

In addition to characterizing quantum transmission to an accelerating receiver, our anal-

3

Scenario 1
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Scenario 2

Friday, 15 October 2010



Surprises

1. The quantum capacity, i.e. the optimal rate
at which a sender can transmit qubits through
a noisy channel usually exhibits a threshold
behaviour. Not so with the Unruh channel:
the capacity is always positive and is zero
only in the limit of infinite acceleration.
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Surprises
2. The private quantum capacity also has no
threshold behaviour. Furthermore, it has a
single-letter formula. This formula shows
that the private quantum capacity is exactly
the same as the entanglement-assisted
capacity to the eavesdropper’s environment,
even though there is no connection between
these two situations!

We have no idea what this means.

Friday, 15 October 2010



Channel Capacity

The basic measure of information 
transmission.

Shannon’s coding theorem: All transmission 
rates below the capacity are achievable with 
asymptotically zero probability of error.
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Quantum Channels 1

We want to send quantum data from Alice to 
Bob.

Sending classical data: choose a basis to 
represent classical data and encode classical 
data in a quantum state.  Bob has to extract 
the classical data from the quantum state.

Sending quantum data: Alice wants to send 
the whole quantum state.
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Quantum Channels 2

New possibility: If Alice uses multiple copies 
of the channel she could entangle the 
quantum states across multiple uses of the 
channel.

We do not know how to compute the capacity 
in this case!
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Quantum Channels 3
Restriction: Alice can only prepare product states:

ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn

One for each use of the channel

In this case we have the Holevo-Schumacher-Westmoreland
theorem, which gives us a ”formula” for the capacity.

C(1)(E) the one-shot capacity
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Background on quantum
information theory
Quantum channel: completely positive,
trace-preserving linear map.

Trace norm: ||X||1
def= Tr

√
X†X.

Trace distance: 1
2 ||ρ− ρ′||1, where ρ, ρ′

are density matrices.

Fidelity: F (ρ, ρ′) = ||√ρ
√

ρ′||21.
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von Neumann entropy: −Trρ log2 ρ

If ρAB is a density matrix defined on
HA ⊗HB we write ρA for TrBρAB

and H(A)ρ for the vN-entropy of ρA.

Mutual information:
I(A;B)ρ = H(A)ρ + H(B)ρ −H(AB)ρ.
Conditional entropy:
H(A|B)ρ = H(AB)ρ −H(B)ρ.

Coherent information:
I(A〉B)ρ = H(B)ρ −H(AB)ρ = −H(A|B)ρ.

Friday, 15 October 2010



Quantum capacity
Idea: Want to transmit qubits along a noisy
channel reliably (i.e. preserving the state)
and preserving pre-existing entanglement.

Use error-correcting codes to counteract the
noise and send it across the channel where
it is decoded.

Define a rate in terms of the limit of many
uses of the channel and small error.
The capacity is the optimal achievable rate.
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von Neumann Entropy

H(ρ) = −tr(ρ log2 ρ) = −
∑

i λi log2 λi

If ρ =
∑

i piρi then define

χ(ρ) = H(ρ)−
∑

i

piH(ρi)

Holevo χ quantity

Holevo bound: χ is an upper bound
on accessible information in ρ.
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The Holevo-Schumacher-Westmoreland Theorem

C(1)(E) = max
(pj ,ρj)

[H(E(
∑

j

pjρj)−
∑

j

pjH(E(ρj))]

ρj are the possible input states.

Pure state ensembles suffice.
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defined such that when one of the states is pure, F (ϕ,ψ) = Tr ϕψ. More generally, the
fidelity is equal to one for identical states and zero for perfectly distinguishable states.

For a density operator σAB , let H(A)σ be the von Neumann entropy of σA. The
mutual information I(A;B)σ is H(A)σ + H(B)σ − H(AB)σ while the coherent in-
formation is I(A〉B)σ = H(B)σ − H(AB)σ. The latter quantity, as the negation of
a conditional entropy H(A|B)σ = H(AB)σ − H(B)σ, can only be positive when the
state σ is entangled [27].

For more information on the properties of quantum channels or the functions defined

here, we refer the reader to Nielsen and Chuang [36].

2 Standard and Private Quantum Capacities

The objective of the paper will be to evaluate two quantities characterizing commu-

nication over the qudit Unruh channels: their quantum capacity and private quantum

capacity. While the quantum capacity of a quantum channel has been studied in great

detail [5, 33, 40, 18, 24, 25, 26, 31], the private quantum capacity of a wiretap chan-

nel has not. After briefly introducing the quantum capacity we will therefore develop

the general theory of the private quantum capacity, rigorously demonstrating results that

were only briefly sketched in [9].

2.1 Quantum Capacity

The ability of a quantum channel to transmit quantum information is measured by its

quantum capacity, the optimal rate at which qubits can be reliably transmitted in the

limit of many uses of the channel and vanishing error. There are many equivalent ways

to define the quantum capacity [32]. Here we use a version which focuses on the trans-

mission of halves of maximally entangled states across the noisy channel. Recall that
∣

∣Φ2k
〉

represents the maximally entangled state on k pairs of qubits.

Definition 1. An (n, k, δ) entanglement transmission code from Alice to Bob consists of

an encoding channelA taking a k-qubit systemR′ into the input ofN⊗n and a decoding

channel B taking the output ofN⊗n to a k-qubit system C ∼= R′ satisfying

∥

∥(id⊗B ◦N⊗n ◦A)(Φ2k)− Φ2k
∥

∥

1
≤ δ. (2)

A rate Q is an achievable rate for entanglement transmission if for all δ > 0 and suffi-
ciently large n there exist (n, 'nQ(, δ) entanglement transmission codes. The quantum
capacity Q(N ) is the supremum of all the achievable rates.

In any capacity problem, the objective is to understand the structure of the optimal

codes. Doing so normally results in a theorem characterizing the capacity in terms of

simple entropic functions optimized over a single use of the channel, a so-called “single-

letter formula.” In general, the structure of the optimal codes is still unknown for the
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ysis applies equally well to the study of quantum data transmission through an optical

amplifier, which may well be its more important application.

The private quantum capacity is likewise positive for all nonzero eavesdropper ac-

celerations. Thus, in principle, any eavesdropper acceleration, no matter how small,

can be exploited to safeguard transmissions of quantum data between two inertial ob-

servers. Curiously, the private quantum capacity has a simple formula when the channel

between the inertial observers is noiseless; the formula reveals that in this case the pri-

vate quantum capacity is exactly equal to the entanglement-assisted quantum capacity to

the eavesdropper’s environment, despite the absence of any entanglement assistance in

the problem.

1.1 Structure of the paper

Section 2.1 reviews the definition of the quantum capacity and states the Lloyd-Shor-

Devetak theorem, which provides the best known achievable rates for quantum data

transmission over noisy channels. Section 2.2 introduces the private quantum capacity

and proves a capacity theorem in the case where the channel to the intended recipient is

noiseless. Section 3.1 reviews the Unruh effect, which then allows for an analysis of the

output density matrix of the Unruh channel in Section 3.2. Section 4 is devoted to the

explicit capacity calculations.

1.2 Notation

If A and B are two Hilbert spaces, we write AB ≡ A ⊗ B for their tensor product.

The Hilbert spaces on which linear operators act will be denoted by a subscript. For

instance, we write ϕAB for a density operator on AB. Partial traces will be abbreviated
by omitting superscripts, such as ϕA ≡ TrB ϕAB . We use a similar notation for pure

states, e.g.
∣

∣ψ
〉

AB
∈ AB, while abbreviating ψAB ≡

∣

∣ψ
〉〈

ψ
∣

∣

AB
. We will write idA

for the identity channel acting onA. In general, the phrase quantum channel refers to a

completely positive, trace-preserving linear map. The symbol IA will be reserved for the

identity matrix acting on the Hilbert space A and πA = IA/dimA for the maximally

mixed state onA. The symbol Φ will be reserved for maximally entangled states and, in

particular,
∣

∣Φ2k
〉

= 2−k/2 ∑2k

j=1

∣

∣k
〉
∣

∣k
〉

will denote the maximally entangled state on k
pairs of qubits.

The trace norm of an operator, ‖X‖1 is defined to be Tr |X| = Tr
√
X†X. The

similarity of two density operators ϕ and ψ can be measured by trace distance 1
2‖ϕ −

ψ‖1, which is equal to the maximum over all possible measurements of the variational

distance between the outcome probabilities for the two states. The trace distance is zero

for identical states and one for perfectly distinguishable states.

A complementary measure is the mixed state fidelity

F (ϕ,ψ) =
∥

∥

∥

√
ϕ
√

ψ
∥

∥

∥

2

1
=

(

Tr
√√

ϕψ
√
ϕ

)2

, (1)
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C a p a c i t y i n t h e p r e s e n c e o f e n t a n g l e m e n t

Unknown how to compute a one-shot formula for this.
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Regularization

Quantum informatic quantities are usually computed by:

allowing n uses of the channel and computing

lim
n→∞

1
n

Q(n)

where Q is the quantity of interest.

1. Easier to compute

2. Essentially using the law of large numbers
to get better behaviour
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Single-letter formulas
In classical information theory Shannon gave
a formula for capacity that is calculated by
considering only a single use of the channel.

To get a similar formula in quantum
information theory is still an open question!

Recently Max Hastings disproved the additivity
conjecture which dashed hopes that the existing
approaches for finding such a formula would work.
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Furthermore the entangled input states may be re-introduced by considering mul-
tiple channel uses, thus leading to

Cult(Φ) = lim
n→∞

1

n
χ(Φ⊗n)(3.15)

4. The additivity conjectures

4.1. The additivity conjecture for Holevo capacity. The original addi-
tivity conjecture [7] was to the effect that the regularization is unnecessary in (3.15),
meaning that it can be replaced by the simpler ‘one-shot’ formula

Cult(Φ) = χ(Φ)(4.1)

Equivalently, the function χ is additive over n-fold tensor products:

χ(Φ⊗n) = n χ(Φ)(4.2)

A slightly generalized version of this soon became the standard additivity conjec-
ture: for any two quantum channels Φ and Ω,

χ(Φ ⊗ Ω) = χ(Φ) + χ(Ω)(4.3)

There is an operational meaning for this conjecture. It says that the channel capac-
ity is achieved using coding on product states only, in other words using entangled
input states for the channel does not increase the capacity. It was known that en-
tangled measurements at the output are necessary to achieve the Holevo capacity,
and hence also the full channel capacity, but this conjecture implies that the input
states can always be chosen from an ensemble consisting only of product states.

4.2. Equivalence to other additivity conjectures. In a quest for new
approaches to the additivity problem, the minimal output entropy and minimal
output Renyi entropy were studied. These are:

Smin(Φ) = inf
ρ

S(Φ(ρ))(4.4)

and for p > 1

Sp,min(Φ) = inf
ρ

1

1 − p
log Tr (Φ(ρ)p)(4.5)

Note that limp→1 Sp,min(Φ) = Smin(Φ). The additivity conjecture is: for all chan-
nels Φ and Ω, and all p ≥ 1

Sp,min(Φ ⊗ Ω) = Sp,min(Φ) + Sp,min(Ω)(4.6)

The question of additivity of minimal output entropy was posed in the paper
[39], where it was conjectured that this would provide an indirect way to attack
the additivity problem for Holevo capacity. This approach was confirmed in 2002
by Shor [47], who proved the equivalence of several additivity conjectures, includ-
ing additivity of Holevo capacity and additivity of minimal output von Neumann
entropy (this result involved also the entanglement of formation but we will not
consider that quantity here).

Following an influential article by Amosov, Holevo and Werner [4], it was be-
lieved that a promising method for proving additivity of minimal output entropy
was to prove first (4.6) for p > 1, and then hope to recover additivity in the limit
p → 1. For some special classes of channels this turned out to be a fruitful ap-
proach, and led to proofs of additivity, as the following list of papers shows: [1],
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Additivity Conjecture

This would clearly make regularization unnecessary.

More generally,

In terms of minimum output entropy:

or Renyi variant:
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approaches to the additivity problem, the minimal output entropy and minimal
output Renyi entropy were studied. These are:
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and for p > 1
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Note that limp→1 Sp,min(Φ) = Smin(Φ). The additivity conjecture is: for all chan-
nels Φ and Ω, and all p ≥ 1
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quantum capacity problem. We will see below, however, that they can be characterized

in the case of qudit Unruh channels.

The following theorem gives the best known general achievable rates for the quantum

capacity problem in terms of the coherent information, as defined in the previous section.

Theorem 2 (Lloyd-Shor-Devetak [33, 40, 18]). Let
∣

∣ψ
〉

A′A
be a pure state,N a quantum

channel from A to B and define ρ = (idA′ ⊗N )(ψ). The quantum capacity Q(N ) of N
is at least I(A′〉B)  .

2.2 Private Quantum Capacity: General Case

The private quantum capacity is the optimal rate at which a sender (Alice) can send

qubits to a receiver (Bob) while simultaneously ensuring that those qubits remain en-

crypted from the eavesdropper’s (Eve’s) point of view. At first glance, this would not

seem to be a very interesting concept. The impossibility of measuring quantum informa-

tion without disturbing it would seem to ensure that successful transmission of quantum

information would make it automatically private. One can imagine a passive eaves-

dropper, however, who could have nontrivial access to the qubits should she choose to

exercise it. The setting we will ultimately be primarily concerned with here is a relativis-

tic version of that passive eavesdropper, in particular, the case in which the eavesdropper

is uniformly accelerated.

Definition 3. A quantum wiretap channel consists of a pair of quantum channels

(NA→B, EA→E) taking the density operators onA to those on B and E, respectively.

N should be interpreted as the channel from Alice to Bob and E the channel from
Alice to Eve. Let UN : A → B ⊗Bc and UE : A → E ⊗ Ec be isometric extensions of

the channels N and E . In particular, N (·) = TrBc UN · U †
N and E(·) = TrEc UE · U †

E .

In many circumstances, E will be a degraded version of the “environment” of the Alice-
Bob channel, meaning that there exists a channelD such that E(·) = D ◦TrB UN ·U †

N .

For the uniformly accelerated eavesdropper, however, this needn’t be the case so we

don’t require a priori that there be a particular relationship betweenN and E . Another
relevant example is illustrated in Figure 2.

Recall that π2k = I/2k the maximally mixed state on k qubits.

Definition 4. An (n, k, δ, ε) private entanglement transmission code from Alice to Bob

consists of an encoding channelA taking a k-qubit system R′ into the input ofN⊗n and

a decoding channel B taking the output ofN⊗n to a k-qubit system C ∼= R′ satisfying

1. Transmission: ‖(id⊗B ◦N⊗n ◦A)(Φ2k )− Φ2k ‖1 ≤ δ.

2. Privacy: ‖(id⊗E⊗n ◦A)(Φ2k )− π2k ⊗ (E⊗n ◦A)(π2k )‖1 ≤ ε.

A rate Q is an achievable rate for private entanglement transmission if for all δ, ε >
0 and sufficiently large n there exist (n, )nQ*, δ, ε) private entanglement transmission
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The best general result

We can give an explicit single-letter
formula for the quantum capacity of
the Unruh channel.
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Private Capacity

Quantum communication can be used
for establishing secret correlations. [BB84]

What is the capacity for sending private data?
Purely classical: Maurer (1994) and Ahlswede & Csiszar (1993)

What is the private capacity of a quantum channel for
communicating classical data? [Devetak 2005]

What is the private capacity of a quantum channel for
communicating quantum data? [Hayden et al. in progress]

Friday, 15 October 2010



Private Quantum Communication

A
|ψ〉 !! N !! D

|φ〉 !! B

Noisy channel Decoder

A
|ψ〉 !! UN !!

""!
!!

!!
!!

! D
|φ〉 !! B

· !! Eve
Eve cannot get a copy of φ: automatic privacy.
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A
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##"
""
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""
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· !! E

Quantum state is a density matrix on B ⊗ E
Alice wants to send a message to Bob
so that with high probability Bob can decode it
and Eve is very unlikely to be able to decode it.
An (n, ε) private channel code
of rate R allows Alice to send one of 2nR

messages,Bob can decode with error less than ε
and Eve cannot find out more than ε bits.
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Definition 4. An (n, k, δ, ε) private entanglement transmission code from Alice to Bob

consists of an encoding channelA taking a k-qubit system R′ into the input ofN⊗n and

a decoding channel B taking the output ofN⊗n to a k-qubit system C ∼= R′ satisfying

1. Transmission: ‖(id⊗B ◦N⊗n ◦A)(Φ2k)− Φ2k‖1 ≤ δ.

2. Privacy: ‖(id⊗E⊗n ◦A)(Φ2k)− π2k ⊗ (E⊗n ◦A)(π2k)‖1 ≤ ε.

A rate Q is an achievable rate for private entanglement transmission if for all δ, ε >
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Wiretap Channels

 

 
A B

E  n

N  n
  

Alice

Eve

Bob

Figure 2: Another scenario in which the wiretap framework applies. Alice sends quan-

tum data to Bob through two separate channels, two different fiber optic links, for exam-

ple. Eve potentially has access to one of the links and Alice wants to ensure that should

Eve try to eavesdrop that she will not learn anything about the transmission. N  n, E  n

and B appear in dashed boxes to indicate that B ◦N  n and E  n are mutually exclusive.

codes. The private quantum capacity Qp(N , E) is the supremum of all the achievable

rates.

The transmission criterion states that halves of EPR pairs encoded byA, sent through
the channel and then decoded by B will be preserved by the communications system

with high fidelity. Alternatively, one could ask that arbitrary pure states or even arbi-

trary states entangled with a reference sent through B ◦ N  n ◦ A be preserved with

high fidelity. The different definitions are equivalent for the standard quantum capacity

Q(N ) = Qp(N ,Tr), which is defined with no privacy requirement [32]. The equiva-
lence extends straightforwardly to the private quantum capacity.

The privacy condition can also be written in a slightly more indirect but illustrative

way. If ΨREn = (idR ⊗E  n ◦A)(Φ2k), then the condition states that

‖ΨREn −ΨR ⊗ΨEn‖1 ≤ ε. (3)

In words, the channel E  n ◦ A should destroy all correlations with R for the input

maximally entangled state Φ2k .

Let Ec(·) = TrE UE ·U †
E be the channel from Alice to the environment of the channel

to Eve. The output of Ec contains data that Eve is incapable of intercepting, which
explains its appearance in our main capacity theorem:

Theorem 5 (Private quantum capacity). The private quantum capacity Qp(id, E) when
the channel from Alice to Bob is noiseless is given by the formula max 1

2I(A
 ;Ec)ρ,

where the maximization is over all pure states
∣

∣ψ
〉

A′A
and ρ = (id⊗Ec)(ψ).
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Wiretap channels apply to the Unruh
scenario but also to many other situations.
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Quantum communication: Alice sending 
quantum data to Bob, and Eve intercepts.

However, Eve is accelerating so gets Unruh 
noise.

What is the private capacity for Alice to Bob?  
Can we use the Unruh noise?

Our Setting Today
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Alice !! · !! · !!

Eve
""!!!!!!!!
· !! Bob
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Eve intercepts.

Eve intercepts while accelerating.
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Alice −→ N −→ Bob

Alice −→ E −→ Eve
Eve is not a “part” of the environment [Eve !⊆ Env]

Does the Unruh effect give a channel
from Alice to Bob with nonzero
quantum and classical private capacity?

Friday, 15 October 2010



|φ〉 −→ −→ |φ̃〉
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Alice Bob

Alice Eve
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•
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•
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•
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quantum capacity problem. We will see below, however, that they can be characterized

in the case of qudit Unruh channels.

The following theorem gives the best known general achievable rates for the quantum

capacity problem in terms of the coherent information, as defined in the previous section.

Theorem 2 (Lloyd-Shor-Devetak [33, 40, 18]). Let
∣

∣ψ
〉

A′A
be a pure state,N a quantum

channel from A to B and define ρ = (idA′ ⊗N )(ψ). The quantum capacity Q(N ) of N
is at least I(A′〉B)ρ.

2.2 Private Quantum Capacity: General Case

The private quantum capacity is the optimal rate at which a sender (Alice) can send

qubits to a receiver (Bob) while simultaneously ensuring that those qubits remain en-

crypted from the eavesdropper’s (Eve’s) point of view. At first glance, this would not

seem to be a very interesting concept. The impossibility of measuring quantum informa-

tion without disturbing it would seem to ensure that successful transmission of quantum

information would make it automatically private. One can imagine a passive eaves-

dropper, however, who could have nontrivial access to the qubits should she choose to

exercise it. The setting we will ultimately be primarily concerned with here is a relativis-

tic version of that passive eavesdropper, in particular, the case in which the eavesdropper

is uniformly accelerated.

Definition 3. A quantum wiretap channel consists of a pair of quantum channels

(NA→B, EA→E) taking the density operators onA to those on B and E, respectively.

N should be interpreted as the channel from Alice to Bob and E the channel from
Alice to Eve. Let UN : A → B ⊗Bc and UE : A → E ⊗ Ec be isometric extensions of

the channels N and E . In particular, N (·) = TrBc UN · U †
N and E(·) = TrEc UE · U †

E .

In many circumstances, E will be a degraded version of the “environment” of the Alice-
Bob channel, meaning that there exists a channelD such that E(·) = D ◦TrB UN ·U †

N .

For the uniformly accelerated eavesdropper, however, this needn’t be the case so we

don’t require a priori that there be a particular relationship betweenN and E . Another
relevant example is illustrated in Figure 2.

Recall that π2k = I/2k the maximally mixed state on k qubits.

Definition 4. An (n, k, δ, ε) private entanglement transmission code from Alice to Bob

consists of an encoding channelA taking a k-qubit system R′ into the input ofN⊗n and

a decoding channel B taking the output ofN⊗n to a k-qubit system C ∼= R′ satisfying

1. Transmission: ‖(id⊗B ◦N⊗n ◦A)(Φ2k)− Φ2k‖1 ≤ δ.

2. Privacy: ‖(id⊗E⊗n ◦A)(Φ2k)− π2k ⊗ (E⊗n ◦A)(π2k)‖1 ≤ ε.

A rate Q is an achievable rate for private entanglement transmission if for all δ, ε >
0 and sufficiently large n there exist (n, )nQ*, δ, ε) private entanglement transmission

6

quantum capacity problem. We will see below, however, that they can be characterized

in the case of qudit Unruh channels.

The following theorem gives the best known general achievable rates for the quantum

capacity problem in terms of the coherent information, as defined in the previous section.

Theorem 2 (Lloyd-Shor-Devetak [33, 40, 18]). Let
∣

∣ψ
〉

A′A
be a pure state,N a quantum

channel from A to B and define ρ = (idA′ ⊗N )(ψ). The quantum capacity Q(N ) of N
is at least I(A′〉B)ρ.

2.2 Private Quantum Capacity: General Case

The private quantum capacity is the optimal rate at which a sender (Alice) can send

qubits to a receiver (Bob) while simultaneously ensuring that those qubits remain en-

crypted from the eavesdropper’s (Eve’s) point of view. At first glance, this would not

seem to be a very interesting concept. The impossibility of measuring quantum informa-

tion without disturbing it would seem to ensure that successful transmission of quantum

information would make it automatically private. One can imagine a passive eaves-

dropper, however, who could have nontrivial access to the qubits should she choose to

exercise it. The setting we will ultimately be primarily concerned with here is a relativis-

tic version of that passive eavesdropper, in particular, the case in which the eavesdropper

is uniformly accelerated.

Definition 3. A quantum wiretap channel consists of a pair of quantum channels

(NA→B, EA→E) taking the density operators onA to those on B and E, respectively.

N should be interpreted as the channel from Alice to Bob and E the channel from
Alice to Eve. Let UN : A → B ⊗Bc and UE : A → E ⊗ Ec be isometric extensions of

the channels N and E . In particular, N (·) = TrBc UN · U †
N and E(·) = TrEc UE · U †

E .

In many circumstances, E will be a degraded version of the “environment” of the Alice-
Bob channel, meaning that there exists a channelD such that E(·) = D ◦TrB UN ·U †

N .

For the uniformly accelerated eavesdropper, however, this needn’t be the case so we

don’t require a priori that there be a particular relationship betweenN and E . Another
relevant example is illustrated in Figure 2.

Recall that π2k = I/2k the maximally mixed state on k qubits.

Definition 4. An (n, k, δ, ε) private entanglement transmission code from Alice to Bob

consists of an encoding channelA taking a k-qubit system R′ into the input ofN⊗n and

a decoding channel B taking the output ofN⊗n to a k-qubit system C ∼= R′ satisfying

1. Transmission: ‖(id⊗B ◦N⊗n ◦A)(Φ2k)− Φ2k‖1 ≤ δ.

2. Privacy: ‖(id⊗E⊗n ◦A)(Φ2k)− π2k ⊗ (E⊗n ◦A)(π2k)‖1 ≤ ε.

A rate Q is an achievable rate for private entanglement transmission if for all δ, ε >
0 and sufficiently large n there exist (n, )nQ*, δ, ε) private entanglement transmission

6

quantum capacity problem. We will see below, however, that they can be characterized

in the case of qudit Unruh channels.

The following theorem gives the best known general achievable rates for the quantum

capacity problem in terms of the coherent information, as defined in the previous section.

Theorem 2 (Lloyd-Shor-Devetak [33, 40, 18]). Let
∣

∣ψ
〉

A′A
be a pure state,N a quantum

channel from A to B and define ρ = (idA′ ⊗N )(ψ). The quantum capacity Q(N ) of N
is at least I(A′〉B)ρ.

2.2 Private Quantum Capacity: General Case

The private quantum capacity is the optimal rate at which a sender (Alice) can send

qubits to a receiver (Bob) while simultaneously ensuring that those qubits remain en-

crypted from the eavesdropper’s (Eve’s) point of view. At first glance, this would not

seem to be a very interesting concept. The impossibility of measuring quantum informa-

tion without disturbing it would seem to ensure that successful transmission of quantum

information would make it automatically private. One can imagine a passive eaves-

dropper, however, who could have nontrivial access to the qubits should she choose to

exercise it. The setting we will ultimately be primarily concerned with here is a relativis-

tic version of that passive eavesdropper, in particular, the case in which the eavesdropper

is uniformly accelerated.

Definition 3. A quantum wiretap channel consists of a pair of quantum channels

(NA→B, EA→E) taking the density operators onA to those on B and E, respectively.

N should be interpreted as the channel from Alice to Bob and E the channel from
Alice to Eve. Let UN : A → B ⊗Bc and UE : A → E ⊗ Ec be isometric extensions of

the channels N and E . In particular, N (·) = TrBc UN · U †
N and E(·) = TrEc UE · U †

E .

In many circumstances, E will be a degraded version of the “environment” of the Alice-
Bob channel, meaning that there exists a channelD such that E(·) = D ◦TrB UN ·U †

N .

For the uniformly accelerated eavesdropper, however, this needn’t be the case so we

don’t require a priori that there be a particular relationship betweenN and E . Another
relevant example is illustrated in Figure 2.

Recall that π2k = I/2k the maximally mixed state on k qubits.

Definition 4. An (n, k, δ, ε) private entanglement transmission code from Alice to Bob

consists of an encoding channelA taking a k-qubit system R′ into the input ofN⊗n and

a decoding channel B taking the output ofN⊗n to a k-qubit system C ∼= R′ satisfying

1. Transmission: ‖(id⊗B ◦N⊗n ◦A)(Φ2k)− Φ2k‖1 ≤ δ.

2. Privacy: ‖(id⊗E⊗n ◦A)(Φ2k)− π2k ⊗ (E⊗n ◦A)(π2k)‖1 ≤ ε.

A rate Q is an achievable rate for private entanglement transmission if for all δ, ε >
0 and sufficiently large n there exist (n, )nQ*, δ, ε) private entanglement transmission

6

 

 
A B

E⊗n

N ⊗n
  

Alice

Eve

Bob

Figure 2: Another scenario in which the wiretap framework applies. Alice sends quan-

tum data to Bob through two separate channels, two different fiber optic links, for exam-

ple. Eve potentially has access to one of the links and Alice wants to ensure that should

Eve try to eavesdrop that she will not learn anything about the transmission. N ⊗n, E⊗n

and B appear in dashed boxes to indicate that B ◦ N ⊗n and E⊗n are mutually exclusive.

codes. The private quantum capacity Qp(N , E) is the supremum of all the achievable

rates.

The transmission criterion states that halves of EPR pairs encoded by A , sent through
the channel and then decoded by B will be preserved by the communications system

with high fidelity. Alternatively, one could ask that arbitrary pure states or even arbi-

trary states entangled with a reference sent through B ◦ N ⊗n ◦ A be preserved with

high fidelity. The different definitions are equivalent for the standard quantum capacity

Q(N ) = Qp(N ,Tr), which is defined with no privacy requirement [32]. The equiva-
lence extends straightforwardly to the private quantum capacity.

The privacy condition can also be written in a slightly more indirect but illustrative

way. If ΨREn = (idR ⊗E⊗n ◦ A )(Φ2k), then the condition states that

‖ΨREn −ΨR ⊗ΨEn‖1 ≤ ε. (3)

In words, the channel E⊗n ◦ A should destroy all correlations with R for the input

maximally entangled state Φ2k .

Let Ec(·) = TrE UE ·U †
E be the channel from Alice to the environment of the channel

to Eve. The output of Ec contains data that Eve is incapable of intercepting, which

explains its appearance in our main capacity theorem:

Theorem 5 (Private quantum capacity). The private quantum capacity Qp(id, E) when
the channel from Alice to Bob is noiseless is given by the formula max 1

2I(A
′;Ec)ρ,

where the maximization is over all pure states
∣

∣ψ
〉

A′A
and ρ = (id⊗Ec)(ψ).
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The main result

If we can get the output in a simple enough
form we can hope to get a single-letter
formula for the private capacity.
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The Unruh Channel
Alice and Bob have the same Fock space.

Alice uses two different modes of the quantum field to encode qubits.
Let the annihilation operators for the two modes be a and b.

A Bogolioubov transformation will change the modes to Eve’s Fock space.

2

tors: this is called a Bogoliubov transformation [9]. We
emphasize that there is one Hilbert space of quantum
fields; only the Fock decomposition changes. A Bogoli-
ubov transformation acts independently in each mode, so
we can assume that we have detectors tuned to specific
modes and not worry about the transformation of all the
modes.

Consider a state |ψ〉 of the quantum field. The in-
ertial observers may see this as a many particle state:
Πia

†
i |vac〉. The Bogoliubov transformation changes each

ai to some combination αiã†+βiã where the ã and ã† are
the operators of the non-inertial observers’ Fock decom-
position. The Unruh channel N represents this change,
followed by tracing over the modes that are in the wedge
inaccessible to the accelerating observer, in the explicit
Fock space description of the field .

We will assume that Alice encodes information for Bob
by preparing quantum states of a bosonic, dual-rail qubit.
In other words, she has access to a two-dimensional sector
of her (and Bob’s) Fock space, with basis vectors given
by a single excitation of a massless scalar field in one of
two different modes, which we label by their associated
annihilation operators a and c [19]. Uac(r) is the unitary
operator transforming the sector of Alice’s Fock space to
the corresponding sector of Eve’s Fock space. In short,
the channel is Uac followed by the appropriate trace. The
parameter r is related to Eve’s proper acceleration τ and
the mode frequency ω by tanh r = exp (−πω/τ) [9].

In our dual-rail case, an arbitrary pure input state
|ψ〉 = (αb†+βa†) |vac〉 is transformed to Eve’s Fock space
according to

Uabcd(r) = Uac(r)⊗ Ubd(r) = er(a†c†+b†d†)−r(ac+bd)

= 1
cosh2 r etanh r(a†c†+b†d†)

× e− ln cosh r(a†a+b†b+c†c+d†d)e− tanh r(ac+bd). (1)

For all states in the dual-rail basis Eq. (1) reduces to
Uabcd(r) = 1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This al-
lows us to write the state in Eve’s Fock space as |ψ〉 =
Uabcd(r)(αb† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If
we trace over degrees of freedom beyond Eve’s horizon
(cd), then σ = N (|ψ〉〈ψ|) = (1− z)3

⊕∞
k=0 zk σk is block

diagonal with blocks σk labeled by the total excitation
number k (z = tanh2 r):

σk ∝
k∑

n=0

[
|α|2(n + 1)|k − n, n + 1〉〈k − n, n + 1|

+ |β|2(k − n + 1)|k − n + 1, n〉〈k − n + 1, n|

+ αβ̄
√

(n + 1)(k − n + 1)|k − n, n + 1〉〈k − n + 1, n|

+ h.c.
]
. (2)

Each block σk can be expressed as a linear combination
of generators J (k+2)

x , J (k+2)
y and J (k+2)

z of the irreducible

(k + 2)−dimensional representation of SU(2). ( (J (2), for
example, consists of the Pauli matrices scaled by 1/2.) If
σ = N (ρ) with ρ = 11/2 + (n · (J (2) arbitrary, then

σk = 11(k + 1)/2 + nxJ (k+2)
x + nyJ (k+2)

y + nzJ
(k+2)
z . (3)

As a consequence, the channel N to Eve is covariant in
the sense that N (UρU†) = R(U)N (ρ)R(U†) where R is
the infinite dimensional representation of SU(2) given by
the direct sum over all its finite dimensional irreps. This
makes it easy to diagonalize σ: the eigenvalues of σk are
skm = 1/2[k + 1 + (k + 1− 2m)S] where S = ‖(n‖2 is the
length of ρ’s Bloch vector and m runs from 0 to k + 1.

PRIVATE CLASSICAL CAPACITY

Capacities are defined by allowing arbitrarily many
uses of a channel and asking that the various data trans-
mission or privacy requirements hold to any desired level
of approximation in the limit of many uses. The private
classical capacity Cp(id2,N ) is the optimal rate, mea-
sured in bits per channel use, at which Alice can send
classical data to Bob over the noiseless channel id2 in
such a way that Eve is incapable of distinguishing the
messages based on her view, the output of the channel
N . A more formal definition can be found in [7] along
with a general formula for the private classical capac-
ity. In this case, the formula reduces to Cp(id2,N ) =
limn→∞

1
nC(1)

p (id⊗n
2 ,N⊗n), where

C(1)
p (id⊗n

2 ,N⊗n) = max
E

[
χ(E)− χ(N⊗n(E))

]
. (4)

Here E is any ensemble of pure state inputs on n copies of
the channel and χ({pi, τi}) = H(

∑
x pxτx)−

∑
x pxH(τx)

is the Holevo quantity, with H the von Neumann entropy.
(See [10].) Eq. (4) is therefore bounded above by

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
+ max

|ψn〉
H

(
N⊗n(|ψn〉〈ψn|)

)
,

(5)
where ρn and ψn are any input mixed or pure states,
respectively, to n copies of the channel. The first term, a
quantity known as (minus) the CB minimal conditional
entropy, was studied in [11], where it was shown to be
additive in the sense that maximizing it over n copies
of the channel yields exactly n times the maximal value
for one copy. Furthermore, strong subadditivity of the
entropy ensures that the first term of Eq. (5) is concave
in τ . This, combined with the covariance of the channel,
implies that the single copy version is maximized by the
maximally mixed input:

max
ρn

[
H(ρn)−H

(
N⊗n(ρn)

)]
= n[1−H(N (I/2))]. (6)

Eq. (5) therefore provides an upper bound on the classical
private capacity that depends only on the maximal out-
put entropy, optimized over all pure state inputs to the

The output density matrix is infinite dimensional and block diagonal.

The only hope: deal with it block by block.
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can be simplified by the multinomial theorem to give

tanhk r

k!

(

d
∑

i=1

a†ic
†
i

)k

= tanhk r
∑

l1+...+ld=k

1
l1! . . . ld!

(a†1c
†
1)l1 . . . (a†dc

†
d)ld . (48)

The simplified expression Eq. (47) allows us to rewrite Eq. (45) in the following way:

∣

∣σ
〉

AC
=

(

d
∑

i=1

βia
†
i

)

U
∣

∣vac
〉

=
1

coshd+1 r

(

d
∑

i=1

βia
†
i

)

∞
∑

k=0

tanhk r
∑

l1+...+ld=k

∣

∣l1 . . . ld
〉

A

∣

∣l1 . . . ld
〉

C
, (49)

where 1/
√
li!(a†i )li

∣

∣vac
〉

=
∣

∣li
〉

has been used in the second line. We get the final output
form corresponding to an input pure qudit from Eq. (44):

∣

∣σ
〉

AC
=

1
coshd+1 r

∞
∑

k=1

tanhk−1 r
∑

I

[

d
∑

i=1

βi
√

lI,i + 1
∣

∣I(i)
〉

A

∣

∣I
〉

C

]

, (50)

where
∣

∣I
〉

C
=

∣

∣l1 . . . ld
〉

C
is a multi-index labeling for basis states of the completely

symmetric subspace of (k − 1) photons in d modes. Note that k was relabeled as k +
1 so in comparison with Eq. (49) we now have k =

∑d
i=1 lI,i + 1. A ket

∣

∣I(i)
〉

A

differs from
∣

∣I
〉

C
by having lI,i + 1 instead of lI,i in the i-th place, that is,

∣

∣I(i)
〉

A
=

∣

∣lI,1 . . . lI,i + 1 . . . lI,d
〉

A
. Therefore in the A subsystem we distribute k photons in d

modes. The presence of the index I is crucial since the value of lI,i indeed depends on
which

∣

∣I
〉

C
was used to generate the corresponding

∣

∣I(i)
〉

A
.

Example. For d = 3 and k = 2 the basis consists of the states
{
∣

∣I
〉

C

}

=
{
∣

∣001
〉

,
∣

∣010
〉

,
∣

∣100
〉 }

corresponding to a single photon in three possible
modes of the A subsystem. For

∣

∣100
〉

C
we get

{
∣

∣I(i)
〉

A

}3
i=1

=
{
∣

∣200
〉

,
∣

∣110
〉

,
∣

∣101
〉 }

with the coefficient lI,i + 1 equal to 2, 1 and 1, respectively. If we chose a different
∣

∣I
〉

C
the result would in general be a different set of vectors and coefficients.
Example. For another example we choose d = 4 and k = 3. The basis of the C-
subsystem consists of the states

{
∣

∣I
〉

C

}

=
{
∣

∣0002
〉

,
∣

∣0020
〉

,
∣

∣0200
〉

,
∣

∣2000
〉

,
∣

∣0011
〉

,
∣

∣0101
〉

,
∣

∣0110
〉

,
∣

∣1001
〉

,
∣

∣1010
〉

,
∣

∣1100
〉 }

This corresponds to two photons in four possible modes of the A subsystem. For
∣

∣0200
〉

C
we get

{ ∣

∣I(i)
〉

A

}4
i=1

=
{ ∣

∣1200
〉

,
∣

∣0300
〉

,
∣

∣0210
〉

,
∣

∣0201
〉 }

with the coeffi-
cient lI,i + 1 equal to 1, 3, 1 and 1, respectively.

17

The output of the Unruh channel
for an input qudit is:

Note: ∞ dimensional and block diagonal.
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Group theory to the rescue:
the blocks of the output density matrix
live in completely symmetric subspaces
because we are creating bosons.

In fact the Unruh channel “behaves well”
with respect to the Lie algebra sl(d,C),
the Lie algebra of SU(d).

Physicists’ approach:
guess the answer, then check!
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3.2 The structure of the output density matrix and the irreducible repre-

sentations of sl(d,C)

In order to make the correspondence between the output density matrix and the irre-

ducible representations of sl(d,C) clearer, we will show that the terms appearing in the
output density matrix live in spaces that carry representations of sl(d,C) and the states
themselves can be written in terms of the Lie algebra generators.

We begin with a formal definition of the qudit Unruh channel.

Definition 11. The qudit Unruh channel E is the quantum channel defined by E(ψAC) =
TrC UψACU † where U =

⊗d
i=1 UAiCi with UAiCi given by Eq. (45). The action of the

channel on an input qudit state Eq. (44) is given by

E : ψA !→ σA = (1− z)d+1
∞
⊕

k=1

zk−1σ(k)
A , (51)

where

σ(k)
A =

∑

I

d
∑

i=1

|βi|2(lI,i + 1)
∣

∣I(i)
〉〈

I(i)
∣

∣

A

+
∑

I

d
∑

i,j=1
i!=j

βiβ̄j

√

(lI,i + 1)(lI,j + 1)
∣

∣I(i)
〉〈

I(j)
∣

∣

A
+ h.c.

(52)

where we have defined z = tanh2 r and thus cosh2 r = 1/(1 − z).

Remark. Note that the letters A and C are used for labeling both the input and output

systems.

In summary, the qudit Unruh channel is a map transforming states prepared in a

limited sector of the Minkowski observer’s Hilbert space (the observer we have called

Alice) to the Hilbert space associated with a uniformly accelerating observer (Rindler

observer Eve).

Theorem 12. Let the first block of σA in Eq. (51) be written as

σ(1)
A = I+

L
∑

α=1

nαλ
(1)
α , (53)

where λ(1)
α are generators of the fundamental representation of the sl(d,C) algebra,

L = 3d
2 (d− 1) and nα are functions of βiβ̄j . Then the remaining blocks in Eq. (51) can

be expanded with the same coefficients nα

σ(k)
A = I+

L
∑

α=1

nαλ
(k)
α , (54)

where λ(k)
α are generators of the kth completely symmetric representation of the sl(d,C)

algebra. The blocks σ(k)
A are in general not normalized.

18
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actions on the state spaces: the qudit Unruh channel is S U (d)-covariant. We recall the
relevant notation and give a formal definition of covariance.

Definition 16. Let G be a group, Hin, Hout be Hilbert spaces and let r1 : G →
G L(Hin), r2 : G → G L(Hout) be unitary representations of the group. Let K :
DM

(

Hin
)

→ DM
(

Hout
)

be a channel. We say that K is covariant with respect

to G , if
K
(

r1(g)ρr1(g)†
)

= r2(g)K(ρ)r2(g)† (66)

holds for all g ∈ G , ρ ∈ DM(Hin).

What covariance really means is that certain equations hold for “Lie algebraic rea-
sons” and not because of some special property of a particular representation. For com-
pleteness, we give the well-known argument that one can diagonalize a matrix that rep-
resents a group element in “essentially the same way” in all the representations. (See,
for example, Sec. 8.1 in [22].) Recall that a Lie algebra is itself a vector space so one
can consider the representation of a Lie algebra on itself : the adjoint representation.

Let G be a Lie group, e its identity element and Te G the tangent space at the identity:
Te G is the Lie algebra of G . For any element g we define Ψg to be the conjugation map
Ψg(k) = gkg−1. This gives a map Ψ : G → A ut(G). Now we take the differential and
get the adjoint representation of:

A d(g) = (dΨg)e : Te G → Te G and A d : G → A ut(Te G).

If θ is a (smooth) homomorphism from G to H then the following diagram obviously
commutes.

G θ
!!

Ψg

""

H
Ψρ(g)

""

G
θ

!! H

Taking the derivative at the identity we get that the diagram

Te G
(dθ)e

!!

Ad(g)
""

Te H

Ad(θ(g))
""

Te
(dθ)e

!! Te H

commutes.
In our case G is S U (d) and its Lie algebra, Te G is su(d). Consider the case where the

map θ defines a unitary representation of the group on the space Cn. So now the group
H is U(Cn), the group of unitary n × n matrices and its Lie algebra is H er m(Cn), the
algebra of hermitian matrices. If we write rn = dθ : su(d) → H er m(Cn) we have the
equation for any g ∈ S U (d) and any λ in su(d),

A d(θ(g))rn(λ) = rn(A d(g)λ).

26

What “well behaved” means.

Covariance signifies that certain equations
that hold in a representation, hold for
“Lie algebraic reasons” and not because
of some special property of the representation.
Thus we can diagonalize all the blocks
at the same time.
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The adjoint action is just conjugation. If we writeU for the (unitary) matrix representing
g then we have

θ(U)θ(λ)θ(U)† = rn(UλU †).

This shows that if we diagonalize in the adjoint representation we can diagonalize any

other representation using the corresponding matrices appropriate to the representation.

Of course, it also means that if we diagonalize in any representation, not necessarily the

adjoint, we can use the same correspondence to diagonalize any other representation.

The following corollary of the main invariance theorem can now be established.

Corollary 17. The qudit Unruh channel is SU(d)-covariant.

Proof. The channel output σA in Eq. (51) is an infinite-dimensional block-diagonal trace
class matrix. It can be rewritten as

σA =
∞
⊕

k=1

skσ̃
(k)
A , (67)

where sk is some probability distribution function and σ̃
(k)
A is proportional to σ(k)

A such

that Tr
[

σ̃(k)
A

]

= 1 for all k. This implies that the qudit Unruh channel can be written
as E(ψ) =

⊕∞
k=1 skEk(ψ), where the Ek(ψ) can be read off Eq. (51). It follows from

Theorem 12 that the diagram commutes:

ψ
Ek !!

r1(g)
""

σ̃(k)

r2(g)
""

ψ′
Ek

!! σ̃′(k)

Therefore, the covariance condition Eq. (66) holds for all Ek. Since the output of the
qudit Unruh channel is a direct sum of Ek(ψ) we conclude that the qudit Unruh channel
is covariant as well. !

4 Quantum capacities of the qudit Unruh channel

While there is no known single-letter formula for the quantum capacity of a general

quantum channel, if a channel has the property of being either degradable or conjugate

degradable, the optimized coherent information does give such a formula [19, 8]. It was

shown in [9] that the qubit Unruh channel is conjugate degradable. We will show below

that this property extends to the qudit Unruh channels. From there, we will calculate the

quantum capacity.

Definition 18. A channel E is conjugate degradable if there exists a quantum channel

Ď, called a conjugate degrading map, which degrades the channel to its complementary
channel Ec up to complex conjugation C:

Ď ◦ E = C ◦ Ec. (68)

27

Theorem 12 implies that:

In addition, the Unruh channel has a property
called conjugate degradability

If a channel is covariant and conjugate degradable
then the maximization in the formula for the channel
capacity is achieved for a maximally mixed input state.

We can explicitly calculate this and obtain
an explicit expression for the channel capacity
and for the private quantum capacity.
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Stinespring dilation:
Every cptp map
N : DM(A) → DM(B)
can be written as

2

familiar channels are in this class, including all entanglement-breaking channels. Indeed, nearly
every channel for which the quantum capacity is known is either degradable or antidegradable.

In this article, we expand the list of quantum channels for which the quantum capacity can
be calculated by introducing the property of conjugate degradability. Conjugate degradability is
defined much like degradability except that the channel output can be used to simulate the envi-
ronment only up to complex conjugation or, equivalently, transposition. Many desirable properties
of degradability continue to hold despite this modification, including, for example, the fact that
the optimized coherent information is equal to the quantum capacity.

Conjugate degradability first appeared implicitly in [4], which analyzed private data transmis-
sion in the presence of a uniformly accelerated eavesdropper. When the data is encoded using a
bosonic, dual-rail qubit, the effective channel to the eavesdropper is a conjugate degradable channel
with infinite-dimensional output. Not all examples are so exotic, however. Optimal N → N + 1
and 1 → M cloning machines are also conjugate degradable, as we will demonstrate before using
the property to evaluate their capacities. Understanding coherence preservation in these channels
is particularly interesting given the well-known connection between detecting separability and the
existence of symmetric extensions [13]; cloning channels attempt to construct symmetric exten-
sions for arbitrary states. We find a strictly positive general formula for the quantum capacities of
N → N + 1 and 1 → M universal quantum cloning machine (UQCM), establishing that all such
machines are useful for transmitting quantum information reliably.

Structure of the paper: Section II introduces the notion of conjugate degradability and
demonstrates that there is a single-letter formula for the quantum capacity of conjugate degradable
channels. Section III uses conjugate degradability to evaluate the quantum capacity of Unruh
channels as well as the universal quantum cloning machines. Next, section IV establishes a number
of structural properties of conjugate degradable channels following the template for degradable
channels established by Cubitt et al. [9]. Finally, in an appendix, we present some supporting
evidence in favor of the conjecture that all N → M universal quantum cloning machines are
conjugate degradable.

II. THE QUANTUM CAPACITY OF CONJUGATE DEGRADABLE CHANNELS

A. Notation

Before we proceed, let us recall some relevant concepts from quantum information theory and
fix some notation. Let B(H) represent the space of bounded linear operators on the Hilbert space
H. A quantum channel is a completely positive, trace-preserving (CPTP) map between two such
spaces of operators. We will typically call the input space A and the output space B so that the
quantum channel is a map N : B(A) → B(B). The identity channel will be denoted by I.

Every quantum channel has a Stinespring dilation, a representation of the channel in which
the action of the channel on an input density matrix ! is given by N (!) = TrE(U!U †), where
U : A → B ⊗ E satisfies U †U = I. E labels an auxiliary space usually called the environment
because it models the effect of noise on the channel. There is also a complementary channel
N c : B(A) → B(E), given by tracing over the output space instead of the environment: N c(!) =
TrB(U!U †).

Throughout, we will use subscripts to label subsystems, so that !A = TrB !AB, for example.
The density operator of a pure state |ψ〉 will sometimes be denoted by ψ. H(τ) = −Tr(τ log τ) is
the von Neumann entropy of a density matrix τ . Sometimes it is more convenient (or important)
to emphasize the particular system on which the density matrices act. In that case, we will write
H(X)τ = H(τX) to denote the von Neumann entropy of the state τ restricted to the space X. The

where
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is unitary.

We call E the environment.
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conditional entropy H ( X |Y )τ is defined to b e H ( X Y )τ − H (Y )τ .
T he coherent information of a quantum channel for a given inpu t densi ty matrix is given by

Ic(N , !) = H (N (!)) − H (N c(!)). E quivalently, given the Stinespring dilation U for N and set t ing
τ = U !U † , Ic(N , !) = H ( B )τ − H ( E )τ . A s is evident from the formula, the coherent information
measures the reduct ion via leakage into the environment of the information transmit ted abou t ! .
T he quantum capaci ty of a channel N is given by the limit

Q (N ) = lim
n→∞

1
n

Q (1)(N⊗n), (1)

where Q (1)(N ) is the maximum ou tpu t coherent information of a channel, given by

Q (1)(N ) = max
"

Ic(N , !).

B. Degradable quantum channels

We can now introduce the degradability of quantum channels. A channel N is called degradable
if there exists a C P T P map, D : B( B ) → B( E ) such that D ◦ N = N c . Similarly, a channel is
antidegradable if i ts complementary channel is degradable, or equivalently, if there exists a C P T P
map Da such that Da◦N c = N . T his has b een shown in the accompanying diagram: A s mentioned

A
N ! B

E

D

"

.................

Da

#
.................

N c

!

above, degradable channels are interest ing b ecause their quantum capaci t ies are easily evaluated.
T he reason for this ease is the observation in [11] that for degradable channels, the op timized
coherent information is additive. In other words, Q (1)(N⊗n) = n Q (1)(N ). T his means that the
quantum capaci ty in (1) can b e compu ted using the single-letter formula Q (N ) = Q (1)(N ) =
max" Ic(N , !), as compared to the general case in which essentially nothing is known abou t the
rate of convergence to the limit .

C. Conjugate degradability

In [4], the au thors invest igated a channel with infinite dimensional ou tpu t that was degradable
up to complex conjugation of the ou tpu t space. In other words, the channel wasn’t obviously
degradable bu t it nearly was. In this pap er we generalize that example to the class of conjugate
degradable channels, showing not only that there exist some impor tant finite dimensional examples
in this class bu t that the conjugate degradable channels share many of the useful prop er t ies of
degradable channels with resp ect to their structure and capaci t ies.

To understand conjugate degradabili ty, i t is helpful to consider the following diagram:

N c is the complementary
channel.

N is degradable if there exists a cptp map D such that:

4

B

A

N

!

E′

D

"

.................
B′

C

!

E

C

#

Da

....
....
....
....
....
....
....
....!

N c

!

As above, A,B,E play the role of the input, output and the environment. Let C : B(E) → B(E′)
denote entry-wise complex conjugation with respect to a fixed basis of E ∼= E′. A quantum channel
is called conjugate degradable if there exists a CPTP map D : B(B) → B(E′) such that the diagram
commutes. In other words,

D ◦N = C ◦N c. (2)

In a similar fashion, N is conjugate antidegradability if there exists a CPTP conjugate degrading
map Da for the complementary channel giving

Da ◦N c = C ◦N . (3)

It is immediate from the definition that N is conjugate degradable if and only if N c is conjugate
antidegradable.

Let us now consider what happens during the computation of the quantum capacity for conju-
gate degradable channels. The map D : B(B) → B(E′) can also be represented by its Stinespring
dilation with the addition of another auxiliary space, say F , so that we have a corresponding
isometry V : B → E′F in addition to the isometry U : A → BE for N . Thus H(B)τ = H(E′F )ω
for the states τ = U"U † and ω = V τV †. Now consider the coherent information of the channel,
Ic(N , ") = H(B)τ − H(E)τ = H(E′F )ω − H(E′)ω = H(F |E′)ω, using the fact that complex con-
jugation does not change the entropy. For two uses of the channel N⊗2 : B(A1A2) → B(B1B2),
repeated application of the strong subadditivity of von Neumann entropy yields

H(F1F2|E′
1E

′
2)ω ≤ H(F1|E′

1E
′
2)ω + H(F2|E′

1E
′
2)ω

≤ H(F1|E′
1)ω + H(F2|E′

2)ω

where ω = (V ⊗ V )τ(V † ⊗ V †) and " = (U ⊗ U)"A1A2
(U † ⊗ U †) for any "A1A2

. This shows
that Ic(N⊗2, "A1A2

) ≤ Ic(N , "A1
)+ Ic(N , "A2

), which in turn implies that Q(1)(N⊗2) ≤ 2Q(1)(N ).
Since the superadditivity is an immediate consequence of the definition and we can easily deduce by
induction that Q(1)(N⊗n) ≤ nQ(1)(N ), we clearly have, just as in the case of degradable channels,
a single-letter expression for the capacity of a conjugate degradable channel,

Q(N ) = Q(1)(N ) = max
#

Ic(N , "). (4)

Next, consider the class of conjugate antidegradable channels. Suppose that it is possible to
send quantum states through such a channel in the sense that there is a decoding CPTP map R
such that (R ◦N )(φ) has high fidelity with |φ〉 for all |φ〉 in a subspace of dimension at least 2. By
the definition of conjugate antidegradability, the output N c(|φ〉〈φ|) of the complementary channel

Conjugate degradable means
that we get to throw in a
complex conjugation map C
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Figure 7: The quantum capacity as calculated by Eq. (86) for several qudit Unruh chan-

nels. The curve achieving a capacity of 1 for z = 0 corresponds to d = 2. The others, in
order of increasing quantum capacity, are d = 3, 5 and 10.

The basis states
∣

∣ik
〉

C
form an orthogonal set spanning the completely symmetric sub-

space of (k− 1) photons in dmodes. Once again, the state is proportional to the identity
on each irrep. We will take Eq. (83) as the definition of ρC for the remainder of the

paper.

We define Td,z = 1/d(1 − z)d+1 and after some straightforward algebra we get

H(A)ρ = − log Td,z − (1 + d)
z

1 − z
log z − Td,z

∞
∑

k=1

pdkkz
k−1 log k. (84)

Similarly, for the complementary output Eq. (83)

H(C)ρ = − log Td,z − (1 + d)
z

1− z
log z

− Td,z

∞
∑

k=1

pdk−1(k + d− 1)zk−1 log (k + d− 1). (85)

The quantum capacity of the qudit Unruh channel simplifies

Q(E) = H(A)ρ −H(C)ρ = −Td,z

∞
∑

k=1

pdkkz
k−1 log

k

k + d− 1
. (86)

31

Capacity for various values of d (the dimensionality of the
encoding space - qudits). The d = 2 case corresponds to the
lowest curve. The x axis gives the acceleration.
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Figure 8: The private quantum capacity as calculated by Eq. (87) for several qudit Unruh

channels. In order of increasing capacity, the curves correspond to d = 2, 3, 5 and 10.

We find the plot of the quantum capacity as a function of the acceleration parameter in

Fig. 7.

For the private quantum capacity we recall our single-letter formula from Theorem 5.

The channel to Bob is a noiseless channel and so

Qp(id, E) = 1
2I(A

′;C)ρ

= 1
2 [log d+H(C)ρ −H(A)ρ]

= 1
2

(

log d+ Td,z

∞
∑

k=1

pdkkz
k−1 log

k

k + d− 1

)

. (87)

The private quantum capacity is plotted in Figs. 8 and 9. The second figure demonstrates

that private communication is more efficient with qudit encodings than with qubit encod-

ings even after normalization for the fact that a qudit channel carries more information

than a qubit channel when d > 2.

5 Conclusions

We investigated two communication problems in Rindler spacetime. The first was to

determine the optimal rate at which a sender could reliably transmit qubits to a uni-

formly accelerating receiver. While this problem has resisted solution for general quan-

tum channels, in the case of the qudit Unruh channels, we are able to extract a compact,

32

The private quantum capacity for various values of d.
The d = 2 case corresponds to the lowest curve.
The x axis gives the acceleration.
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Figure 9: The private quantum capacity given by Eq. (87) for several qudit Unruh

channels in units of dits. The uppermost curve corresponds to d = 10, then in order
d = 5, 3, 2. This presentation facilitates comparison of the private quantum capacity for
different d by correcting for the fact that a noiseless qudit channel can send log d times
as much information as a noiseless qubit channel. In these units, one immediately sees

that in the limit of infinite acceleration, the private quantum capacity approaches a value

of 1
2 log d, meaning that Alice and Bob need only sacrifice half of their transmission

bandwidth to secure their messages. More interestingly, the graph indicates that using

higher d yields more efficient encodings for finite values of Eve’s acceleration.

tractable formula which is strictly positive for all accelerations. In order to evaluate the

capacity, we decomposed the output of the Unruh channel into irreducible completely

symmetric representations of the unitary group. From this decomposition, we were able

to show that the channels have a rare and useful property known as conjugate degrad-

ability, which makes the calculation of the capacity possible.

The second problem involves securely sending encrypted quantum information from

an inertial sender to an inertial receiver in the presence of an accelerating eavesdropper.

Because the associated private general quantum capacity problem had only been very

briefly discussed previously, we began by studying it for arbitrary channels. In the case

where the channel from the sender to the intended receiver is noiseless, our formula

“single-letterizes”, meaning that it involves no intractable limits. Specifically, the private

quantum capacity is equal to the entanglement-assistant capacity to the eavesdropper’s

environment. Applied to the qudit Unruh channels, we find the private quantum capacity

is positive for all non-zero eavesdropper accelerations, no matter how small.

33

The private quantum capacity for various values of d.
Here we are showing the results in dits.
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Conclusions
Surprises: absence of threshold behaviour and
strange coincidence between the explicit formula
for the private quantum capacity and the
entanglement-assisted capacity.

How are these modified if we consider
acceleration for a finite time only?
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Can an accelerating observer prepare a pure
state? How will she cancel out Unruh noise?

Communication capacity in curved spacetime?
Information as a probe of geometry??

Black holes seem to be optimal cloners! Why??

What next?
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