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Motivation

Interested in sequential decision making 
under uncertainty

Agent must infer its “state” based on 
observations of environment

A larger observation space gives more 
information, but increases complexity of 
problem

Hardware is cheap and small => many 
sensors/observations!
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Our contribution
Allow subsets of observation space to be 
specified for planning/learning.

Provide theoretical foundations when  
planning/learning using this idea.

Will address questions such as:

How is agent’s behaviour affected by 
using only a subset of all 
observations?

How are agent’s predictions affected?
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Maintain a 
distribution over 

states based on clues

Partially observable MDPs
(POMDPs)
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Standard POMDPs
6-tuple                      consisting of

Set of states   ,

Set of actions   ,

Probabilistic transition 
function

Bounded reward function

Set of observations

Observation function

Discount factor

+1

+10

-1

0

0

+.1

0

+1

-1

+5

+1

(a, b, . . .)

R(s, a)

(s, s�, t, . . .)

P (s, a)(s�)

0.25

0.45

0.
3

0 ≤ γ < 1

O(a, s)(ω)

ω1

ω1

ω1

ω1

ω2

ω2

ω2

ω2

ω3

ω3

ω3Ω

S

A

�S, A, P, R, Ω, O�
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Move forward

Belief states
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Belief states

A belief state     is a distribution over    . 

Given    , action    and observation    , 
there is a unique next belief state
              .

Can also compute probability of next 
observations.

µ S

a ωµ

τ(µ, a,ω)
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POMDPs
5-tuple                    consisting of

Set of states   ,

Set of actions   ,

Probabilistic transition 
function

Set of observations

Observation function

Discount factor

+1

+10

-1

0

0

+.1

0

+1

-1

+5

+1

(a, b, . . .)

(s, s�, t, . . .)

P (s, a)(s�)

0.25

0.45

0.
3

0 ≤ γ < 1

O(a, s)(ω)

ω1

ω1

ω1

ω1

ω2

ω2

ω2

ω2

ω3

ω3

ω3

Ω

S

A

�S, A, P, Ω, O�

= Ω1 × Ω2 × · · ·× Ωk

k-dimensional observation vector

Rewards part of observation vector!

Os,ω
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Partially observable MDPs
(POMDPs)

12

3

6

9, , , ,

State updates

Performance
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Specifying data and 
interest

Let                         be indices of 
observation coordinates used for 
belief updates

Let                        be indices of 
observation coordinates that are 
observables of interest for planning/
prediction.

Let       be set of observations 
containing only observations from   . 
similarly for     . 

ΩD
D

ΩI

D ⊆ {1, 2, . . . , k}

I ⊆ {1, 2, . . . , k}
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New POMDP dynamics

We project observation functions with 
binary projection matrices      :

Unique next beliefs specific to choice 
of    :                 

Can define a transition fn. between 
belief states                 .

D

TD(µ, a)(µ�)

OD = OΦDΦD

τD(µ, a,ω) =
µP aOω

D
µP aOω

DeT
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Measuring performance

Elements from       may be of many 
different types.

Need a way to quantify an agent’s 
performance. 

We assume a function                  that 
maps observations of interest to a real 
number.

f : ΩI → R

ΩI
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Closed-loop policies: Map belief states 
to actions (        ) 

Value of a belief state    under   :

Optimal value function: 

Policies and value 
functions

V π
D,I =

π ∈ Π

µ π Eπ

�
H�

i=0

γiri|µ
�

+γ
�

µ�∈B
TD(µ, π(µ))(µ�)V π

D,I(µ
�)

V ∗
D,I(µ) = max

a∈A





�

ωI∈ΩI

Pr(ωI |µ, a)f(ωI) + γ
�

µ�∈B
TD(µ, a)(µ�)V ∗

D,I(µ
�)






�

ωI∈ΩI

Pr(ωI |µ, π(µ)))f(ωI)
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Is new POMDP definition 
suitable?

Are fully observable MDPs still 
expressible?

Does the definition properly follow 
intuition? (e.g. do larger observation 
subsets yield improved performance)?
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MDPs

Assume the observations are just         

    points to     and     points to    .

S × R

D S I R
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Optimal value functions

Proposition: Given indexing sets              
and    , then

D2 ⊆ D1

I
V ∗
D2,I ≤ V ∗

D1,I
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Convexity of beliefs

,

{ {D2

D1

ω2
�

D1

(ω2)

{
D2 ⊆ D1
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Theorem: Given a belief   , an action   ,
           , and observation            , the unique 
next belief                 can be expressed as a 
convex combination of the belief 
states                              .

Convexity of beliefs

ω2D2 ⊆ D1

µ a
∈ ΩD2

τD2(µ, a,ω2)

{τD1(µ, a,ω1)}ω1∈
‘
D1

(ω2)
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Convexity of beliefs

,

ω2
�

D1

(ω2)

{
D2 ⊆ D1

�
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Equivalence relations

Partition belief space into equivalence 
classes

Capture some form of behavioural 
equivalence

Two beliefs in same equivalence are 
behaviourally indistinguishable

24Monday, April 4, 2011



Outline

POMDP review 

New POMDP formulation

Equivalence relations

Value functions

Trajectory predictions

Bisimulation

Conclusions and future work

25Monday, April 4, 2011



Value function 
equivalences

For all belief states       let        be the 
set of all policies          where

Belief states       are         -closed value 
equivalent if for all             ,

Belief states       are         -optimal 
value equivalent if

µ, ν Πµ,ν

π ∈ Π π(µ) = π(ν)

µ, ν (D, I)
π ∈ Πµ,ν

V π
D,I(µ) = V π

D,I(ν)

µ, ν (D, I)

V ∗
D,I(µ) = V ∗

D,I(ν)
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Closed and optimal value 
equivalences

Theorem: If two states are closed value 
equivalent, then they are necessarily optimal 
value equivalent.

V π equivalence

V ∗ equivalence
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If        are      equivalent and                        ,
then prob. of reaching     from    under     is 
strictly positive.

V π

Let          be set of all policies     constructed 
from some optimal policy     as follows:

ΠCV
π∗

π

π(s�) = π∗(s�) otherwise

s0, t0 V ∗(s0) > V ∗(t0)

π(s�) = π∗(s0) if s� = t0

t0 s0 π∗
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Theorem (based on (Kozen, 2007))
Define         as                                         , then
if          and                       , then          .

ϕ ⊆ B

e ∈ ϕ⇒ τ(e) ∈ ϕ e∗ ∈ ϕ

    is set of bounded functions 

          ,

             ,

                          has least fixed pt 

B

R(s, π) = R(s, π(s))

τ(e) = R+ Υ(e) e∗(s, π) = V π(s)

V : S ×ΠCV → [0, 1]

ϕ �= ∅

R ∈ B

Υ : B → B V (t0, π)V (s0, π)
�

s�

P (s, π(s))(s�)V (s�, π)Υ(V )(s, π) = γ
�

s� �=t0

P (s, π(s))(s�)V (s�, π) + P (s, π(s))(t0)

V ∈ ϕ ⇒ ∀π ∈ ΠCV .V (s, π) ≥ V ∗(s)
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)

s0

Proof: Assume V ∗(s0) > V ∗(t0)

t0

s0

s0<V ∗(s0) V π(s0)
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≥ V ∗(t0)
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≥ V ∗(t0)

Theorem: If    and    are      equivalent then       
                                    .

s0 t0 V π

V ∗(s0) = V ∗(t0)
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Trajectory equivalences

0

1

s

2

−1

0 −1

10 0 −1 0 2 1 0

(π)
V π(s)
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Trajectory equivalence

Two belief states       are     -closed trajectory 
equivalent if for all               and all finite 
observation trajectories,

µ, ν I
π ∈ Πµ,ν

Pr(α|µ, π) = Pr(α|ν, π)
α = �ω1, ω2, . . . , ωn� ∈ Ω∗

I
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Trajectory equivalence

Open-loop policies           map time steps to actions

Two belief states       are     -open trajectory 
equivalent if for all            and all finite 
observation trajectories                                        ,

A trajectory     and open loop policy     constitute 
a PSR test (Littman et al., 2002)!

θ ∈ Θ

µ, ν I
θ ∈ Θ

Pr(α|µ, θ) = Pr(α|ν, θ)

α θ

�a1, ω1, a1, ω2, . . . , an, ωn�

α = �ω1, ω2, . . . , ωn� ∈ Ω∗
I
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Hierarchy

If          , then the following hierarchy 
is obtained
D ⊆ I

(D, I)− closed value

(D, I)− optimal value

I − closed trajectoryI − open trajectory
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Hierarchy

If          , then the following hierarchy 
is obtained

(D, I)− closed value

(D, I)− optimal value

D �⊆ I

I − open trajectory I − closed trajectory
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Hierarchy

(D, I)− optimal value/I − open trajectory
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Hierarchy (D, I)− optimal value

/

s

0 0

1 0 0 1

0

t

a b

a, b a, b

a, b

a a b b

a b

0.6

0.6 0.6

0.4

0.4 0.4

a, b a, b a, b a, b

= 0.6

= 0.6

s and t are open 
trajectory equivalent

�a, 0, a, 1�V ∗(s) =
γ

1− γ

V ∗(t) =
0.6γ

1− γ

s and t are not optimal 
value equivalent!

I − open trajectory
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d

Bisimulation

s s’

ω1

ω2 ω3

ω1 ω1

ω2 ω3

0.5 0.5

0.5 0.5

0.5
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Bisimulation

An equivalence relation    is a          -bisimulation 
relation if whenever       are          -bisimilar then

For all            ,          ,

For all              ,          ,

If     and     are          -bisimilar we will write
         .

µ, ν
(D, I)

ω ∈ ΩI a ∈ A Pr(ω|µ, a) = Pr(ω|ν, a)

E
(D, I)

c ∈ B/E a ∈ A
�

µ�∈c

TD(µ, a)(µ�) =
�

µ�∈c

TD(ν, a)(µ�)

(D, I)µ ν
µ ∼ ν
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Deterministic Bisimulation

An equivalence relation    is a deterministic          
         -bisimulation relation if whenever       are          
deterministic          -bisimilar then

For all            ,          ,

For all             ,          ,

If     and     are deterministic           -bisimilar we 
will write          .

µ, ν(D, I)

ω ∈ ΩI a ∈ A Pr(ω|µ, a) = Pr(ω|ν, a)

E

(D, I)

a ∈ A

(D, I)

ω ∈ ΩD τD(µ, a,ω)EτD(ν, a,ω)

µ � ν
µ ν
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HierarchyD ⊆ I

(D, I)− closed value

(D, I)− optimal value

Deterministic

(D, I)− bisimulation
=

I − open trajectory I − closed trajectory

(D, I)− bisimulation
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Hierarchy

Deterministic

(D, I)− bisimulation
(D, I)− bisimulation/
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Hierarchy Deterministic

(D, I)− bisimulation

(D, I)− bisimulation

/

s

ω1 ω2

ω3

0.5 0.5
t

ω2

ω3

ω1

0.5 0.5

ω4 ω4

s ∼ t
s �� t
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HierarchyD ⊆ I

(D, I)− closed value

Deterministic

(D, I)− bisimulation
=

I − open trajectory I − closed trajectory

(D, I)− bisimulation

D �⊆ I

(D, I)− optimal value
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Hierarchy

(D, I)− closed value

Deterministic

(D, I)− bisimulation

I − open trajectory

(D, I)− bisimulation

(D, I)− optimal value

D �⊆ I
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Hierarchy

Deterministic

(D, I)− bisimulation
(D, I)− bisimulation/
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Hierarchy
Deterministic

(D, I)− bisimulation

(D, I)− bisimulation

/

s

t

(⊥, ω1) (⊥, ω2)(⊥, ω3) (�, ω4)

� 1− �

�1− �

Ω = {⊥,�}× {ω1, ω2, ω3, ω4}
I = {⊥,�}
D = {ω1, ω2, ω3, ω4}

τD(s, ω1) � τD(t, ω1)
τD(s, ω2) � τD(t, ω2)

Pr(⊥|s) = Pr(⊥|t) = 1

s � t

s �∼ t
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Hierarchy

(D, I)− closed value

Deterministic

(D, I)− bisimulation

I − open trajectory

(D, I)− bisimulation

(D, I)− optimal value

D �⊆ I
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Strengthening open 
trajectory

I − open trajectory

(D, I)− bisimulation

D �⊆ I

∆

∆∗ =

From (Castro et al., 2009)
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Conclusions

Subsets must be chosen with care to avoid sub-
optimal performance

Open trajectory equivalence is closely related 
to PSRs; we showed this is not appropriate with 
respect to bad choices of     and   .

In most situations we would require            .

        -bisimulation is robust even when           .

D I

D ⊆ I

D �⊆ I(D, I)
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ConclusionsD ⊆ I

(D, I)− closed value

(D, I)− optimal value

Deterministic

(D, I)− bisimulation
=

I − open trajectory I − closed trajectory

(D, I)− bisimulation
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Conclusions

(D, I)− closed value

Deterministic

(D, I)− bisimulation

I − open trajectory

(D, I)− bisimulation

(D, I)− optimal value

D �⊆ I

∆

∆∗ =

+
/
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Current work

We are currently working on learning 
algorithms for determining     , assuming    is 
known.

Start with a small    , incrementally add more 
observations.

Start planning/learning with a small    , use an 
expert/oracle to determine whether more 
observations are necessary

D I

D

D
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Future work

We project      onto       and      using binary 
projection matrices. 

If we allow general projection matrices, does 
open trajectory equivalence yield something 
similar to TPSRs (Rosencratz & Gordon, 2004; 
Boots et al., 2010).

Life-long learning: Many tasks to solve, 
different choices of      and      , depending on 
task.

ranking of observations to dynamically set     
based on time requirements.

Ω ΩD ΩI

D I

D
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)
Proof: Assume                      .V ∗(s0) > V ∗(t0)
∃V. V (s, π) ≥ V ∗(s)? Yes! Just take V ≡ 1
V (s, π) ≥ V ∗(s)⇒ τ(V )(s, π) ≥ V ∗(s)?

τ(V )(s, π) = R(s, π) + Υ(V )(s, π)

= R(s, π(s)) + γ
�

s� �=t0

P (s, π(s))(s�)V (s�, π) + γP (s, π(s))(t0)V (s0, π)

= R(s, π∗(s)) + γ
�

s� �=t0

P (s, π∗(s))(s�)V (s�, π) + γP (s, π∗(s))(t0)V (s0, π)

= V ∗(s)

Yes!Take any          ands �= t0 π ∈ ΠCV

We’ve shown that for any          and           ,
with strict inequality if 

s �= t0 π ∈ ΠCV V π(s) ≥ V ∗(s)
P (s, π∗(s))(t0) > 0

By last corollary we know ∃s� �= t0. P (s�, π∗(s�))(t0) > 0

Thus,                   , contradicting optimality of 

By contradiction, V ∗(s0) ≤ V ∗(t0)

Q.E.D.

V π(s�) > V ∗(s�)
I.H.

π(s�) = π∗(s�) otherwise
π(s�) = π∗(s0) if s� = t0

≥ R(s, π∗(s)) + γ
�

s� �=t0

P (s, π∗(s))(s�)V ∗(s�) + γP (s, π∗(s))(t0)V ∗(s0)

> R(s, π∗(s)) + γ
�

s� �=t0

P (s, π∗(s))(s�)V ∗(s�) + γP (s, π∗(s))(t0)V ∗(t0)

V ∗(s�)
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Specifying data and 
interest

Let       be a projection matrix used to 
compute                    :

If we have             , the projection       
yields the following:

ΦD
OD : n× |ΩD|

OD = OΦD

D2 ⊆ D1 Φ12

ΦD2 = ΦD1Φ12

OD2 = OD1Φ12
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Approximating bisimulation

Proposition: Given       ,       may be           -bisimilar 
for all           , but fail to be          -bisimilar.

D, I (D, Ii)Ii ⊂ I (D, I)
µ, ν

s

t

tt tt

1/3
1/6 1/6

1/3

1/2 1/2

(ω1,⊥) (⊥,⊥) (ω1, ω2) (⊥, ω2)

I1 = {⊥, ω1}
I2 = {⊥, ω2} 0.5D = I = I1 × I2
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If state is fully
observable, it is a MDP

Partially observable MDPs
(POMDPs)

?
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?

In POMDPs we only receive
clues of the state

Partially observable MDPs
(POMDPs)
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Maintain a 
distribution over 

states based on clues

Partially observable MDPs
(POMDPs)
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