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MOTIVATION

INTERESTED IN SEQUENTIAL DECISION MAKING
UNDER UNCERTAINTY

AGENT MUST INFER ITS “STATE” BASED ON
OBSERVATIONS OF ENVIRONMENT

A LARGER OBSERVATION SPACE GIVES MORE
INFORMATION, BUT INCREASES COMPLEXITY OF
PROBLEM

HARDWARE IS CHEAP AND SMALL => MANY
SENSORS/OBSERVATIONS!



OUR CONTRIBUTION

B ALLOW SUBSETS OF OBSERVATION SPACE TO BE
SPECIFIED FOR PLANNING/LEARNING.

® PROVIDE THEORETICAL FOUNDATIONS WHEN
PLANNING/LEARNING USING THIS IDEA.

WILL ADDRESS QUESTIONS SUCH AS:

@ HOw IS AGENT’S BEHAVIOUR AFFECTED BY
USING ONLY A SUBSET OF ALL
OBSERVATIONS?

@ HOWw ARE AGENT’S PREDICTIONS AFFECTED?
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OUTLINE

2 POMDP REVIEW
2 NEw POMDP FORMULATION
® EQUIVALENCE RELATIONS
@ VALUE FUNCTIONS
@ TRAJECTORY PREDICTIONS
® BISIMULATION

@ CONCLUSIONS AND FUTURE WORK
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PARTIALLY OBSERVABLE MDPS
(POMDPS)

N

MAINTAIN A
DISTRIBUTION OVER
STATES BASED ON CLUES

AN

\.




STANDARD POMDPS

® 6-TUPLE (S,A,P,R,Q),0) CONSISTING OF
B SETOF STATES 5, (S5 b))
B SET OF ACTIONS A, (a,b,...)

® PROBABILISTIC TRANSITION
FUNCTION P(s,a)(s’)

® BOUNDED REWARD FUNCTION R(s,a)
® SET OF OBSERVATIONS () @

® OBSERVATION FUNCTION O(a, s)(w)

@ DISCOUNT FACTOR (0 < vy <1
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BELIEF STATES

N

MOVE FORWARD




BELIEF STATES

A BELIEF STATE [/ IS A DISTRIBUTION OVER §S.

@ GIVEN s, ACTION a AND OBSERVATION W,
THERE IS A UNIQUE NEXT BELIEF STATE

(s W)

2@ CAN ALSO COMPUTE PROBABILITY OF NEXT
OBSERVATIONS.
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POMDPSs

B S5-TUPLE (S, A, P,Q),0) CONSISTING OF
B SETOF STATES 5, (S5 b)) @

B SET OF ACTIONS A, (a,b,...)

K-DIMENSIONAL OBSERVATION VEC'@

® PROBABILIS CTR@\lSITION 0
FUNCTION _ X ALk

REWARDS PART OF OBSERVATION @CTOR!
® SET OF OBSERVATIONS §)

B OBSERVATION FUNCTION O(q, s)(w) @ @

@ DISCOUNT FACTOR 0 <y <1
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PARTIALLY OBSERVABLE MDPS

(POMDPS)

STATE UPDATES

L

( —

~

AN

\.

PERFORMANCE



SPECIFYING DATA AND
INTEREST

LETD C {1,2,...,k} BE INDICES OF
OBSERVATION COORDINATES USED FOR
BELIEF UPDATES

LETZ C{1,2,...,k} BE INDICES OF
OBSERVATION COORDINATES THAT ARE
OBSERVABLES OF INTEREST FOR PLANNING/
PREDICTION.

® LET {)p BE SET OF OBSERVATIONS
CONTAINING ONLY OBSERVATIONS FROMD.
SIMILARLY FOR ()7 .
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NEW POMDP DYNAMICS

B WE PROJECT OBSERVATION FUNCTIONS WITH
BINARY PROJECTION MATRICES ®p: Op = OPp

® UNIQUE NEXT BELIEFS SPECIFIC TO CHOICE
oF D : i et L)

uPrO%e

CAN DEFINE A TRANSITION FN. BETWEEN
BELIEF STATES Tp(u,a)(u’).
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MEASURING PERFORMANCE

ELEMENTS FROM {7 MAY BE OF MANY
DIFFERENT TYPES.

B NEED A WAY TO QUANTIFY AN AGENT’S
PERFORMANCE.

B WE ASSUME A FUNCTION f : {27 — R THAT
MAPS OBSERVATIONS OF INTEREST TO A REAL
NUMBER.
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POLICIES AND VALUE
FUNCTIONS

CLOSED-LOOP POLICIES: MAP BELIEF STATES

TO ACTIONS (71 € 1)

VALUE OF A BELIEF STATE [/ UNDER 7: E”

H

Zv%\u

1=0

VAz=> Priwzluw () f(ws) +v 3 To(u,w(w) (1 )VE (1)

wz Q1 ' €B

® OPTIMAL VALUE FUNCTION:

Vp,z(p maX{ > Pr(wzlp,a)f(wr) +7 Y TD(MCL)(M/)VS,I(N')}

wr €Q1 u' eB
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Is NEW POMDP DEFINITION
SUITABLE?

® ARE FULLY OBSERVABLE MDPS STILL
EXPRESSIBLE?

DOES THE DEFINITION PROPERLY FOLLOW
INTUITION? (E.G. DO LARGER OBSERVATION
SUBSETS YIELD IMPROVED PERFORMANCE)?
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MDPS

B ASSUME THE OBSERVATIONS ARE JusT 9 X R

B D PoINTS TO S AND Z POINTS TO R.
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OPTIMAL VALUE FUNCTIONS

B PROPOSITION: GIVEN INDEXING SETS Dy C Dy
AND 7, THEN

b S b S
Vo, < Vp, 1

Monday, April 4, 2011
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CONVEXITY OF BELIEFS

n




CONVEXITY OF BELIEFS

THEOREM: GIVEN A BELIEF 4, AN ACTION 'a,

Dy, C(Dy, AND OBSERVATION ws€ (lp,, THE UNIQUE
NEXT BELIEF 7p, (4, a,ws) CAN BE EXPRESSED AS A
CONVEX COMBINATION OF THE BELIEF

STATES {7, (1 @, w1) o, €], (w2)-
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CONVEXITY OF BEL
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EQUIVALENCE RELATIONS

PARTITION BELIEF SPACE INTO EQUIVALENCE
CLASSES

CAPTURE SOME FORM OF BEHAVIOURAL
EQUIVALENCE

TWO BELIEFS IN SAME EQUIVALENCE ARE
BEHAVIOURALLY INDISTINGUISHABLE

24
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VALUE FUNCTION
EQUIVALENCES

FOR ALL BELIEF STATES i,V LET ll, , BE THE
SET OF ALL POLICIES 7 € Il WHERE ([(p) = ()

BELIEF STATES [,V ARE (D,7)-CLOSED VALUE
EQUIVALENT IF FOR ALL € 1], ,,

VS,I(U) = VS,Z(”)

BELIEF STATES [,V ARE (D,7)-OoPTIMAL
VALUE EQUIVALENT IF

VS,I(M) == VS,I(V)
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CLOSED AND OPTIMAL VALUE
EQUIVALENCES

THEOREM: IF TWO STATES ARE CLOSED VALUE
EQUIVALENT, THEN THEY ARE NECESSARILY OPTIMAL
VALUE EQUIVALENT.

V™ equivalence

|

V* equivalence

Monday, April 4, 2011
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CLOSED AND OPTIMAL VALUE

V™ equivalence

EQUIVALENCES |

V* equivalence

LEMMA: IFSg, 10 ARE V™ EQUIVALENT AND V*(S()Q > ),
THEN PROB. OF REACHING fy FROM Sy UNDER T IS
STRICTLY POSITIVE.

LET |l BE SET OF ALL POLICIES T CONSTRUCTED
FROM SOME OPTIMAL POLICY T AS FOLLOWS:

R =

7(s") = 7*(s") otherwise
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CLOSED AND OPTIMAL VALUE
EQUIVALENCES i

V* equivalence

B 1s ST OoF BOUNDED FUNCTIONsS V : S X IIgy — [0, 1]
B R e B, R(s,m) = R(s,7(s))
BY:B— B T(V)(sm)=7) P(s,n(s))(&WEm i P(s, m(s))(to)V (6o, )

s'#to
7(e) =R 4+ Y(e) HAs LEAST FIXED PT ¢e*(s,m) = V™ (s)

THEOREM (BASED ON (KOZEN, 2007))
DEFINE ¢ C BAS V € ¢ = Vr c lg) V() = V*(s) , THEN
IF @ aAnDE@E @ —7(e) €Y, THEN (€ € 0.
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CLOSED AND OPTIMAL VALUE
EQUIVALENCES i

V* equivalence

LEMMA: IFSg ANDty) ARE V" EQUIVALENT THEN V™(sg) < V*(tg).

PROOF: ASSUME V7™ (sg) > V™ (¢o)
S0 S0

i




CLOSED AND OPTIMAL VALUE
EQUIVALENCES i

V* equivalence

LEMMA: IFSg ANDty) ARE V" EQUIVALENT THEN V™(sg) < V*(tg).
LEMMA: IF Sg AND?g ARE V™ EQUIVALENT THEN V (s0) = V™ (%),



CLOSED AND OPTIMAL VALUE
EQUIVALENCES

LEMMA: IFSg ANDty) ARE V" EQUIVALENT THEN V™(sg) < V*(tg).
LEMMA: IF Sg AND?g ARE V™ EQUIVALENT THEN V (s0) = V™ (%),

THEOREM: IF Sg AND{y ARE V" EQUIVALENT THEN
VE(So)i= Vo (o)

V™ equivalence

V™ equivalence
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OUTLINE

2 POMDP REVIEW
® NEw POMDP FORMULATION
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TRAJECTORY EQUIVALENCES

s (1) /l
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TRAJECTORY EQUIVALENCE

B TwO BELIEF STATES (i, VARE J/-CLOSED TRAJECTORY
EQUIVALENT IF FOR ALL 7™ € II,, , AND ALL FINITE
OBSERVATION TRAJECTORIES,@ = (W1,Ws, ...,Wys) € 7

IRl P = s e )

Monday, April 4, 2011
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TRAJECTORY EQUIVALENCE

B OPEN-LOOP POLICIES 0 € © MAP TIME STEPS TO ACTIONS

TwO BELIEF STATES (I, VARE J/-OPEN TRAJECTORY
EQUIVALENT IF FOR ALL { € ® AND ALL FINITE
3 B Q*
OBSERVATION TRAJECTORIES (@ = (W1,Ws,...,Wy) € O,

Pr(alp,0) = Pr(alv,0)

A TRAJECTORY (! AND OPEN LOOP POLICY 0 CONSTITUTE
A PSR TEST (LITTMAN ET AL., 2002)!

(Gl e G ) e Ol ) )

Monday, April 4, 2011
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HIERARCHY

IF' D C7, THEN THE FOLLOWING HIERARCHY
IS OBTAINED

T — open trajectory 1 — closed trajectory

|

(D,I) — closed value

/

(D,Z) — optimal value

Monday, April 4, 2011
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HIERARCHY

IF D ZZ, THEN THE FOLLOWING HIERARCHY
IS OBTAINED

T — open trajectory 1 — closed trajectory

|

(D,I) — closed value

/

(D,Z) — optimal value

Monday, April 4, 2011
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HIERARCHY

URSSopen trajeciory———————> (D T = opinioiRuaes
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T — open trajectory

H l E R A R C H Y (D, T) — optimal value

S AND T ARE OPEN e 06 V* (S<)ag), CL:71>

TRAJECTORY EQUIVALENT

S AND T ARE NOT OPTIMAL 06’7

VALUE EQUIVALENT! a, b | W (t) —=

Monday, April 4, 2011
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OUTLINE

POMDP REVIEW

® NEw POMDP FORMULATION

EQUIVALENCE RELATIONS
VALUE FUNCTIONS
® TRAJECTORY PREDICTIONS
® BISIMULATION

B CONCLUSIONS AND FUTURE WORK
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BISIMULATION

0.9




BISIMULATION

AN EQUIVALENCE RELATION Fi1s A (D,Z)-BISIMULATION
RELATION IF WHENEVER [,V ARE (D,Z)-BISIMILAR THEN

@ ForaLL W € Q1,a € A, Pr(w|y,a) = Pr(w|v,a)

B ForALL cE B/g,a€ A,
> Tp(pa)(w') =Y Tp(v,a)(y)
IeSIC e

® IF 4 AND V ARE (D,7)-BISIMILAR WE WILL WRITE
Y~ V.
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DETERMINISTIC BISIMULATION

® AN EQUIVALENCE RELATION I/ IS A DETERMINISTIC
(D,7)-BISIMULATION RELATION IF WHENEVER [, V ARE

DETERMINISTIC (D7I)-BISIMILAR THEN
For ALL W € {)7,a € A, Pr(w|u,a) = Pr(w|v,a)
B ForRALL w € Qp, a€ A, (i, a,w)ETp(v,a,w)

® IF [l AND V ARE DETERMINISTIC (D,7)-BISIMILAR WE
WILL WRITE 4 2~ V.

Monday, April 4, 2011
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BT HIERARCHY

Determanastic
(D,Z) — bistmulation

T — open trajectory

l

(D, 1) — bistmulation

\

(sz) e

Monday, April 4, 2011

1 — closed trajectory

|

(D, 1) — closed value

/

optimal value
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HIERARCHY

Determanastic
(D,Z) — bistmulation

Monday, April 4, 2011

fy (D, T') — bisimulation
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Monday, April 4, 2011

HIERARCHY

(D,I) — bisimulation

Determanistic
(D,T) — bisimulation
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DT HIERARCHY

Determanastic
(D,Z) — bistmulation

T — open trajectory

l

(D, 1) — bistmulation

\

(sz) e

Monday, April 4, 2011

1 — closed trajectory

|

(D, 1) — closed value

/

optimal value
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DT HIERARCHY

Determanastac

(D, 1) — bistmulation

(D, 1) — bistmulation

il

1 — open trajectory (D,T) —

Monday, April 4, 2011

(D, 1) — closed value

/

optimal value
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HIERARCHY

Determanastic

(D,Z)

Monday, April 4, 2011

i . ————+—— (D, 1) — bisimulation
— bisimulation
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Deterministic
(D,Z) — bisimulation

HIERARCHY !

(D, T) — bisimulation

—| } X {wl,WQ,W3,CU4} G,
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DT HIERARCHY

Determanastac

(D, 1) — bistmulation

(D, 1) — bistmulation

il

1 — open trajectory (D,T) —

Monday, April 4, 2011

(D, 1) — closed value

/

optimal value
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STRENGTHENING OPEN
DZI TRAJECTORY

A* =(D,T) — bisimulation

|

A

=

FROM (CASTRO ET AL., 2009)

— open trajectory



CONCLUSIONS

@ SUBSETS MUST BE CHOSEN WITH CARE TO AVOID SUB-
OPTIMAL PERFORMANCE

B OPEN TRAJECTORY EQUIVALENCE IS CLOSELY RELATED
TO PSRS; WE SHOWED THIS IS NOT APPROPRIATE WITH
RESPECT TO BAD CHOICES ofF D aAND /.

® IN MOST SITUATIONS WE WOULD REQUIRE D C 7.

® (D,7)-BISIMULATION IS ROBUST EVEN WHEN D ¢ 7.

Monday, April 4, 2011
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P T CONCLUSIONS

Determanastic
(D,Z) — bistmulation

T — open trajectory

l

(D, 1) — bistmulation

\

(sz) e

Monday, April 4, 2011

1 — closed trajectory

|

(D, 1) — closed value

/

optimal value
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DT CONCLUSIONS

Determainistic
(D,Z) — bisimulation

=(D,1I) — bisimulation

/ :
— open traj ectary/

Monday, April 4, 2011

(D,Z) — closed value]

(D, 1) — optimal value
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CURRENT WORK

B WE ARE CURRENTLY WORKING ON LEARNING
ALGORITHMS FOR DETERMINING ), ASSUMING /IS

KNOWN.

8@ START WITH A SMALL D, INCREMENTALLY ADD MORE
OBSERVATIONS.

@ START PLANNING/LEARNING WITH A SMALL D, USE AN
EXPERT/ORACLE TO DETERMINE WHETHER MORE
OBSERVATIONS ARE NECESSARY

Monday, April 4, 2011
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FUTURE WORK

WE PROJECT () oNnTO ()p AND ()7 USING BINARY
PROJECTION MATRICES.

IF WE ALLOW GENERAL PROJECTION MATRICES, DOES
OPEN TRAJECTORY EQUIVALENCE YIELD SOMETHING
SIMILAR TO TPSRS (ROSENCRATZ & GORDON, 2004;

BOOTS ET AL., 2010).

B LIFE-LONG LEARNING: MANY TASKS TO SOLVE,
DIFFERENT CHOICES OF D AND J/ , DEPENDING ON

TASK.

B RANKING OF OBSERVATIONS TO DYNAMICALLY SET D
BASED ON TIME REQUIREMENTS.
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CLOSED AND OPTIMAL VALUE

V™ equivalence

EQUIVALENCES |

V* equivalence

LEMMA: IFSg ANDty) ARE V" EQUIVALENT THEN V™(sg) < V*(tg).
PROOF: ASSUME V" (sg) > V™ (to).

V. V(s,m) >V*(s)? YEs! JusT TAKE V =1

Vs, m) = V*(s) = 7(V)(s,n) > V*(s)? YEBE ANY S 7#* tg AND 7 € Iy

WE’VEr SHOWN RHATFIOR(ANY L to ANDT € Ty V7 (s) = Ve
WITH STRICT LN | L 7(s))(to)V (sg, )

STFET0

BV.LAST.& Qmﬁﬁ«aw e 25 SelE) s (5 Pst AP (8777 (8)(t) B (50, 7)

s’ #£tg
THUS, V™(s') >Jiishe) )EONTRADICTING (OB FHMALATN) OFs, )/ (s')

s'#to

BY CONTRADIETION) VM(%)P{S VGG )V () + 7 P(s, 7 (5)) (t) V™ (to)

=i Q.E.D.
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SPECIFYING DATA AND
INTEREST

@ LET ®p BE A PROJECTION MATRIX USED TO
coMPUTE Op : n X [Qp]:

Uk =10 0%

® IF WE HAVE Dy C D;, THE PROJECTION P9
YIELDS THE FOLLOWING:

Op, = Op, P12
Clipy; —{Capy by

Monday, April 4, 2011
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APPROXIMATING BISIMULATION

® PRoPoOsITION: GIVEN D, 7, 11, v MAY BE (D, 7 .)-BISIMILAR
FOR ALL Z; C Z, BuT FAIL To BE (D, 7)-BISIMILAR.

Monday, April 4, 2011
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PARTIALLY OBSERVABLE MDPS
(POMDPS)

IF STATE IS FULLY
: OBSERVABLE, IT IS A MDP




PARTIALLY OBSERVABLE MDPS
(POMDPS)

IN POMDPS WE ONLY RECEIVE
GEUES OF "FHE - SITATRE

S
H [ O

AN

\.




PARTIALLY OBSERVABLE MDPS
(POMDPS)

N

MAINTAIN A
DISTRIBUTION OVER
STATES BASED ON CLUES
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