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Key points

We can define approximation morphisms and
bisimulation morphisms in the same category.

We can define a notion of smallest process that is
bisimilar to a given process.
We can define a notion of finite approximation and
construct a projective limit of the finite approximants.
This yields the minimal realization.
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What are cones?

Want to combine linear structure with order structure.

Vector space with an order ≤: x ≥ 0 is positive.
Cones axiomatize the positive vectors.
Any cone C defines a order by u ≤ v if v− u ∈ C.
Many of the structures that we want to look at are
cones e.g. the measures on a space.
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Cones that we use I

µ is a measure on X: Banach spaces L1 and L∞.

restricted to cones by considering the µ-almost
everywhere positive functions.
We will denote these cones by L+

1 (X,Σ, µ) and
L+
∞(X,Σ).
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Cones that we use II

Let (X,Σ, p) be a measure space with finite measure p.
We denote byM�p(X), the cone of all measures on
(X,Σ, p) that are absolutely continuous with respect to p

If q is such a measure, we define its norm to be q(X).
M�p(X) is also an ω-complete normed cone.
The conesM�p(X) and L+

1 (X,Σ, p) are isometrically
isomorphic.
We writeMp

UB(X) for the cone of all measures on
(X,Σ) that are uniformly less than a multiple of the
measure p: q ∈Mp

UB means that for some real
constant K > 0 we have q ≤ Kp.
The conesMp

UB(X) and L+
∞(X,Σ, p) are isomorphic.
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The pairing

Pairing function

There is a map from the product of the cones L+
∞(X, p) and

L+
1 (X, p) to R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.

This map is bilinear and is continuous and ω-continuous in
both arguments; we refer to it as the pairing.
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Duality is the Key

M�p(X)

��

∼ // L+
1 (X, p)oo

��

∼ // L+,∗
∞ (X, p)oo

��
Mp

UB

OO

∼ // L+
∞(X, p)oo ∼ //

OO

L+,∗
1 (X, p)

OO

oo

(1)

Here the vertical arrows represent dualities and the
horizontal arrows represent isomorphisms.

Pairing function

There is a map from the product of the cones L+
∞(X, p) and

L+
1 (X, p) to R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.
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Notation

α : X −→ Y, measurable, p a measure on X; Mα(p) is the
image measure on Y: Mα(p)(B ⊂ Y) = p(α−1(B)).

p << q, write dp
dq for the Radon-Nikodym derivative

p(A) =
∫

A
dp
dq dq.
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Where the action happens

We define two categories Rad∞ and Rad1.

This will allow for L∞ and L1 versions of the theory.
Going between these versions by duality will be very
useful.
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The “infinity” category

Rad∞
The category Rad∞ has as objects probability spaces, and
as arrows α : (X, p) −→ (Y, q), measurable maps such that
Mα(p) ≤ Kq for some real number K.

The reason for choosing the name Rad∞ is that α ∈ Rad∞
maps to d/dqMα(p) ∈ L+

∞(Y, q).
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The “one” category

Rad1

The category Rad1 has as objects probability spaces and as
arrows α : (X, p) −→ (Y, q), measurable maps such that
Mα(p)� q.

1 The reason for choosing the name Rad1 is that
α ∈ Rad1 maps to d/dqMα(p) ∈ L+

1 (Y, q).
2 The fact that the category Rad∞ embeds in Rad1

reflects the fact that L+
∞ embeds in L+

1 .
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Pairing function revisited

Recall the isomorphism between L+
∞(X, p) and L+,∗

1 (X, p)
mediated by the pairing function:

f ∈ L+
∞(X, p) 7→ λg : L+

1 (X, p).〈f , g〉 =

∫
fgdp.
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Precomposition

1 Now, precomposition with α in Rad∞ gives a map P1(α)
from L+

1 (Y, q) to L+
1 (X, p).

2 Dually, given α ∈ Rad1 : (X, p) −→ (Y, q) and
g ∈ L+

∞(Y, q) we have that P∞(α)(g) ∈ L+
∞(X, p).

3 Thus the subscripts on the two precomposition functors
describe the target categories.

4 Using the ∗-functor we get a map (P1(α))∗ from
L+,∗

1 (X, p) to L+,∗
1 (Y, q) in the first case and

5 dually we get (P∞(α))∗ from L+,∗
∞ (X, p) to L+,∗

∞ (Y, q).
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g ∈ L+

∞(Y, q) we have that P∞(α)(g) ∈ L+
∞(X, p).

3 Thus the subscripts on the two precomposition functors
describe the target categories.
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Expectation value functor

The functor E∞(·) is a functor from Rad∞ to ωCC
which, on objects, maps (X, p) to L+

∞(X, p) and on maps
is given as follows:

Given α : (X, p) −→ (Y, q) in Rad∞ the action of the
functor is to produce the map E∞(α) : L+

∞(X, p)
−→ L+

∞(Y, q) obtained by composing (P1(α))∗ with the
isomorphisms between L+,∗

1 and L+
∞

L+,∗
1 (X, p)

(P1(α))
∗

��

L+
∞(X, p)oo

E∞(α)

��
L+,∗

1 (Y, q) // L+
∞(Y, q)
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The other expectation value functor

The functor E1(·) is a functor from Rad1 to ωCC which
maps the object (X, p) to L+

1 (X, p) and on maps is given as
follows:
Given α : (X, p) −→ (Y, q) in Rad1 the action of the functor is
to produce the map E1(α) : L+

1 (X, p) −→ L+
1 (Y, q) obtained by

composing (P∞(α))∗ with the isomorphisms between L+,∗
∞

and L+
1 as shown in the diagram below

L+,∗
∞ (X, p)

(P∞(α))∗

��

L+
1 (X, p)oo

E1(α)

��
L+,∗
∞ (Y, q) // L+

1 (Y, q)
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The approximation map

The expectation value functors project a probability space
onto another one with a possibly coarser σ-algebra.
Given an AMP on (X, p) and a map α : (X, p) −→ (Y, q) in
Rad∞, we have the following approximation scheme:

Approximation scheme

L+
∞(X, p)

τa // L+
∞(X, p)

E∞(α)
��

L+
∞(Y, q)

α(τa) //

P∞(α)

OO

L+
∞(Y, q)
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A special case

Take (X,Σ) and (X,Λ) with Λ ⊂ Σ and use the
measurable function id : (X,Σ) −→ (X,Λ) as α.

Coarsening the σ-algebra

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

E∞(α)
��

L+
∞(X,Λ, p)

id(τa) //

P∞(α)

OO

L+
∞(X,Λ, p)

Thus id(τa) is the approximation of τa obtained by
averaging over the sets of the coarser σ-algebra Λ.
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The category AMP

In Rad1 and Rad∞ the morphisms obeyed mild
conditions on the measures.

These are sufficient to develop the functorial theory of
expectation values.
A map α : (X, p) −→ (Y, q) in Rad∞ is said to be
measure-preserving if Mα(p) = q (image measure).

The category AMP
Objects: probability spaces (X,Σ, p), along with an abstract
Markov process τa on X.
Arrows: α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) are surjective
measure-preserving maps from X to Y such that α(τa) = ρa.

We define the category Rad= to have the same objects
as AMP but the maps are only measure preserving
(and, of course, measurable).
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Bisimulation traditionally

Larsen-Skou definition
Given an LMP (S,Σ, τa) an equivalence relation R on S is
called a probabilistic bisimulation if sRt then for every
measurable R-closed set C we have for every a

τa(s,C) = τa(t,C).

This variation to the continuous case is due to Josée
Desharnais and her Indian friends.
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Event bisimulation

In measure theory one should focus on measurable
sets rather than on points.

Vincent Danos proposed the idea of event bisimulation,
which was developed by him and Desharnais,
Laviolette and P.

Event Bisimulation
Given a LMP (X,Σ, τa), an event-bisimulation is a
sub-σ-algebra Λ of Σ such that (X,Λ, τa) is still an LMP.

This means τa sends the subspace L+
∞(X,Λ, p) to itself;

where we are now viewing τa as a map on L+
∞(X,Λ, p).
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The bisimulation diagram

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(X,Λ, p)
?�

OO

τa // L+
∞(X,Λ, p)
?�

OO
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Zigzag maps

We can generalize the notion of event bisimulation by using
maps other than the identity map on the underlying sets.
This would be a map α from (X,Σ, p) to (Y,Λ, q), equipped
with LMPs τa and ρa respectively, such that the following
commutes:

L+
∞(X,Σ, p)

τa // L+
∞(X,Σ, p)

L+
∞(Y,Λ, q)

P∞(α)

OO

ρa // L+
∞(Y,Λ, q)

P∞(α)

OO
(2)
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Bisimulation as a cospan

Zigzags give a “functional” version of bisimulation; what
is the relational version.

Use co-spans of zigzags; it is usual to use spans but
co-spans give a smoother and more general theory.
With spans one can prove logical characterization of
bisimulation on analytic spaces.
With the cospan definition we get logical
characterization on all measurable spaces.
On analytic spaces the two concepts co-incide.
Recent results show that the theory cannot be made to
work with spans on general measurable spaces.
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The official definition of bisimulation

Bisimulation
We say that two objects of AMP, (X,Σ, p, τ) and (Y,Λ, q, ρ),
are bisimilar if there is a third object (Z,Γ, r, π) with a pair of
zigzags

α : (X,Σ, p, τ) −→ (Z,Γ, r, π)
β : (Y,Λ, q, ρ) −→ (Z,Γ, r, π)

giving a cospan diagram

(X,Σ, p, τ)

α

''

(Y,Λ, q, ρ)

βww
(Z,Γ, r, π)

(3)

Note: identity is a zigzag.
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Fundamental categorical result

The category AMP has pushouts

Furthermore, if the morphisms in the span are zigzags then
the morphisms in the pushout diagram are also zigzags.
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Pushouts explicitly

More explicitly, let α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) and
β : (X,Σ, p, τa) −→ (Z,Γ, r, κa) be a span in AMP. Then there
is an object (W,Ω, µ, πa) of AMP and AMP maps δ : Y −→ W
and γ : Z −→ W such that the diagram

(X,Σ, p, τa)

α
ww β ''

(Y,Λ, q, ρa)

δ ''

(Z,Γ, r, κa)

γ
ww

(W,Ω, µ, πa)

(4)

commutes.
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Couniversality

If (U,Ξ, ν, λa) is another AMP object and φ : Y −→ U and
ψ : Z −→ U are AMP maps such that α, β, φ and ψ form a
commuting square, then there is a unique AMP map θ : W
−→ U such that the diagram

(X,Σ, p, τa)

α
ww β ''

(Y,Λ, q, ρa)

δ ''

φ

  

(Z,Γ, r, κa)

γ
ww

ψ

~~

(W,Ω, µ, πa)

θ
��

(U,Ξ, ν, λa)

(5)

commutes.

Furthermore, if α and β are zigzags, then so are γ and δ.
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Bisimulation is an equivalence

X

α   

Y

β~~ δ ��

Z

γ��
W

ζ   

U

η
��

V

(6)

The pushouts of the zigzags β and δ yield two more zigzags
ζ and η (and the pushout object V). As the composition of
two zigzags is a zigzag, X and Z are bisimilar. Thus
bisimulation is transitive.
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What is the smallest realization of a process?

Obviously, the concept cannot be based on counting
states.

We want to look for a bisimulation equivalent version of
the process; hence with the same behaviour,
such that any other process with the same behaviour
contains this one.
This is a classic couniversality property.
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Bisimulation-minimal realization

Definition of minimal realization
Given an AMP (X,Σ, p, τa), a bisimulation-minimal
realization of this abstract Markov process is an AMP
(X̃,Γ, r, πa) and a zigzag in AMP η : X −→ X̃ such that for
every zigzag β from X to another AMP (Y,Λ, q, ρa), there is
a zigzag γ from (Y,Λ, q, ρa) to (X̃,Γ, r, πa) with η = γ ◦ β.

If we think of a zigzag as defining a quotient of the original
space then X̃ is the “most collapsed” version of X.
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Existence theorem

Given any AMP (X,Σ, p, τa) there exists another AMP
(X̃,Γ, r, πa) and a zigzag η in AMP, η : X −→ X̃ such that
(X̃,Γ, r, πa) and η define a bisimulation-minimal realization
of (X,Σ, p, τa).

Proof idea: Intersect all event bisimulations to get a smallest
(fewest sets in the σ-algebra) event bisimulation. Define the
associated equivalence relation and form the quotient.

Two AMPs and are bisimilar if and only if their minimal
realizations are isomorphic.
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A modal logic

We define a logic L as follows, with a ∈ A:

L ::= T|φ ∧ ψ| 〈a〉q ψ

Given a labelled AMP (X,Σ, p, τa), we associate to each
formula φ a measurable set JφK, defined recursively as
follows:

JTK = X
Jφ ∧ ψK = JφK ∩ JψKr
〈a〉q ψ

z
=
{

s : τa(1JψK)(s) > q
}

We let JLK denotes the measurable sets obtained by all
formulas of L.
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Logical characterization of bisimulation

Main theorem
Given a LAMP (X,Σ, p, τa), the σ-field σ(JLK) generated by
the logic L is the smallest event-bisimulation on X. That is,
the map i : (X,Σ, p, τa) −→ (X, σ(JLK), p, τa) is a zigzag;
furthermore, given any zigzag α : (X,Σ, p, τa)
−→ (Y,Λ, q, ρa), we have that σ(JLK) ⊆ α−1(Λ).

Hence, the σ-field obtained on X by the smallest event
bisimulation is precisely the σ-field we obtain from the logic.
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Finite approximations

Let (X,Σ, p, τa) be a LAMP. Let
P = 0 < q1 < q2 < . . . < qn < 1 be a finite partition of the
unit interval with each qi a rational number. We call these
rational partitions. We define a family of finite π-systems,
subsets of Σ, as follows:

ΦP,0 = {X, ∅}
ΦP,n = π

({
τa(1A)−1(qi, 1] : qi ∈ P,A ∈ ΦP,n−1, a ∈ A

}
∪ ΦP,n−1

)
= π

({r
〈a〉qi

1A

z
: qi ∈ P,A ∈ ΦP,n−1, a ∈ A

}
∪ ΦP,n−1

)
where π(Ω) means the π-system generated by the family of
sets Ω.
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Approximation pairs

For each pair (P,M) consisting of a rational partition and a
natural number, we define a σ-algebra ΛP,M on X as ΛP,M =
σ (ΦP,M), the σ-algebra generated by ΦP,M. We call each
pair (P,M) consisting of a rational partition and a natural
number an approximation pair.
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Approximation and Logic

The following result links the finite approximation with the
formulas of the logic used in the characterization of
bisimulation.

Crucial fact
Given any labelled AMP (X,Σ, p, τa), the σ-algebra
σ (
⋃

ΦP,M), where the union is taken over all approximation
pairs, is precisely the σ-algebra σ JLK obtained from the
logic.
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Relating finite approximations

Given two approximation pairs such that
(P,M) ≤ (Q,N), we have a map

i(Q,N),(P,M) : (X,ΛQ,N ,ΛQ,N(τa)) −→ (X,ΛP,M,ΛP,M(τa))

which is well defined by the inclusion ΛP,M ⊆ ΛQ,N ⊆ Σ.
Furthermore if (P,M) ≤ (Q,N) ≤ (R,K) the maps
compose to give

i(R,K),(P,M) = i(R,K),(Q,N) ◦ i(Q,N),(P,M).

In short we have a projective system of such maps
indexed by our poset of approximation pairs.
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Finite spaces

We define the space X̂Q,N as the quotient of X by the
equivalence relation that identifies two points that
cannot be separated by measurable sets of ΛQ,N .

These spaces have finitely many points.
The quotient map q : X −→ X̂Q,N induces a projected
version of the LAMP τa.
When the approximations are refined the quotients
compose so we can define maps between quotient
spaces.
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Projective diagram fragment

We get the following commuting diagram:

(X,ΛQ,N ,ΛQ,N(τa))
i(Q,N),(P,M) //

πQ,N

��

(X,ΛP,M,ΛP,M(τa))

πP,M

��
(X̂Q,N , φQ,N(τa))

j(Q,N),(P,M)

// (X̂P,M, φP,M(τa))

(7)
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Existence of a projective limit

Main theorem

The probability spaces of finite approximants X̂P,M of a
measure space (X,Σ, p, τa) each equipped with the discrete
σ-algebra (i.e. the σ-algebra of all subsets) indexed by the
approximation pairs, form a projective system in the
category Rad=. This system of finite approximants to the
LAMP (X,Σ, p, τa) has a projective limit in the category
Rad=.

This uses a theorem of Choksi from 1958. In typical
analysis style, he constructs the required limit but does not
prove any universal property. It was a non-trivial extension
to show this.
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Picture of the situation

(Y,Ξ, r)

fP,M

~~

fQ,N

  

λ
��

(proj lim X̂,Γ, γ)
ψP,M

uu

ψQ,N

))
X̂P,M X̂Q,Nj(Q,N),(P,M)

oo

(X,ΛP,M, p,ΛP,M(τa))

πP,M

OO

(X,ΛQ,N , p,ΛQ,N(τa))
i(Q,N),(P,M)

oo

πQ,M

OO
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What can we say about the LAMP?

We can now consider the LAMP structure. We do not get a
universal property in the category AMP, however, the
universality of the construction in Rad= almost forces the
structure of a LAMP on the projective limit constructed in
Rad=.

LAMP on the projective limit
A LAMP can be defined on the projective limit constructed
in Rad= so that the cone formed by this limit object and the
maps to the finite approximants yields a commuting diagram
in the category AMP.
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Approximation and minimal realization

The LAMP obtained by forming the projective limit in
the category Rad= and then defining a LAMP on it is
isomorphic to the minimal realization of the original
LAMP.

This gives a very pleasing connection between the
approximation process and the minimal realization.

Two routes to the minimal realization
Given an AMP (X,Σ, p, τa), the projective limit of its finite
approximants (proj lim X̂,Γ, γ, ζa) is isomorphic to its
minimal realization (X̃,Ξ, r, ξa).
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Summary

Exploited a dual view of Markov processes as Markov
operators.

Approximation via averaging is done through
conditional expectation.
There is a modal logic characterizing bisimulation
which naturally defines finite approximants.
The limit of these finite approximants reconstructs a
minimal realization of the original process.
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Other related results

A general theory with all Lp spaces done and lost in a
JACM black hole.

We have developed a Stone-type duality for Markov
processes.
Projective limit in AMP?
My student Florence Clerc is using these ideas for
continuous-time processes (Feller-Dynkin).
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