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Behavioural equivalence is fundamental

When do two states have exactly the same behaviour?

What can one observe of the behaviour?
What should be guaranteed?
(i) If two states are equivalent we should not be able to “see” any
differences in observable behaviour.
(ii) If two states are equivalent they should stay equivalent as they
evolve.
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Heros of concurrency theory: Milner and Park
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A bit of history

Cantor and the back-and-forth argument

Lumpability in queueing theory 1960’s
Bisimulation of nondeterministic automata 1970’s and process
algebras 1980’s: Milner and Park
Probabilistic bisimulation, discrete systems: Larsen and Skou
1989
Bisimulation of Markov processes on continuous state spaces:
Desharnais, Edalat, P. 1997...
Bisimulation metrics for Markov processes Desharnais, Gupta,
Jagadeesan, P. 1999
Fixed-point version: van Breugel and Worrell 2001
Bisimulation for MDP’s : Givan and Dean 2003
Bisimulation metrics for MDP’s: Ferns, Precup, P. 2004
Representation learning using “metrics”: Castro, Kastner, P.
Rowland 2021
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The definition

A set of states S,

a set of labels or actions, L or A and
a transition relation ⊆ S×A× S, usually written

→a⊆ S× S.

The transitions could be indeterminate (nondeterministic).
We write s a−−→ s′ for (s, s′) ∈→a.
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Vending machine LTSs

Place cup

Insert money

Choose

WaitWait

Cup

£1

CoffeeTea

Dispense coffeeDispense tea
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Are the two LTSs equivalent?

One gives us the choice whereas the other makes the choice
internally.

The sequences that the machines can perform are identical:
[Cup;£1;(Cof + Tea)]∗

We need to go beyond language equivalence.

Panangaden Milner Lecture 2021 30 September 2021 13 / 40



Are the two LTSs equivalent?

One gives us the choice whereas the other makes the choice
internally.
The sequences that the machines can perform are identical:
[Cup;£1;(Cof + Tea)]∗

We need to go beyond language equivalence.

Panangaden Milner Lecture 2021 30 September 2021 13 / 40



Are the two LTSs equivalent?

One gives us the choice whereas the other makes the choice
internally.
The sequences that the machines can perform are identical:
[Cup;£1;(Cof + Tea)]∗

We need to go beyond language equivalence.

Panangaden Milner Lecture 2021 30 September 2021 13 / 40



Formal definition

s s′

t t′

a

a

[Bisimulation definition]
If s ∼ t then

∀s ∈ S, ∀a ∈ A, s a−−→ s′ ⇒ ∃t′, t a−−→ t′ with s′ ∼ t′

and vice versa with s and t interchanged.
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Discrete probabilistic transition systems

Just like a labelled transition system with probabilities associated
with the transitions.

(S,A,∀a ∈ A Ta : S× S −→ [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Probabilistic bisimulation : Larsen and Skou

s0

s1

s2

s3

a, 1
3

a, 1
3

a, 1
3

b, 1 c, 1 c, 1

t0

t1 t2

a, 1
3 a, 2

3

b, 1 c, 1
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Are s0 and t0 bisimilar?

Yes, but one needs to add up the probabilities to s2 and s3.

If s is a state, a an action and C a set of states, we write
Ta(s,C) =

∑
s′∈S Ta(s, s′) for the probability of jumping on an a-action to

one of the states in C.

Definition
R is a bisimulation relation if whenever sRt and C is an equivalence
class of R then Ta(s,C) = Ta(t,C).
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Markov decision processes?

Markov decision processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

There is a reward associated with each transition.
We observe the interactions and the rewards - not the internal
states.
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Markov decision processes: formal definition

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

where
S : the state space, we will take it to be a finite set.
A : the actions, a finite set
Pa : the transition function; D(S) denotes distributions over S
R : the reward, could readily make it stochastic.
Will write Pa(s,C) for Pa(s)(C).
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Policies

MDP

(S,A, ∀a ∈ A,Pa : S −→ D(S),R : A× S −→ R)

We control the choice of action; it is not some external scheduler.

Policy

π : S −→ D(A)

The goal is choose the best policy: numerous algorithms to find or
approximate the optimal policy.
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Bisimulation

Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a)
and all equivalence classes C of R:

(i) R(a, s) = R(a, t)
(ii) Pa(s,C) = Pa(t,C)

s, t are bisimilar if there is a bisimulation relation R with sRt them.
Basic pattern: immediate rewards match (initiation), stay related
after the transition (coinduction).
Bisimulation can be defined as the greatest fixed point of a
relation transformer.
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Continuous state spaces: why?

Software controllers attached to physical devices or sensors -
robots, controllers.

Continuous state space but discrete time.
Applications to control systems.
Applications to probabilistic programming languages.
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Some remarks on the use of continuous spaces

Can be used for reasoning - but much better if we could have a
finite-state version.

Why not discretize right away and never worry about the
continuous case?
How can we say that our discrete approximation is “accurate”?
We lose the ability to refine the model later.
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The Need for Measure Theory

Basic fact: There are subsets of R for which no sensible notion of
size can be defined.

More precisely, there is no translation-invariant measure defined
on all the subsets of the reals.
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Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ

s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.
No negation in the logic,
so one can obtain a logical characterization result for simulation
but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.
Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.
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restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]

No finite branching assumption.
No negation in the logic,
so one can obtain a logical characterization result for simulation
but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.
Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.

No negation in the logic,
so one can obtain a logical characterization result for simulation
but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.
Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.
No negation in the logic,

so one can obtain a logical characterization result for simulation
but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.
Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.
No negation in the logic,
so one can obtain a logical characterization result for simulation

but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.
Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.
No negation in the logic,
so one can obtain a logical characterization result for simulation
but it needs disjunction.

The proof uses tools from descriptive set theory and measure
theory.
Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.
No negation in the logic,
so one can obtain a logical characterization result for simulation
but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.

Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



Logical Characterization

Very austere logic:

L ::== T|φ1 ∧ φ2|〈a〉qφ
s |= 〈a〉qφ means that if the system is in state s, then after the
action a, with probability at least q the new state will satisfy the
formula φ.
Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
No finite branching assumption.
No negation in the logic,
so one can obtain a logical characterization result for simulation
but it needs disjunction.
The proof uses tools from descriptive set theory and measure
theory.
Such a theorem originally proved for LTS with finite-branching
restrictions by Hennessy and Milner in 1977 and van Benthem in
1976.

Panangaden Milner Lecture 2021 30 September 2021 25 / 40



The proof “engine” Josée Desharnais
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But...

In the context of probability is exact equivalence reasonable?

We say “no”. A small change in the probability distributions may
result in bisimilar processes no longer being bisimilar though they
may be very “close” in behaviour.
Instead one should have a (pseudo)metric for probabilistic
processes.
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A metric-based approximate viewpoint

Move from equality between processes to distances between
processes (Jou and Smolka 1990).

Quantitative measurement of the distinction between processes.
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In lieu of several slides of greek letters and symbols

If two states are not bisimilar there is a some observation on
which they disagree.

They may diasagree on the reward or on the probability
distribution that results from a transition.
We need to measure the latter, we use the Wasserstein
Kantorovich metric between probability distributions.
Intuitively, if the difference shows up only after a long and
elaborate observation then we should make the states “nearby” in
the bisimulation metric.
All this can be formalized and was originally done by Desharnais
et al. and later with a beautiful fixed-point construction by van
Breugel and Worrell.
Ferns et al. added rewards and showed that the bisimulation
metric bounds the difference in optimal value functions.
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Quantitative equational logic

It is possible to generalize the notion of equation to capture
approximate equality.

s =ε t means s is within ε of t.
Much of the theory of equational logic carries over to this setting.
Algebras for such equations are naturally equipped with metrics
and give a way of reasoning about bisimulation metrics.
Mardare, P., Plotkin LICS 2016, 2017, 2021; Bacci, Mardare, P.,
Plotkin LICS 2018, CALCO 2021.
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Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.

The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.
A plethora of algorithms and techniques, but the cost depends on
the size of the state space.
Can we learn representations of the state space that accelerate
the learning process?

Panangaden Milner Lecture 2021 30 September 2021 31 / 40



Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.
The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.

We seek optimal policies for extracting the largest possible reward
in expectation.
A plethora of algorithms and techniques, but the cost depends on
the size of the state space.
Can we learn representations of the state space that accelerate
the learning process?

Panangaden Milner Lecture 2021 30 September 2021 31 / 40



Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.
The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.

A plethora of algorithms and techniques, but the cost depends on
the size of the state space.
Can we learn representations of the state space that accelerate
the learning process?

Panangaden Milner Lecture 2021 30 September 2021 31 / 40



Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.
The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.
A plethora of algorithms and techniques, but the cost depends on
the size of the state space.

Can we learn representations of the state space that accelerate
the learning process?

Panangaden Milner Lecture 2021 30 September 2021 31 / 40



Basic goals in RL

We are often dealing with large or infinite transition systems
whose behaviour is probabilistic.
The system responds to stimuli (actions) and moves to a new
state probabilistically and outputs a (possibly) random reward.
We seek optimal policies for extracting the largest possible reward
in expectation.
A plethora of algorithms and techniques, but the cost depends on
the size of the state space.
Can we learn representations of the state space that accelerate
the learning process?

Panangaden Milner Lecture 2021 30 September 2021 31 / 40



Representation learning

For large state spaces, learning value functions S×A −→ R is not
feasible.

Instead we define a new space of features M and try to come up
with an embedding φ : S −→ RM.
Then we can try to use this to predict values associated with
state,action pairs.
Representation learning means learning such a φ.
The elements of M are the “features” that are chosen. They can
be based on any kind of knowledge or experience about the task
at hand.
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The MICo distance

The Kantorovich metric is expensive to compute and difficult to
estimate from samples.

We (Castro et al.) invented a version that is easy to estimate from
samples.
In spirit it is closely related to the bisimulation metric but it is a
crude approximation
and is not even technically a metric!
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A new type of distance

Diffuse metric

1 d(x, y) ≥ 0
2 d(x, y) = d(y, x)
3 d(x, y) ≤ d(x, z) + d(z, y)
4 Do not require d(x, x) = 0
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MICo loss

Nearly all machine learning algorithms are optimization
algorithms.
One often introduces extra terms into the objective function that
push the solution in a desired direction.
We defined a loss term based on the MICo distance.
For details read
https://psc-g.github.io/posts/research/rl/mico/
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Experimental setup
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Experiments

Added the MICo loss term to a variety of existing agents: all those
available in the Dopamine Library; 5 in all.

Ran each game 5 times with new seeds so 300 runs for each
agent.
Each game is run for 200 million environment interactions.
We look at final scores and learning curve.
We tried each agent with and without the MICo loss term on 60
different Atari games.
Every agent performed better on about 2

3 of the games.
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Results for Rainbow
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Results for DQN
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Conclusions

Bisimulation has a rich and venerable history.

The metric analogue holds promise for quantitative reasoning and
approximation.
Perhaps a fruitful line of research would be equation solving in
quantitative algebras and automating equational reasoning in the
quantitative setting.
Research is alive and well and there are new areas where
bisimulation is being “discovered”.
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