
Program Verification:
An overview of the series

Prakash Panangaden
School of Computer Science
McGill University

Thursday, May 6, 2010

The lecturers

Thursday, May 6, 2010

The lecturers

Thursday, May 6, 2010

The lecturers

Joel Ouaknine; University of Oxford

Thursday, May 6, 2010

The lecturers

Joel Ouaknine; University of Oxford

James Worrell; University of Oxford

Thursday, May 6, 2010

The lecturers

Joel Ouaknine; University of Oxford

James Worrell; University of Oxford

Amy Felty; University of Ottawa

Thursday, May 6, 2010

The lecturers

Joel Ouaknine; University of Oxford

James Worrell; University of Oxford

Amy Felty; University of Ottawa

Stephen Brookes; Carnegie-Mellon University

Thursday, May 6, 2010

The topics

Thursday, May 6, 2010

The topics

Real-time systems (Ouaknine)

Thursday, May 6, 2010

The topics

Real-time systems (Ouaknine)

Probabilistic systems (Worrell)

Thursday, May 6, 2010

The topics

Real-time systems (Ouaknine)

Probabilistic systems (Worrell)

Theorem proving techniques (Felty)

Thursday, May 6, 2010

The topics

Real-time systems (Ouaknine)

Probabilistic systems (Worrell)

Theorem proving techniques (Felty)

Concurrent systems (Brookes)

Thursday, May 6, 2010

Early history: formalisms

Thursday, May 6, 2010

Early history: formalisms

McCarthy in the early 1960s introduced a
Mathematical Theory of Computation

Thursday, May 6, 2010

Early history: formalisms

McCarthy in the early 1960s introduced a
Mathematical Theory of Computation

Floyd in the mid 1960s introduced methods for
reasoning on flowcharts: inductive assertions

Thursday, May 6, 2010

Early history: formalisms

McCarthy in the early 1960s introduced a
Mathematical Theory of Computation

Floyd in the mid 1960s introduced methods for
reasoning on flowcharts: inductive assertions

Scott, deBakker 1969: fixed-point induction

Thursday, May 6, 2010

Early history: formalisms

McCarthy in the early 1960s introduced a
Mathematical Theory of Computation

Floyd in the mid 1960s introduced methods for
reasoning on flowcharts: inductive assertions

Scott, deBakker 1969: fixed-point induction

Hoare 1969: axiomatic semantics

Thursday, May 6, 2010

Early history: formalisms

McCarthy in the early 1960s introduced a
Mathematical Theory of Computation

Floyd in the mid 1960s introduced methods for
reasoning on flowcharts: inductive assertions

Scott, deBakker 1969: fixed-point induction

Hoare 1969: axiomatic semantics

Early 1970s: predicate transformers (Dijkstra)

Thursday, May 6, 2010

The pace picks up

Thursday, May 6, 2010

The pace picks up

Early 1970s: LCF/ML (Milner), Boyer-Moore

Thursday, May 6, 2010

The pace picks up

Early 1970s: LCF/ML (Milner), Boyer-Moore

Dynamic logics: Pratt, Kozen, Parikh, Harel,
Constable, Clark,...

Thursday, May 6, 2010

The pace picks up

Early 1970s: LCF/ML (Milner), Boyer-Moore

Dynamic logics: Pratt, Kozen, Parikh, Harel,
Constable, Clark,...

(linear) Temporal logic (Pnueli), CTL

Thursday, May 6, 2010

The pace picks up

Early 1970s: LCF/ML (Milner), Boyer-Moore

Dynamic logics: Pratt, Kozen, Parikh, Harel,
Constable, Clark,...

(linear) Temporal logic (Pnueli), CTL

Abstract interpretation (1976) Cousot and Cousot

Thursday, May 6, 2010

The pace picks up

Early 1970s: LCF/ML (Milner), Boyer-Moore

Dynamic logics: Pratt, Kozen, Parikh, Harel,
Constable, Clark,...

(linear) Temporal logic (Pnueli), CTL

Abstract interpretation (1976) Cousot and Cousot

Model checking (Clarke, Emerson, Sifakis)

Thursday, May 6, 2010

Disasters and Opportunities

Thursday, May 6, 2010

Disasters and Opportunities

The Ariane-5 disaster

Thursday, May 6, 2010

Disasters and Opportunities

The Ariane-5 disaster

The Pentium bug

Thursday, May 6, 2010

Disasters and Opportunities

The Ariane-5 disaster

The Pentium bug

The Bang & Olufsen Audio/Video protocol

Thursday, May 6, 2010

Disasters and Opportunities

The Ariane-5 disaster

The Pentium bug

The Bang & Olufsen Audio/Video protocol

The attack on the Needham-Schroder protocol

Thursday, May 6, 2010

Some areas of current research

Thursday, May 6, 2010

Some areas of current research

Abstraction techniques

Thursday, May 6, 2010

Some areas of current research

Abstraction techniques

Probabilistic verification

Thursday, May 6, 2010

Some areas of current research

Abstraction techniques

Probabilistic verification

Real-time systems

Thursday, May 6, 2010

Some areas of current research

Abstraction techniques

Probabilistic verification

Real-time systems

Concurrency

Thursday, May 6, 2010

Some areas of current research

Abstraction techniques

Probabilistic verification

Real-time systems

Concurrency

Security

Thursday, May 6, 2010

The Main Point

Computer programming is an exact science in that
all the properties of a program and all the
consequences of executing it in any given
environment can, in principle, be found out from
the text of the program itself by means of purely
deductive reasoning: Hoare 1969.

Thursday, May 6, 2010

The Main Point

Computer programming is an exact science in that
all the properties of a program and all the
consequences of executing it in any given
environment can, in principle, be found out from
the text of the program itself by means of purely
deductive reasoning: Hoare 1969.

Thursday, May 6, 2010

The Main Point

Computer programming is an exact science in that
all the properties of a program and all the
consequences of executing it in any given
environment can, in principle, be found out from
the text of the program itself by means of purely
deductive reasoning: Hoare 1969.

Thursday, May 6, 2010

The Main Point

Computer programming is an exact science in that
all the properties of a program and all the
consequences of executing it in any given
environment can, in principle, be found out from
the text of the program itself by means of purely
deductive reasoning: Hoare 1969.

Thursday, May 6, 2010

Semantics and Axioms

Thursday, May 6, 2010

Semantics and Axioms

A precise specification of the execution effect of a
program.

Thursday, May 6, 2010

Semantics and Axioms

A precise specification of the execution effect of a
program.

Ideally it should be compositional.

Thursday, May 6, 2010

Semantics and Axioms

A precise specification of the execution effect of a
program.

Ideally it should be compositional.

One should be able to extract the relevant
aspects of the program through axioms that
capture the semantics.

Thursday, May 6, 2010

Hoare Logic

Thursday, May 6, 2010

Hoare Logic

Assertions describe properties of the state.

Thursday, May 6, 2010

Hoare Logic

Assertions describe properties of the state.

{P} S {Q}: If P holds before execution of S then Q
will hold after S terminates, if S does indeed
terminate.

Thursday, May 6, 2010

Hoare Logic

Assertions describe properties of the state.

{P} S {Q}: If P holds before execution of S then Q
will hold after S terminates, if S does indeed
terminate.

Compositionality: From {P} S {R} and {R} S’ {Q}
deduce {P} S;S’ {Q}.

Thursday, May 6, 2010

Dynamic Logic

Thursday, May 6, 2010

Dynamic Logic

A modal logic with programs and formulas defined
by mutual induction.

Thursday, May 6, 2010

Dynamic Logic

A modal logic with programs and formulas defined
by mutual induction.

Every program defines a modality.

Thursday, May 6, 2010

Dynamic Logic

A modal logic with programs and formulas defined
by mutual induction.

Every program defines a modality.

Challenging from the point of view of basic theory:
the canonical model construction does not work.

Thursday, May 6, 2010

Recursion

Thursday, May 6, 2010

Recursion

How to make sense of recursion compositionally?

Thursday, May 6, 2010

Recursion

How to make sense of recursion compositionally?

Fixed-point theory (Kleene).

Thursday, May 6, 2010

Recursion

How to make sense of recursion compositionally?

Fixed-point theory (Kleene).

rec f. F[f] is the solution of f = F[f].

Thursday, May 6, 2010

Recursion

How to make sense of recursion compositionally?

Fixed-point theory (Kleene).

rec f. F[f] is the solution of f = F[f].

Fixed-point induction for programs: Scott and
deBakker, Park.

Thursday, May 6, 2010

Denotational Semantics

Thursday, May 6, 2010

Denotational Semantics
Data types are domains: dcpos with ⊥.

Thursday, May 6, 2010

Denotational Semantics
Data types are domains: dcpos with ⊥.

Programs define functions between data types:
these functions are (Scott) continuous and monotone.

Thursday, May 6, 2010

Denotational Semantics
Data types are domains: dcpos with ⊥.

Programs define functions between data types:
these functions are (Scott) continuous and monotone.

The function spaces are themselves data types.

Thursday, May 6, 2010

Denotational Semantics
Data types are domains: dcpos with ⊥.

Programs define functions between data types:
these functions are (Scott) continuous and monotone.

The function spaces are themselves data types.

Continuous functions from D to itself have least fixed points.

Thursday, May 6, 2010

Denotational Semantics
Data types are domains: dcpos with ⊥.

Programs define functions between data types:
these functions are (Scott) continuous and monotone.

The function spaces are themselves data types.

Continuous functions from D to itself have least fixed points.

The meaning of a recursively defined function from D to D
is given by the least fixed point of a functional
from D → D to D → D.

Thursday, May 6, 2010

Fixed-point Induction

Thursday, May 6, 2010

Fixed-point Induction
Let D be a dcpo. A subset S ⊆ D is called
chain-closed if for all chains

d0 ≤ d1 ≤ d2 ≤ . . .
in D, we have

∀n.dn ∈ S ⇒
�

n dn ∈ S.

Thursday, May 6, 2010

Fixed-point Induction
Let D be a dcpo. A subset S ⊆ D is called
chain-closed if for all chains

d0 ≤ d1 ≤ d2 ≤ . . .
in D, we have

∀n.dn ∈ S ⇒
�

n dn ∈ S.

If S contains ⊥ and is chain closed, we call it admissible.

Thursday, May 6, 2010

Fixed-point Induction
Let D be a dcpo. A subset S ⊆ D is called
chain-closed if for all chains

d0 ≤ d1 ≤ d2 ≤ . . .
in D, we have

∀n.dn ∈ S ⇒
�

n dn ∈ S.

If S contains ⊥ and is chain closed, we call it admissible.

Similarly a property Φ, may be admissible.

Thursday, May 6, 2010

Fixed-point Induction
Let D be a dcpo. A subset S ⊆ D is called
chain-closed if for all chains

d0 ≤ d1 ≤ d2 ≤ . . .
in D, we have

∀n.dn ∈ S ⇒
�

n dn ∈ S.

If S contains ⊥ and is chain closed, we call it admissible.

Similarly a property Φ, may be admissible.

If f : D → D is continuous, Φ is admissible and
∀d ∈ S, f(d) ∈ S

then, fix(f) ∈ S.

Thursday, May 6, 2010

Fixed-point Induction
Let D be a dcpo. A subset S ⊆ D is called
chain-closed if for all chains

d0 ≤ d1 ≤ d2 ≤ . . .
in D, we have

∀n.dn ∈ S ⇒
�

n dn ∈ S.

If S contains ⊥ and is chain closed, we call it admissible.

Similarly a property Φ, may be admissible.

If f : D → D is continuous, Φ is admissible and
∀d ∈ S, f(d) ∈ S

then, fix(f) ∈ S.

With this many properties of recursively defined functions can be proved.

Thursday, May 6, 2010

Abstract Interpretation
How can we use denotational semantics to prove

properties without computing the detailed behaviour

of the program?

Thursday, May 6, 2010

Abstract Interpretation
How can we use denotational semantics to prove

properties without computing the detailed behaviour

of the program?

Use abstracted data types!

Thursday, May 6, 2010

Abstract Interpretation
How can we use denotational semantics to prove

properties without computing the detailed behaviour

of the program?

Use abstracted data types!

D
f

!!

α1
""

E
α2

##

A
g

!!

γ1

$$

B

γ2

$$

1

Thursday, May 6, 2010

Model Checking

Thursday, May 6, 2010

Model Checking

Describe the system (program) as a transition
system of some kind.

Thursday, May 6, 2010

Model Checking

Describe the system (program) as a transition
system of some kind.

Give the specification in a suitable (dynamic) logic.

Thursday, May 6, 2010

Model Checking

Describe the system (program) as a transition
system of some kind.

Give the specification in a suitable (dynamic) logic.

Show automatically that the system is a model
of the specification.

Thursday, May 6, 2010

Theorem proving

Thursday, May 6, 2010

Theorem proving

Describe the (relevant parts of or behaviour of) the
system using formulas. [Beh]

Thursday, May 6, 2010

Theorem proving

Describe the (relevant parts of or behaviour of) the
system using formulas. [Beh]

Define the specification as another formula. [Spec]

Thursday, May 6, 2010

Theorem proving

Describe the (relevant parts of or behaviour of) the
system using formulas. [Beh]

Define the specification as another formula. [Spec]

Prove, using semi-automatic tools if possible, that
Beh implies Spec.

Thursday, May 6, 2010

Which is better?

Thursday, May 6, 2010

Which is better?

Theorem proving is good when one doesn’t have a
complete picture of the model and one can
capture some of their properties using axioms.

Thursday, May 6, 2010

Which is better?

Theorem proving is good when one doesn’t have a
complete picture of the model and one can
capture some of their properties using axioms.

Model checking allows a different formalism for
describing the model and writing the specification.
This allows one to use a rather restricted language
for the specifications which has a better chance of
being decidable.

Thursday, May 6, 2010

Peace, flowers and love

Thursday, May 6, 2010

Peace, flowers and love

Of course, the two approaches should co-exist.

Thursday, May 6, 2010

Peace, flowers and love

Of course, the two approaches should co-exist.

Theorem proving can settle properties that would
require induction proofs and is much more
powerful.

Thursday, May 6, 2010

Peace, flowers and love

Of course, the two approaches should co-exist.

Theorem proving can settle properties that would
require induction proofs and is much more
powerful.

Model checking can be a powerful tactic within a
theorem proving environment.

Thursday, May 6, 2010

Peace, flowers and love

Of course, the two approaches should co-exist.

Theorem proving can settle properties that would
require induction proofs and is much more
powerful.

Model checking can be a powerful tactic within a
theorem proving environment.

Abstraction is a vital tool in both cases.

Thursday, May 6, 2010

Model Checking

Thursday, May 6, 2010

Model Checking

The system is a transition system
S: States
P : Propositions
→⊂ S × S: Transition relation
L : S → 2P : Labelling function.

Thursday, May 6, 2010

Model Checking

The system is a transition system
S: States
P : Propositions
→⊂ S × S: Transition relation
L : S → 2P : Labelling function.

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

Thursday, May 6, 2010

The Logic

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010

The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010

The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

For transition systems of the type shown
CTL is more natural.

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010

The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

For transition systems of the type shown
CTL is more natural.

State formulas:
φ ::== true|p|φ1 ∧ φ2|¬φ|∃ψ|∀ψ

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010

The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

For transition systems of the type shown
CTL is more natural.

State formulas:
φ ::== true|p|φ1 ∧ φ2|¬φ|∃ψ|∀ψ

Path formulas:
ψ ::==�φ||♦φ|�φ|φ1

�
φ2

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state �|= ∀✸q

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state �|= ∀✸q

start state �|= ∀�♦p

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state �|= ∀✸q

start state �|= ∀�♦p This is LTL not CTL

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state |= ∃♦�q

start state �|= ∀✸q

start state �|= ∀�♦p This is LTL not CTL

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state |= ∃♦�q

start state �|= ∀✸q

start state �|= ∀�♦p This is LTL not CTL

This is CTL* not LTL

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state |= ∃♦�q

start state |= ∃ “every second state satisfies q.”

start state �|= ∀✸q

start state �|= ∀�♦p This is LTL not CTL

This is CTL* not LTL

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state |= ∃♦�q

start state |= ∃ “every second state satisfies q.”

But “every second state satisfies q” cannot be
expressed with these temporal formulas.

start state �|= ∀✸q

start state �|= ∀�♦p This is LTL not CTL

This is CTL* not LTL

Thursday, May 6, 2010

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state |= ∃♦�q

start state |= ∃ “every second state satisfies q.”

But “every second state satisfies q” cannot be
expressed with these temporal formulas.

It can be expressed with fixed-point operators in the logic.

start state �|= ∀✸q

start state �|= ∀�♦p This is LTL not CTL

This is CTL* not LTL

Thursday, May 6, 2010

Semantics of the Logic

A path is a sequence of states: π = s0s1s2 . . .

π |=� φ iff s1 |= φ

π |=♦φ iff ∃j such that sj |= φ

π |=�φ iff ∀j sj |= φ

π |=φ1

�
φ2 iff ∃j such that sj |= φ2 and ∀i < j si |= φ1

s |=p iff p ∈ L(s)
s |=φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |=∀ψ iff ∀ paths π = ss1s2 . . . , π |= ψ

s |=∃ψ iff ∃ a path π = ss1s2 . . . , π |= ψ

Thursday, May 6, 2010

The Model-Checking Algorithm

Thursday, May 6, 2010

The Model-Checking Algorithm
Sat(φ) = {s|s |= φ}

Thursday, May 6, 2010

The Model-Checking Algorithm
Sat(φ) = {s|s |= φ}

Post(s) = {s�|s→ s�}, P re(s) = {s�|s� → s}

Thursday, May 6, 2010

The Model-Checking Algorithm
Sat(φ) = {s|s |= φ}

Post(s) = {s�|s→ s�}, P re(s) = {s�|s� → s}

Input: TS with states S, CTL state formula Φ
Output: T (⊂ S) = {s|s |= Φ} = Sat(Φ).

Thursday, May 6, 2010

The Model-Checking Algorithm
Sat(φ) = {s|s |= φ}

Post(s) = {s�|s→ s�}, P re(s) = {s�|s� → s}

Input: TS with states S, CTL state formula Φ
Output: T (⊂ S) = {s|s |= Φ} = Sat(Φ).

p : T = {s|p ∈ L(s)}

φ1 ∧ φ2 : T = Sat(φ1)
�

Sat(φ2)

¬φ : T = S \ Sat(φ)

∃� φ : T = {s|Post(s)
�

Sat(φ) �= ∅}

∀� φ : T = {s|Post(s) ⊆ Sat(φ)}
Thursday, May 6, 2010

Suppose the formula is φ = ∃(φ1
�

φ2)).
Note that φ = φ2 ∨ ∃� φ; a fixed-point formula!

Thursday, May 6, 2010

Suppose the formula is φ = ∃(φ1
�

φ2)).
Note that φ = φ2 ∨ ∃� φ; a fixed-point formula!

Iterative algorithm to compute this (least) fixed point:

Thursday, May 6, 2010

Suppose the formula is φ = ∃(φ1
�

φ2)).
Note that φ = φ2 ∨ ∃� φ; a fixed-point formula!

Iterative algorithm to compute this (least) fixed point:

T := Sat(φ2)
for all

s ∈ Sat(φ1) \ T
do

if Post(s)
�

T �= ∅
then T := T

�
{s}.

Thursday, May 6, 2010

Similarly,
∃�φ = φ ∧ ∃� ∃�φ,

so we have a greatest fixed point.

Thursday, May 6, 2010

Similarly,
∃�φ = φ ∧ ∃� ∃�φ,

so we have a greatest fixed point.

An iterative algorithm for computing the greatest fixed point.

Thursday, May 6, 2010

T := Sat(φ)
repeat

choose s ∈ T ;
if Post(s)

�
T = ∅

then T := T \ {s}
until
∀s ∈ T, Post(s)

�
T �= ∅.

Similarly,
∃�φ = φ ∧ ∃� ∃�φ,

so we have a greatest fixed point.

An iterative algorithm for computing the greatest fixed point.

Thursday, May 6, 2010

For a transition system with n states and t transitions
and a CTL formula φ of size k, the model-checking
problem can be solved in time

O((n + t).k).

Thursday, May 6, 2010

Further directions

Thursday, May 6, 2010

Further directions

Model checking with fairness assumptions

Thursday, May 6, 2010

Further directions

Model checking with fairness assumptions

Finding counterexamples and witnesses

Thursday, May 6, 2010

Further directions

Model checking with fairness assumptions

Finding counterexamples and witnesses

Symbolic model checking: dealing with large
systems by working with sets of states
symbolically

Thursday, May 6, 2010

Further directions

Model checking with fairness assumptions

Finding counterexamples and witnesses

Symbolic model checking: dealing with large
systems by working with sets of states
symbolically

Using BDDs to represent sets and set operations
efficiently

Thursday, May 6, 2010

LTL, CTL*, mu-calculus

Thursday, May 6, 2010

LTL, CTL*, mu-calculus

LTL uses a single outermost universal path
quantifier.

Thursday, May 6, 2010

LTL, CTL*, mu-calculus

LTL uses a single outermost universal path
quantifier.

Very good for dealing with systems specified as
sets of possible runs.

Thursday, May 6, 2010

LTL, CTL*, mu-calculus

LTL uses a single outermost universal path
quantifier.

Very good for dealing with systems specified as
sets of possible runs.

LTL and CTL have different expressive power:
neither subsumes the other.

Thursday, May 6, 2010

LTL, CTL*, mu-calculus

LTL uses a single outermost universal path
quantifier.

Very good for dealing with systems specified as
sets of possible runs.

LTL and CTL have different expressive power:
neither subsumes the other.

Both are fragments of CTL*

Thursday, May 6, 2010

LTL, CTL*, mu-calculus

LTL uses a single outermost universal path
quantifier.

Very good for dealing with systems specified as
sets of possible runs.

LTL and CTL have different expressive power:
neither subsumes the other.

Both are fragments of CTL*

mu-calculus, allows general fixed-point operators.

Thursday, May 6, 2010

LTL model checking

Thursday, May 6, 2010

LTL model checking

Based on automata-theoretic techniques.

Thursday, May 6, 2010

LTL model checking

Based on automata-theoretic techniques.

PSPACE hard.

Thursday, May 6, 2010

LTL model checking

Based on automata-theoretic techniques.

PSPACE hard.

So what? Still very useful!

Thursday, May 6, 2010

LTL model checking

Based on automata-theoretic techniques.

PSPACE hard.

So what? Still very useful!

Handles fairness nicely.

Thursday, May 6, 2010

LTL model checking

Based on automata-theoretic techniques.

PSPACE hard.

So what? Still very useful!

Handles fairness nicely.

CTL* not significantly harder.

Thursday, May 6, 2010

Extensions

Timed automata

Probabilistic transition systems

Thursday, May 6, 2010

 THE END

Thursday, May 6, 2010

