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The topics

Real-time systems (Ouaknine)

Probabilistic systems (Worrell)

Theorem proving techniques (Felty)

Concurrent systems (Brookes)
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McCarthy in the early 1960s introduced a 
Mathematical Theory of Computation

Floyd in the mid 1960s introduced methods for 
reasoning on flowcharts: inductive assertions

Scott, deBakker 1969: fixed-point induction

Hoare 1969: axiomatic semantics

Early 1970s: predicate transformers (Dijkstra)
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The pace picks up

Early 1970s: LCF/ML (Milner), Boyer-Moore

Dynamic logics: Pratt, Kozen, Parikh, Harel, 
Constable, Clark,...

(linear) Temporal logic (Pnueli), CTL 

Abstract interpretation (1976) Cousot and Cousot

Model checking (Clarke, Emerson, Sifakis)
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Disasters and Opportunities

The Ariane-5 disaster

The Pentium bug

The Bang & Olufsen Audio/Video protocol

The attack on the Needham-Schroder protocol
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Some areas of current research

Abstraction techniques 

Probabilistic verification

Real-time systems

Concurrency

Security
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Semantics and Axioms

A precise specification of the execution effect of a 
program.

Ideally it should be compositional.

One should be able to extract the relevant 
aspects of the program through axioms that 
capture the semantics.
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Hoare Logic

Assertions describe properties of the state.

{P} S {Q}: If P holds before execution of S then Q 
will hold after S terminates, if S does indeed 
terminate.

Compositionality:  From {P} S {R} and {R} S’ {Q} 
deduce {P} S;S’ {Q}.
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Dynamic Logic

A modal logic with programs and formulas defined 
by mutual induction.

Every program defines a modality.

Challenging from the point of view of basic theory: 
the canonical model construction does not work.
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Recursion 

How to make sense of recursion compositionally?

Fixed-point theory (Kleene).

rec f. F[f] is the solution of f = F[f].

Fixed-point induction for programs: Scott and 
deBakker, Park.
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Denotational Semantics
Data types are domains: dcpos with ⊥.

Programs define functions between data types:
these functions are (Scott) continuous and monotone.

The function spaces are themselves data types.

Continuous functions from D to itself have least fixed points.

The meaning of a recursively defined function from D to D
is given by the least fixed point of a functional
from D → D to D → D.
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Fixed-point Induction
Let D be a dcpo. A subset S ⊆ D is called
chain-closed if for all chains

d0 ≤ d1 ≤ d2 ≤ . . .
in D, we have

∀n.dn ∈ S ⇒
�

n dn ∈ S.

If S contains ⊥ and is chain closed, we call it admissible.

Similarly a property Φ, may be admissible.

If f : D → D is continuous, Φ is admissible and
∀d ∈ S, f(d) ∈ S

then, fix(f) ∈ S.

With this many properties of recursively defined functions can be proved.
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Use abstracted data types!
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Model Checking

Describe the system (program) as a transition 
system of some kind.

Give the specification in a suitable (dynamic) logic.

Show  automatically that the system is a model 
of the specification.
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Theorem proving

Describe the (relevant parts of or behaviour of) the 
system using formulas. [Beh]

Define the specification as another formula. [Spec]

Prove, using semi-automatic tools if possible, that 
Beh implies Spec.
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Which is better?

Theorem proving is good when one doesn’t have a 
complete picture of the model and one can 
capture some of their properties using axioms.

Model checking allows a different formalism for 
describing the model and writing the specification.  
This allows one to use a rather restricted language 
for the specifications which has a better chance of 
being decidable.
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Peace, flowers and love

Of course, the two approaches should co-exist.

Theorem proving can settle properties that would 
require induction proofs and is much more 
powerful.

Model checking can be a powerful tactic within a 
theorem proving environment.

Abstraction is a vital tool in both cases. 

Thursday, May 6, 2010



Model Checking

Thursday, May 6, 2010



Model Checking

The system is a transition system
S: States
P : Propositions
→⊂ S × S: Transition relation
L : S → 2P : Labelling function.

Thursday, May 6, 2010



Model Checking

The system is a transition system
S: States
P : Propositions
→⊂ S × S: Transition relation
L : S → 2P : Labelling function.

q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

Thursday, May 6, 2010



The Logic

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010



The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010



The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

For transition systems of the type shown
CTL is more natural.

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010



The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

For transition systems of the type shown
CTL is more natural.

State formulas:
φ ::== true|p|φ1 ∧ φ2|¬φ|∃ψ|∀ψ

� : Next
♦ : Eventually
� : Always�

: Until
Thursday, May 6, 2010



The Logic
Usually temporal logic: Linear Temporal Logic (LTL)
or Computation Tree Logic (CTL).

For transition systems of the type shown
CTL is more natural.

State formulas:
φ ::== true|p|φ1 ∧ φ2|¬φ|∃ψ|∀ψ

Path formulas:
ψ ::==�φ||♦φ|�φ|φ1

�
φ2

� : Next
♦ : Eventually
� : Always�

: Until
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q0 q1

q2 q3

a

b a

bb

a

a, b

p q

q p,q

2

start state |= ∃♦�q

start state |= ∃ “every second state satisfies q.”

But “every second state satisfies q” cannot be
expressed with these temporal formulas.

It can be expressed with fixed-point operators in the logic.

start state �|= ∀✸q

start state �|= ∀�♦p This is LTL not CTL

This is CTL* not LTL
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Semantics of the Logic

A path is a sequence of states: π = s0s1s2 . . .

π |=� φ iff s1 |= φ

π |=♦φ iff ∃j such that sj |= φ

π |=�φ iff ∀j sj |= φ

π |=φ1

�
φ2 iff ∃j such that sj |= φ2 and ∀i < j si |= φ1

s |=p iff p ∈ L(s)
s |=φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |=∀ψ iff ∀ paths π = ss1s2 . . . , π |= ψ

s |=∃ψ iff ∃ a path π = ss1s2 . . . , π |= ψ
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The Model-Checking Algorithm
Sat(φ) = {s|s |= φ}

Post(s) = {s�|s→ s�}, P re(s) = {s�|s� → s}

Input: TS with states S, CTL state formula Φ
Output: T (⊂ S) = {s|s |= Φ} = Sat(Φ).

p : T = {s|p ∈ L(s)}

φ1 ∧ φ2 : T = Sat(φ1)
�

Sat(φ2)

¬φ : T = S \ Sat(φ)

∃� φ : T = {s|Post(s)
�

Sat(φ) �= ∅}

∀� φ : T = {s|Post(s) ⊆ Sat(φ)}
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Suppose the formula is φ = ∃(φ1
�

φ2)).
Note that φ = φ2 ∨ ∃� φ; a fixed-point formula!

Thursday, May 6, 2010



Suppose the formula is φ = ∃(φ1
�

φ2)).
Note that φ = φ2 ∨ ∃� φ; a fixed-point formula!

Iterative algorithm to compute this (least) fixed point:

Thursday, May 6, 2010



Suppose the formula is φ = ∃(φ1
�

φ2)).
Note that φ = φ2 ∨ ∃� φ; a fixed-point formula!

Iterative algorithm to compute this (least) fixed point:

T := Sat(φ2)
for all

s ∈ Sat(φ1) \ T
do

if Post(s)
�

T �= ∅
then T := T

�
{s}.
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∃�φ = φ ∧ ∃� ∃�φ,

so we have a greatest fixed point.
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T := Sat(φ)
repeat

choose s ∈ T ;
if Post(s)

�
T = ∅

then T := T \ {s}
until
∀s ∈ T, Post(s)

�
T �= ∅.

Similarly,
∃�φ = φ ∧ ∃� ∃�φ,

so we have a greatest fixed point.

An iterative algorithm for computing the greatest fixed point.
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For a transition system with n states and t transitions
and a CTL formula φ of size k, the model-checking
problem can be solved in time

O((n + t).k).
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Further directions

Model checking with fairness assumptions

Finding counterexamples and witnesses

Symbolic model checking: dealing with large 
systems by working with sets of states 
symbolically

Using BDDs to represent sets and set operations 
efficiently
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LTL, CTL*, mu-calculus

LTL uses a single outermost universal path 
quantifier.

Very good for dealing with systems specified as 
sets of possible runs.

LTL and CTL have different expressive power: 
neither subsumes the other.

Both are fragments of CTL*

mu-calculus, allows general fixed-point operators.
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LTL model checking

Based on automata-theoretic techniques.

PSPACE hard.

So what?  Still very useful!

Handles fairness nicely.

CTL* not significantly harder.
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Extensions

Timed automata

Probabilistic transition systems
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         THE END
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