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Quantum Mechanics 
Recap

1. States are rays in a Hilbert space

2. Measurements are described by hermitian operators...

3. Evolution is given by a particular unitary operator exp(−iHt)

4. The algebra of observables is non-commutative and is given by Dirac’s
rule

{P,Q} −→ [P,Q]
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 Wave Equations

What is the precise dynamical law?

Figure out H (and get Nobel prize) then time evolution is given by:

i!∂Ψ
∂t

= HΨ
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Eigenstates of H

If Hψ = Eψ then ∂ψ

∂t
= iEψ

hence

ψ(t) = e−iEtψ(0)

|ψ|2 is constant. These are the stationary states.
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Harmonic Oscillator

The Hamiltonian is H = p2

2m + 1
2mω2x2.

The energy levels are equally spaced: En = !ω(n + 1
2 )

a = C(x + iC ′p), a† = C(x− iC ′p)

Some marvellous operators

a|n〉 =
√

n|n− 1〉, a†|n〉 =
√

n + 1|n + 1〉

[a, a†] = 1, H = !ω(a†a +
1
2
)
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Relativistic QM

Possible relativistic wave equations arise from the representation theory of the
Lorentz group. Dirac guessed the right equation for the electron from physical
intuition and formal arguments.

Problem: the energy spectrum was not bounded below. What stops an elec-
tron from falling into the negative energy states and radiating away an infinite
amount of energy?

Dirac’s hack: Fill the negative energy states. The ”vacuum” is a sea of negative
energy electrons and Pauli’s exclusion principle will keep ordinary electrons from
falling into the sea.

A negative energy electron may be kicked upstairs and become an ordinary
electron leaving a “hole”. The hole will behave just like a positively charged
electron: a positron.
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Quantum Field Theory

Hole theory was replaced by quantum field theory created by too many people
to name them all but a few should be mentioned: Wigner, Weisskopf, Jordan,
Heisenberg, Fermi and Dirac.

The main ideas: particles are no longer “conserved”, they can be created and
destroyed. The state space is the symmetric tensor algebra or the Grassman
algebra over the old Hilbert space. This is called Fock space.

The old “wave functions” become operator fields. They act on Fock space and
create or annihilate particles: second quantization.

The mathematical complexity rises a whole level beyond that of ordinary quan-
tum mechanics.
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Classical Field Theory: Klein-Gordon field

Let V be the real vector space of classical solutions;
it is the analogue of phase space.

The symplectic form is:

Ω(φ1,φ2) =
∫

Σ
(φ1

"∇φ2 − φ2
"∇φ1) · d"σ

−∂2φ

∂t2
+

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
−m2φ = 0

Often written !φ−m2φ = 0.
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Traditional Quantum Field Theory
Start with !φ−m2φ Put it in a “box” to avoid hassles.

φ("x, t) =
∑

!k

φ!k(t)ei!k·!x; "k = 2π(nx, ny, nz).

Now the Hamiltonian is
∑

!k

{1
2
|φ̇!k|

2 +
1
2
ω2

!k
|φ!k|

2} where ω2
!k

= "k2 + m2.

This looks like a collection of harmonic oscillators.

Fermi
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The a, a† operators now destroy and create
quanta of different modes:
particles have emerged from the field!

The innocent harmonic oscillator
plays a foundational role in QFT.

The a and a† come from the positive
and negative frequencies of the field.

The vacuum is the state killed by all
the a operators.
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How do we know what is positive frequency
and what is negative frequency?

The Fourier transform tells us:

Operators are in bold face.

Φ(!x, t) =
∑

k

fk(!x, t)ak + fk(!x, t)a†
k

The fk are classical positive energy solutions:

fk = (··) exp(i!k · !x− iωt)

One needs the canonical Fourier
transform that one has in a flat spacetime.
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Fock Space
A Hilbert space that accomodates multiple particles.
Suppose that H is the ordinary (1 particle)
Hilbert space.
F(H) = C⊕H⊕ (H⊗S H)⊕ (H⊗S H⊗S H) . . .

with a given Hilbert space H — what we shall call the symmetric Fock space
and the anti-symmetric Fock space. If H represents the one-particle states of
a Boson field, the appropriate space of many-particle states is the symmetric
Fock space based on H . Similarly, fermions are described by the anti-symmetric
Fock space. We shall define the Fock spaces associated with a Hilbert space H
and a few of the operators on these spaces.

Let H be a Hilbert space. The (symmetric) Fock space based on H is the
Hilbert space

C ⊕ Hα ⊕ (H(α ⊗ Hβ)) ⊕ (H(α ⊗ Hβ ⊗ Hγ)) ⊕ · · · (97)

where Hα, Hβ , etc. are all copies of H (Sect. 9), and where the round brackets
surrounding the indices of the tensor products mean that the Hilbert space of
symmetric tensors is to be used. More explicitly, an element of the symmetric
Fock space consists of a string

Ψ = (ξ, ξα, ξαβ , ξαβγ , . . .) (98)

where ξ is a complex number, ξα is an element of H , ξαβ is a symmetric (ξαβ =
ξ(αβ)) second-rank tensor over H , ξαβγ is a symmetric third-rank tensor over
H , etc., for which the sum

‖Ψ‖2 = ξξ̄ + ξαξ̄α + ξαβ ξ̄αβ + ξαβγ ξ̄αβγ + · · · , (99)

which defines the norm of Ψ, converges. Physically, ξα1···αn represents the “n-
particle contribution” to Ψ. That the tensors are required to be symmetric
is a reflection of the idea that “Ψ is invariant under interchange of identical
particles”.

We next introduce the creation and annihilation operators. Let σ ∈ H . We
associate with this σ an operator C(σ) on Fock space, this operator defined by
its action on a typical element (98):

C(σ)Ψ = (0, σαξ,
√

2σ(αξβ),
√

3σ(αξβγ), . . .) (100)

Similarly, with each τ̄ ∈ H̄ we associate an operator A(τ̄), defined by

A(τ̄)Ψ = (ξµτ̄µ,
√

2ξµατ̄µ,
√

3ξµαβ τ̄µ, . . .) (101)

This C(σ) is called the creation operator (associated with σ); A(τ̄) the anni-
hilation operator (associated with τ̄). Note that the creation and annihilation
operators are only defined on a dense subset of Fock space, for, in general, the
sum on the right in (99) will not converge for the right sides of (100) and (101).
It is an easy exercise in tensor calculus to work out the commutators of these
operators:

[C(σ), C(σ′)] = 0

[A(τ̄ ), A(τ̄ ′)] = 0

[A(τ̄), C(σ)] = (σµ τ̄µ)I
(102)
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29

The “harmonic oscillators” give the creation and annihilation
operators of QFT.
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Summary

In QFT particles may be created and destroyed.

The space of quantum states has a representation:
the Fock representation, to support reasoning about
multi-particle states with varying numbers of particles.

The classical fields become operator fields: φ = C + A.
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Interacting Quantum Fields

∇νFµν = ejµ

Maxwell’s equation with a current.

Here F describes the electric and magnetic fields and is given by
Fµν = ∇[µAν]

(γµ∇µ + m)ψ = −eγµψAµ

The Dirac equation for an electron in an electromagnetic field.

Each equation mentions the other field.

We do now know how to solve equations like this at all:
they are non-linear and coupled.
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Perturbation Theory
Pretend that the coupling is “small.”

For QED the coupling constant is e.

First solve the free equations exactly.

Then use these solutions to compute j and A
and plug these back into the equations.

Then recompute the solutions and recompute j and A.

You get an approximate solution
in powers of the coupling constant.

Keep going until you have the desired accuracy.
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Problems

This approximate expansion does not reveal 
all the interesting properties of the exact 
solutions.

The power series does not converge!

Even the individual terms (after first order) 
are infinite!!
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Feynman’s Brilliant Intuition

A simple visualization of the terms in the perturbation series.

Think in terms of particles and their trajectories.

Particles coast freely until they interact. For a given type of
theory the interaction is always the same.

Coasting particles are represented by straight lines;
interactions by vertices.

The pictures define integrals that express the
probability (amplitude) for the process shown.
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Feynman diagram examples

Prakash Panangaden

a b
=

iδab

/p − m
+

1

Feynman diagram examples

Prakash Panangaden

a b
=

iδab

/p − m
+

1

An electron (fermion) propagator

A photon (boson) propagator

We need a mathematical function to describe how a
particle moves from x to y:
this is called a Feynman propagator.
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Propagators
The free wave equation is: Dxψ(x) = 0.

DxG(x, y) = δ(x, y).Consider the equation:

If we solve for G(x, y), which is a distribution,

solves the equation

Thus G tells us how to propagate a solution;
we call it a propagator.

It is the ”matrix inverse” of Dx.

φ(x) =
∫

G(x, y)h(y)d4y

Dxφ(x) = h(x).
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Electron-electron scattering

At last!! A Feynman diagram.
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What are the propagators?

If we take Fourier transforms we get
for the Klein-Gordon field:

This becomes singular at k = ±m.

One has to have a contour of integration that avoids the poles.

Feynman’s idea: Positive frequency propagates to the future but negative fre-
quency propagates to the past.

Feynman diagrams are usually drawn in momentum space (the Fourier trans-
formed versions of the propagators are used.)

1
k2 −m2
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!k

!k′

!p

!p′

!q

!k′ = !k − !q !p′ = !p + !q
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γ

γ

e−

e−

e−

e−

1

Electron-electron scattering: fourth order

Every vertex has exactly two electrons and one photon.
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γ

γ

e−

e−

e+

e+

1

Electron-positron scattering

A positron is an electron traveling “backwards” in time.
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From pictures to integrals

y z

Feynman diagram examples

Prakash Panangaden

a b =
iδab

/p − m
x y

= G(x, y)
+

x2

x1

1

= e
∫

G(x1, y)D(y, z)G(y, x2)d4y

We integrate over the internal vertices.
They are like ”bound” variables.

Feynman diagram examples

Prakash Panangaden

a b =
iδab

/p − m
x y

= G(x, y)
+

x2

x1

1

= D(u, v) : photon propagatoru v

Feynman diagram examples

Prakash Panangaden

a b =
iδab

/p − m

x y
= G(x, y)

+

x2

x1

1

: electron propagator
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Fron QFT to Feynman Diagrams

Schwinger showed how to calculate quantities of interest
from QFT using perturbation theory in a scary algebraic
formalism.

Feynman wrote rules for calculating terms in the perturbation
expansion using the diagrammatic formalism.
QFT for the masses!

Dyson derived the Feynman rules from QFT.
Then people could trust the Feynman rules.

Some other time, I will derive these rules.
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Feynman diagram examples

Prakash Panangaden

a b =
iδab

/p − m

x y
= G(x, y)

+

1

Loops

Diagrams like this yield infinity when you calculate the integral.

It models a self interaction. The theory is trying to correct
the electron mass by adding in the energy of the electron
interacting with itself.

But QFT is not designed to compute fundamental constants
and definitely not in perturbation theory.
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x2

x1

p

k

2

Vacuum Bubbles

These are also divergent.

They can appear free-floating as parts of other diagrams
and have the effect of multiplying by an (infinite) constant.
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x2

x1

p

k

2
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a
b
=

iδ
a
b

/p
−

m

x
y
=

G
(x

,y
)

+

1

Another divergent diagram.

This time the theory is trying to correct the electric charge.
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Loops cause divergences
All the divergences of QED can be identified as the attempt to compute 3
parameters: mass, charge and vacuum energy. We factor out these terms and
use the experimental values.

This is renormalization.

Whether one can do it depends on the combinatorics of the graphs. It works
for QED (Feynman, Schwinger, Tomanaga, Dyson, Abdus Salam), it works for
(most) gauge theories (t’Hooft, Veltmann) but

it does not work for quantum gravity!
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Conclusions
Beautiful and useful diagrammatic formalism.

Seems to have interesting connections with logic:
the diagrams have an eerie resemblance to proof nets.

The nature of loops reminds me of the scalars in the Abramsky-Coecke formal-
ism.

But don’t take the particle imagery too seriously. In curved spacetime, the
notion of particle is not absolute but diagrammology still works.
Bunch, P, Parker 1980; Birrell and Davies 1980,
QED: P 1981, Bunch 1982.
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