Quantum Leader Election or The Computational Power of the W State

Prakash Panangaden joint work with Ellie D'Hondt

McGill University
Free University Brussels

A system of autonomous agents have to choose a special distinguished agent for the purposes of some task.

- A system of autonomous agents have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of distributed decision making.

- A system of autonomous agents have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of distributed decision making.
- That's easy: designate a leader when the system is set up.

- A system of autonomous agents have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of distributed decision making.
- That's easy: designate a leader when the system is set up.
- Not always appropriate: what happens if the designated leader crashes?

- A system of autonomous agents have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of distributed decision making.
- That's easy: designate a leader when the system is set up.
- Not always appropriate: what happens if the designated leader crashes?
- Designate a backup ...

- A system of autonomous agents have to choose a special distinguished agent for the purposes of some task.
- Paradigmatic of distributed decision making.
- That's easy: designate a leader when the system is set up.
- Not always appropriate: what happens if the designated leader crashes?
- Designate a backup ...
- What if membership in the group changes dynamically?

We work in a system where all the agents execute the same program and start in the same initial state.

- We work in a system where all the agents execute the same program and start in the same initial state.
- We assume that agents cannot be named.

- We work in a system where all the agents execute the same program and start in the same initial state.
- We assume that agents cannot be named.
- We want all agents to have an equal chance of being the leader.

- We work in a system where all the agents execute the same program and start in the same initial state.
- We assume that agents cannot be named.
- We want all agents to have an equal chance of being the leader.
- We assume that communication takes place in rounds and that all agents communicate with all other agents in every step: broadcast.

The Classical Situation

Leader election cannot be solved: Angluin 1980.

The Classical Situation

- Leader election cannot be solved: Angluin 1980.
- The initial state is symmetric and there is no mechanism to break the symmetry.

The Classical Situation

- Leader election cannot be solved: Angluin 1980.
- The initial state is symmetric and there is no mechanism to break the symmetry.
- Much effort in "almost" anonymous situations, special patterns of interconnectivity and probabilistic solutions.

If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.

- If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.
- If both get "heads" or both get "tails" they toss again.

- If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.
- If both get "heads" or both get "tails" they toss again.
- They are not guaranteed to terminate though they will terminate with probability 1.

- If two processes have coins they can elect a leader by tossing their coins. The one who gets "heads" is the leader.
- If both get "heads" or both get "tails" they toss again.
- They are not guaranteed to terminate though they will terminate with probability 1.
- Expected number of rounds is just 2.

What Can be Done With Quantum Resources?

We can obviously mimic the probabilistic solutions.

What Can be Done With Quantum Resources?

- We can obviously mimic the probabilistic solutions.
- Can we come up with a technique that is guaranteed to terminate after some fixed number of rounds?

What Can be Done With Quantum Resources?

- We can obviously mimic the probabilistic solutions.
- Can we come up with a technique that is guaranteed to terminate after some fixed number of rounds?
- Can we ensure that each one has equal chance of being the leader?

Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.

- Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.
- They can each measure $|0\rangle\langle 0| + |1\rangle\langle 1|$; the one who gets $|1\rangle$ is the leader.

- Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.
- They can each measure $|0\rangle\langle 0| + |1\rangle\langle 1|$; the one who gets $|1\rangle$ is the leader.
- Each agent has the same chance of getting elected, the process is guaranteed to terminate in one step. Exactly what is classically impossible!

- Suppose that two agents want to choose one of themselves as a leader and they share a Bell pair.
- They can each measure $|0\rangle\langle 0| + |1\rangle\langle 1|$; the one who gets $|1\rangle$ is the leader.
- Each agent has the same chance of getting elected, the process is guaranteed to terminate in one step. Exactly what is classically impossible!
- Does this generalize to more than two agents?

A network of agents is a system in which several inter-communicating agents carry out computations concurrently.

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.
- All agents start in the same state.

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.
- All agents start in the same state.
- Known network size.

- A network of agents is a system in which several inter-communicating agents carry out computations concurrently.
- Synchronous: communication occurs in fixed rounds of broadcasts. Communication is classical, we send bits not qubits.
- Anonymous: All agents run the same protocol and there is no mechanism for naming the agents.
- All agents start in the same state.
- Known network size.
- No faulty or malicious agents.

All agents are completely identical: they do not carry individual names with which they can be identified.

- All agents are completely identical: they do not carry individual names with which they can be identified.
- The initial network specification must be invariant under permutations of agents.

- All agents are completely identical: they do not carry individual names with which they can be identified.
- The initial network specification must be invariant under permutations of agents.
- Agents start out in identical local classical states.

- All agents are completely identical: they do not carry individual names with which they can be identified.
- The initial network specification must be invariant under permutations of agents.
- Agents start out in identical local classical states.
- Angluin 80: there is no solution to leader election that is guaranteed to terminate.

Anonymity in the Quantum Setting

Each processor must have the same "local view" of its quantum state. This can be formalized by requiring that they have the same reduced density matrix.

Anonymity in the Quantum Setting

- Each processor must have the same "local view" of its quantum state. This can be formalized by requiring that they have the same reduced density matrix.
- We adopt the slightly stronger assumption that the initial quantum state is invariant under permutation of the agents subspaces.

Anonymity in the Quantum Setting

- Each processor must have the same "local view" of its quantum state. This can be formalized by requiring that they have the same reduced density matrix.
- We adopt the slightly stronger assumption that the initial quantum state is invariant under permutation of the agents subspaces.
- This rules out some states like $|0\rangle_A|0\rangle_B + e^{i\theta}|1\rangle_A|1\rangle_B$.

Total Correctness

A *totally correct* distributed protocol is a protocol that is *terminating*, i.e. it reaches a terminal configuration in each computation, and *partially correct*, i.e. for each of the reachable terminal configurations the goal of the protocol is achieved.

Easy Consequences

No totally correct leader election protocol exists without prior shared entanglement.

Easy Consequences

- No totally correct leader election protocol exists without prior shared entanglement.
- Totally correct leader election algorithms for anonymous quantum networks are fair, i.e. each processor has equal probability of being elected leader.

What kind of entangled states are there for 3 parties?

- What kind of entangled states are there for 3 parties?
- There are inequivalent enatngled states, numerical entanglement measures are inadequate.

- What kind of entangled states are there for 3 parties?
- There are inequivalent enatngled states, numerical entanglement measures are inadequate.
- $W := |100\rangle + |010\rangle + |001\rangle$ and $GHZ := |000\rangle + |111\rangle$.

- What kind of entangled states are there for 3 parties?
- There are inequivalent enatngled states, numerical entanglement measures are inadequate.
- $W := |100\rangle + |010\rangle + |001\rangle$ and $GHZ := |000\rangle + |111\rangle$.
- Both are maximally entangled but W is persistent, it requires two measurements to destroy the entanglement. GHZ becomes disentangled with just one measurement.

- What kind of entangled states are there for 3 parties?
- There are inequivalent enatngled states, numerical entanglement measures are inadequate.
- $W := |100\rangle + |010\rangle + |001\rangle$ and $GHZ := |000\rangle + |111\rangle$.
- Both are maximally entangled but W is persistent, it requires two measurements to destroy the entanglement. GHZ becomes disentangled with just one measurement.
- W_n requires n-1 measurements to destroy the entanglement while GHZ_n becomes disentangled with just one measurement.

QLE with the W state

 $q \leftarrow i$ th qubit of W_n **b=0** result=wait

QLE with the W state

- $q \leftarrow i$ th qubit of W_n **b=0 result=**wait
- **b**:= measure q

QLE with the W state

- $q \leftarrow i$ th qubit of W_n **b=0** result=wait
- **b**:= measure q
- if $\mathbf{b} = 1$ then **result**:= leader, else **result**:=follower.

The Main result

If a system of n agents with a shared quantum state can solve leader election then they must have had the W_n state or its "mirror image."

k-symmetric moves

Suppose an n-partite state $|\psi\rangle \in \mathcal{H}^{\otimes n}$, where \mathcal{H} is a 2^m -dimensional Hilbert space, is distributed over n processors. We say that there exists a k-symmetric move for the processors i_1,\ldots,i_k with respect to $|\psi\rangle$, where $0 < k \le n$, if for all observables $M = \sum_{j=1}^J \lambda_j P_j$, with $J \le 2^m$ and all P_j projectors, we have that

$$\exists l \in \{1, \dots, J\} : (P_l)_{i_1, \dots, i_k}^{\otimes k} (P_{j_{k+1} \neq l})_{i_{k+1}} \dots (P_{j_n \neq l})_{i_n} | \psi \rangle \neq 0$$
(0)

k-symmetric moves 2

The idea is that *all* measurements potentially give identical measurement results for k out of the n processors.

Because anonymous networks are invariant under permutations we need not specify any particular subset of processors.

k-symmetric moves exist if and only if a certain form of the state holds.

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a *k*-symmetric move is possible this will persist in any successor state.

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a k-symmetric move is possible this will persist in any successor state.
- Any protocol for which k-symmetric branches exist with k different from 1 or n-1 is not totally correct.

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a k-symmetric move is possible this will persist in any successor state.
- Any protocol for which k-symmetric branches exist with k different from 1 or n-1 is not totally correct.
- From the form of the state in the first item we get the desired result.

- k-symmetric moves exist if and only if a certain form of the state holds.
- If a k-symmetric move is possible this will persist in any successor state.
- Any protocol for which k-symmetric branches exist with k different from 1 or n-1 is not totally correct.
- From the form of the state in the first item we get the desired result.
- We can extend to the case where they share more than 1 qubit each.

Without Anonymity

lacksquare Suppose that we set up the state $W_{2,n-2}$ and give each processor one qubit. Each processor measures its qubit.

Without Anonymity

- Suppose that we set up the state $W_{2,n-2}$ and give each processor one qubit. Each processor measures its qubit.
- If it gets |1> it becomes a candidate otherwise it is a voter. Now we can hold an election and choose a leader, if n is odd there is a unique winner.

Without Anonymity

- Suppose that we set up the state $W_{2,n-2}$ and give each processor one qubit. Each processor measures its qubit.
- If it gets |1> it becomes a candidate otherwise it is a voter. Now we can hold an election and choose a leader, if n is odd there is a unique winner.
- But how can the voters name their preference in an anonymous network?

Using Network Structure

If the network is a ring then each voter sends a message clockwise.

Using Network Structure

- If the network is a ring then each voter sends a message clockwise.
- Voters pass on messages they receive, candidates count messages that they receive.

Using Network Structure

- If the network is a ring then each voter sends a message clockwise.
- Voters pass on messages they receive, candidates count messages that they receive.
- As soon as one of them gets more than half the votes it will declare itself leader.

■ The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the *W* state.

- The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the W state.
- The *W* state is the *only* state that has this power. It is worth studying the different kinds of entanglement and their relative power in different computational situations.

- The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the W state.
- The *W* state is the *only* state that has this power. It is worth studying the different kinds of entanglement and their relative power in different computational situations.
- These kind of symmetry breaking arguments have been used to prove expressiveness theorems before (e.g. Palamidessi 2003).

- The leader election problem can be exactly solved with shared correlation; either with classical correlated random variables or with the *W* state.
- The *W* state is the *only* state that has this power. It is worth studying the different kinds of entanglement and their relative power in different computational situations.
- These kind of symmetry breaking arguments have been used to prove expressiveness theorems before (e.g. Palamidessi 2003).
- A group of researchers in Japan have independently - given a quantum algorithm for leader election. They allow qubits to be passed around.