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Approximate equations: a =, b, a is within € of b.

Definitely not an equivalence relation:
it defines a uniformaity.

Quantitative analogue of equational reasoning.

Birkhofi-like completeness theorem, uniformity results,

monads ...

Many examples: mostly probabilistic
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History

Moggi 1988: How to incorporate “effects” into denotational
semantics? Answer: monads!

Plotkin, Power (and then many others): computational effects
algebraically. Monads are given by operations and equations.

Categorically: equational presentations are Lawvere theories.

A monad of great interest: Lawvere (1964) The category of
probabilistic mappings (unpublished).

Later (1981) Giry: monad on measure spaces
and also on Polish spaces.
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Probabilistic reasoning requires measure theory but,

measure theory works best on metric (Polish) spaces.

Metric ideas present in semantics from the start:
Jaco de Bakker’s school.

Our goal (motivated by probability): develop the theory of
effects in a metric setting.

Algebras will come with metric structure and

quantitative equational theories will define monads on Met.
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An example: Barycentric Algebras
(M. H. Stone 1949)

Signature: {+.|le € [0,1]} (a set of operations)

Axioms:
(Bi)Ft+1t' =t
(Bo) Ft+ct' =1t
(SC)YFt+4 .t =t +1_ct
(SA)F (t4ct )+t =t +ee '+ t')

/

1—e€e€

Equations define an equivalence relation on terms.
Our quantitative equations will define a metric on terms.



Deducibility relations

(Refl) 0t =¢t

(Symm) {t=,s}tFs=.t.

(Triang) {t =¢ 5,5 =¢s u} Ft =c1e u.
(Max) Fore >0, {t =cs}Ft=cie s.
(Arch) Fore >0, {t =0 s|e' >e}l Ft=,s.

(NExp) For f:n €,
{tl —e S1y.-. ,tn —e Sn} - f(tl, ..t,,;, ..tn) —e f(Sl, .54, ..Sn)

(Subst) If 0 € X(X), ' Ft =, s implies o(I') F o(t) = o(s).
(Cut) If '+ ¢ for all p € IV and IV - 4, then T' - 9.
(Assumpt) If ¢ € T', then I' - ¢.
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(Quantitative Equational Theories

Signature (), variables X we get terms TX
Quantitative equations: V(TX)

s=.1t, s,teTX, ecQn]|0,1].

Quantitative inferences: £(TX) = P5in(V(TX)) x V(TX)

{81 —eq tl,...,Sn —en tn}FS:et

Given S C £(TX), Fg: smallest deducibility

relation containing S.

Equational theory: U = Fg (1 E(TX)
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Quantitative Algebra

(): signature; A = (A, d):
A an Q-algebra and (A, d) a metric space

all functions in {) are nonexpansive.

Morphisms are (2-algebra, homomorphisms
that are nonexpansive.

TX is an 2-algebra.
o:TX — A, 2-homomorphism.

(A, d) satisfies {s; =.. t;/i=1,...,n} Fs=ctif

implies d(o(s),o0(t)) < e.

Vo, d(o(s;),o(t;) <e, i=1,...,n

We write K(U, 2) for the algebras satisfying U.
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Completeness

VA e KU,Q), A satisfiesI' - ¢ iff ' - ¢ € U.

Analogue of the usual completeness theorem for

equational logic, but the proof needs to deal
with quantitative issues and inequalities.
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Given U, TX can be given a pseudometric:
d4(s,t) = infleld - s =t cU}.

Quotient by the kernel to get a metric space T|X].
Thm: (T|X],d) is in K(U, $2).

Starting from a metric space (M, d) we can define
TM by adding m € M as constants and O - m =. n
as axioms for every rational d(m,n) < e.

From this we can construct (T|M],dy) € K(U, ).



Universal property

in Met KU, Q)

(M, d) —— U(T[M]) T[M]
\ J{Uh \i/h
UA A

U :K(U,Q) — Met: forgetful functor

T defines a monad on Met
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Example 1: Semiadditive barycentric algebras
Signature: B = {+.|e € [0,1]} (a set of operations)

Equations:

)t 41t =0t
)bt 4+t =0t
(SOt 4t =gt +1_ct
)
)

Ft e (P e t") =0 (tteer t') o

/

1—e€e

ot =.t"+.t,e<e

The freely generated algebra is the space of probability
distributions with the total variation metric.
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Example 2: Additive barycentric algebras

Same signature.
Equations:

(Bl)v (B2)7 (SC)7 (SA) and

( ){5171 —e1 Y1, L2 —es yQ} T Fe T = Y1 Te Y2
where (e -e7] + (1 — 6)62) < ¢

Special case p = 1:

(K){xl —e1 Y1,L2 ey yQ} = X1 e To = Y1 Te Y2
where (€ -e1 + (1 —€)eg) < €



A picture of equation (K)

Ty p———————m—————— - Y2
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Thm. (II|M], WP) is the M-generated barycentric algebra
i.e. 1t has the universal property.

Proof ideas:

Couplings form a convex set.

Convexity properties of spaces of measures.

Linearity of integration.

Splitting lemma.

Non-expansiveness — induction on size of the support.
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Weak convergence

Need topology on A|M| = Borel measures on M.

Zlggo i = K 1f for all bounded continuous functions

f: M — R we have [ fdu;, — | fdu.

Thm. If M is complete and separable then II|M]| is
dense in A[M| in the weak topology. Moreover, WP
metrizes the weak topology.

Using this we can extend the barycentric algebra
results to the continuous case.
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Other examples

1. Pointed barycentric algebras (subprobability distributions)
2. Hausdorff metric from (quantitative) semilattices

3. Markov chains (not in the paper) with trace-based metric

4. Exceptions, state, I0 - quantitative analogues
(not in the paper)
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Related work

van Breugel et al. (2007) Gives equational (in the ordinary
sense) presentation of Hausdorff and Kantorovich and exhibits
monads on the category of complete metric spaces.

Adamek et al. (2012) shows the finitely nature of these monads

We use barycentric axioms rather than mean-value axioms.

We develop a general theory of quantitative equations.

We can easily adapt Kantorovich to Wasserstein.
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Future Work

Most of our results work for metric taking values in
0, 00] except for Wasserstein /Kantorovich.

We need to extend Kantorovich-Rubinstein duality results.

Markov processes and bisimulation metrics. Perhaps need
many-sorted version of the theory (7)

Many tempting examples lurking in the shadows.

Quantitative theory of effects: contribute to
probabilistic programming languages.

Birkhoff variety theorem?



