Labelled Markov Processes

Lecture 4: Metrics for Labelled Markov Processes

Prakash Panangaden¹

¹School of Computer Science McGill University

January 2008, Winter School on Logic, IIT Kanpur

- 1 Introduction
- 2 Metrics for bisimulation
- Continuous-state systems
- Concluding remarks

- Introduction
- 2 Metrics for bisimulation
- Continuous-state systems
- Concluding remarks

- Introduction
- Metrics for bisimulation
- Continuous-state systems
- Concluding remarks

- Introduction
- Metrics for bisimulation
- 3 Continuous-state systems
- Concluding remarks

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

- Markov chains:
- Lumpability
- Labelled Markov processes: Bisimulation
- Markov decision processes: Bisimulation
- Labelled Concurrent Markov Chains with τ transitions: Weak Bisimulation

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.
- Instead one should have a (pseudo)metric for probabilistic processes.

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.
- Instead one should have a (pseudo)metric for probabilistic processes.

But...

- In the context of probability is exact equivalence reasonable?
- We say "no". A small change in the probability distributions may result in bisimilar processes no longer being bisimilar though they may be very "close" in behaviour.
- Instead one should have a (pseudo)metric for probabilistic processes.

Bisimulation

 Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a):

$$(s \stackrel{a}{\rightarrow} P) \Rightarrow [t \stackrel{a}{\rightarrow} Q, P =_R Q]$$

$$(t \stackrel{a}{\rightarrow} Q) \Rightarrow [s \stackrel{a}{\rightarrow} P, P =_R Q]$$

- *s*, *t* are bisimilar if there is a bisimulation relating them.
- There is a maximum bisimulation relation.

Bisimulation

 Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a):

$$(s \stackrel{a}{\rightarrow} P) \Rightarrow [t \stackrel{a}{\rightarrow} Q, P =_R Q]$$

$$(t \stackrel{a}{\rightarrow} Q) \Rightarrow [s \stackrel{a}{\rightarrow} P, P =_R Q]$$

- s, t are bisimilar if there is a bisimulation relating them.
- There is a maximum bisimulation relation.

Bisimulation

 Let R be an equivalence relation. R is a bisimulation if: s R t if (∀ a):

$$(s \stackrel{a}{\rightarrow} P) \Rightarrow [t \stackrel{a}{\rightarrow} Q, P =_R Q]$$

$$(t \stackrel{a}{\rightarrow} Q) \Rightarrow [s \stackrel{a}{\rightarrow} P, P =_R Q]$$

- s, t are bisimilar if there is a bisimulation relating them.
- There is a maximum bisimulation relation.

- Establishing equality of states: Coinduction. Establish a bisimulation R that relates states s, t.
- Distinguishing states: Simple logic is complete for bisimulation.

$$\phi ::= \operatorname{true} | \phi_1 \wedge \phi_2 | \langle a \rangle_{>q} \phi$$

- Bisimulation is sound for much richer logic pCTL*.
- Bisimulation is a congruence for usual process operators.

- Establishing equality of states: Coinduction. Establish a bisimulation R that relates states s, t.
- Distinguishing states: Simple logic is complete for bisimulation.

$$\phi ::= \operatorname{true} | \phi_1 \wedge \phi_2 | \langle a \rangle_{>q} \phi$$

- Bisimulation is sound for much richer logic pCTL*.
- Bisimulation is a congruence for usual process operators.

- Establishing equality of states: Coinduction. Establish a bisimulation R that relates states s, t.
- Distinguishing states: Simple logic is complete for bisimulation.

$$\phi ::= \operatorname{true} | \phi_1 \wedge \phi_2 | \langle a \rangle_{>q} \phi$$

- Bisimulation is sound for much richer logic pCTL*.
- Bisimulation is a congruence for usual process operators.

- Establishing equality of states: Coinduction. Establish a bisimulation R that relates states s, t.
- Distinguishing states: Simple logic is complete for bisimulation.

$$\phi ::= \operatorname{true} | \phi_1 \wedge \phi_2 | \langle a \rangle_{>q} \phi$$

- Bisimulation is sound for much richer logic pCTL*.
- Bisimulation is a congruence for usual process operators.

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

$$d(s,s) = 0, d(s,t) = d(t,s), d(s,u) \le d(s,t) + d(t,u).$$

Quantitative analogue of an equivalence relation.

 Quantitative measurement of the distinction between processes.

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

$$d(s,s) = 0, d(s,t) = d(t,s), d(s,u) \le d(s,t) + d(t,u).$$

Quantitative analogue of an equivalence relation.

 Quantitative measurement of the distinction between processes.

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

$$d(s,s) = 0, d(s,t) = d(t,s), d(s,u) \le d(s,t) + d(t,u).$$

Quantitative analogue of an equivalence relation.

 Quantitative measurement of the distinction between processes.

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2}{d(s_1 \mid\mid s_2, t_1 \mid\mid t_2) < \epsilon_1 + \epsilon_2}$$

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2}{d(s_1 \parallel s_2, t_1 \parallel t_2) < \epsilon_1 + \epsilon_2}$$

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2}{d(s_1 \mid\mid s_2, t_1 \mid\mid t_2) < \epsilon_1 + \epsilon_2}$$

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{d(s_1, t_1) < \epsilon_1, \quad d(s_2, t_2) < \epsilon_2}{d(s_1 \mid\mid s_2, t_1 \mid\mid t_2) < \epsilon_1 + \epsilon_2}$$

- Establishing closeness of states: Coinduction
- Distinguishing states: Real-valued modal logics
- Equational and logical views coincide: Metrics yield same distances as real-valued modal logics
- Compositional reasoning by Non-Expansivity.
 Process-combinators take nearby processes to nearby processes.

$$\frac{\textit{d}(s_1,\textit{t}_1) < \epsilon_1, \quad \textit{d}(s_2,\textit{t}_2) < \epsilon_2}{\textit{d}(s_1 \mid\mid s_2,\textit{t}_1 \mid\mid t_2) < \epsilon_1 + \epsilon_2}$$

Criteria on Metrics

Soundness:

$$d(s,t) = 0 \Leftrightarrow s, t$$
 are bisimilar

- Stability of distance under temporal evolution: "Nearby states stay close forever."
- Metrics should be computable (efficiently?).

Criteria on Metrics

Soundness:

$$d(s,t) = 0 \Leftrightarrow s,t$$
 are bisimilar

- Stability of distance under temporal evolution: "Nearby states stay close forever."
- Metrics should be computable (efficiently?).

Criteria on Metrics

Soundness:

$$d(s,t) = 0 \Leftrightarrow s,t$$
 are bisimilar

- Stability of distance under temporal evolution: "Nearby states stay close forever."
- Metrics should be computable (efficiently?).

Bisimulation Recalled

Let *R* be an equivalence relation. *R* is a bisimulation if: s *R* t if:

$$(s \longrightarrow P) \Rightarrow [t \longrightarrow Q, P =_R Q]$$

$$(t \longrightarrow Q) \Rightarrow [s \longrightarrow P, P =_R Q]$$

where $P =_R Q$ if

$$(\forall R - \mathsf{closed}\ E)\ P(E) = \mathsf{Q}(E)$$

A putative definition of a metric-bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, m(P,Q) < \epsilon$$

$$t \longrightarrow Q \Rightarrow s \longrightarrow P, m(P,Q) < \epsilon$$

- Problem: what is m(P, Q)? Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

A putative definition of a metric-bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, m(P,Q) < \epsilon$$

$$t \longrightarrow Q \Rightarrow s \longrightarrow P, m(P,Q) < \epsilon$$

- Problem: what is m(P, Q)? Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

A putative definition of a metric-bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, m(P,Q) < \epsilon$$

$$t \longrightarrow Q \Rightarrow s \longrightarrow P, m(P,Q) < \epsilon$$

- Problem: what is m(P, Q)? Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

Arises in the solution of an LP problem: transshipment.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- \mathcal{M} : 1-bounded pseudometrics on states.

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

Arises in the solution of an LP problem: transshipment.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- \mathcal{M} : 1-bounded pseudometrics on states.

0

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

Arises in the solution of an LP problem: transshipment.

A detour: Kantorovich metric

- Metrics on probability measures on metric spaces.
- \mathcal{M} : 1-bounded pseudometrics on states.

•

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

Arises in the solution of an LP problem: transshipment.

An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions.

Then:

$$m(P, Q) = \max \sum_{i} (P(s_i) - Q(s_i))a_i$$

subject to:

$$\forall i.0 \leq a_i \leq 1$$

 $\forall i,j. \ a_i - a_j \leq m(s_i,s_j).$

The Dual Form

Dual form from Worrell and van Breugel:

0

$$\min \sum_{i,j} l_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

subject to:

$$\forall i. \sum_{j} l_{ij} + x_i = P(s_i)$$

$$\forall j. \sum_{i} l_{ij} + y_j = Q(s_j)$$

$$\forall i, j. l_{ij}, x_i, y_j \ge 0.$$

 We prove many equations by using the primal form to show one direction and the dual to show the other.

The Dual Form

Dual form from Worrell and van Breugel:

•

$$\min \sum_{i,j} I_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

subject to:

$$\forall i. \sum_{j} l_{ij} + x_i = P(s_i)$$

$$\forall j. \sum_{i} l_{ij} + y_j = Q(s_j)$$

$$\forall i, j. l_{ij}, x_i, y_j \ge 0.$$

 We prove many equations by using the primal form to show one direction and the dual to show the other.

The Dual Form

Dual form from Worrell and van Breugel:

0

$$\min \sum_{i,j} I_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

subject to:

$$\forall i. \sum_{j} l_{ij} + x_i = P(s_i)$$

$$\forall j. \sum_{i} l_{ij} + y_j = Q(s_j)$$

$$\forall i, j. l_{ij}, x_i, y_i \geq 0.$$

 We prove many equations by using the primal form to show one direction and the dual to show the other.

- m(P, P) = 0.
- In dual, match each state with itself, $I_{ii} = \delta_{ii} P(s_i), x_i = y_i = 0$. So:

$$\sum_{i,j} l_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

becomes 0.

• This clearly cannot be lowered further so this is the min.

- m(P, P) = 0.
- In dual, match each state with itself, $l_{ii} = \delta_{ii} P(s_i), x_i = y_i = 0$. So:

$$\sum_{i,j} I_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

becomes 0.

This clearly cannot be lowered further so this is the min.

- m(P, P) = 0.
- In dual, match each state with itself, $l_{ii} = \delta_{ii} P(s_i), x_i = y_i = 0$. So:

$$\sum_{i,j} l_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

becomes 0.

This clearly cannot be lowered further so this is the min.

• Let m(s,t) = r < 1. Let $\delta_s(\delta_t)$ be the probability measure concentrated at s(t). Then,

$$m(\delta_{s},\delta_{t})=r$$

• Upper bound from dual: Choose $l_{st} = 1$ all other $l_{ij} = 0$. Then

$$\sum_{ij} I_{ij} m(s_i, s_j) = m(s, t) = r.$$

• Lower bound from primal: Choose $a_s = 0$, $a_t = r$, all others to match the constraints. Then

$$\sum_{i} (\delta_t(\mathbf{s}_i) - \delta_s(\mathbf{s}_i)) a_i = r.$$

• Let m(s, t) = r < 1. Let $\delta_s(\delta_t)$ be the probability measure concentrated at s(t). Then,

$$m(\delta_{s},\delta_{t})=r$$

• Upper bound from dual: Choose $I_{st} = 1$ all other $I_{ij} = 0$. Then

$$\sum_{ij} I_{ij} m(s_i, s_j) = m(s, t) = r.$$

• Lower bound from primal: Choose $a_s = 0$, $a_t = r$, all others to match the constraints. Then

$$\sum_{i} (\delta_t(\mathbf{s}_i) - \delta_s(\mathbf{s}_i)) a_i = r.$$

• Let m(s, t) = r < 1. Let $\delta_s(\delta_t)$ be the probability measure concentrated at s(t). Then,

$$m(\delta_{s},\delta_{t})=r$$

• Upper bound from dual: Choose $I_{st} = 1$ all other $I_{ij} = 0$. Then

$$\sum_{ij} I_{ij} m(s_i, s_j) = m(s, t) = r.$$

• Lower bound from primal: Choose $a_s = 0$, $a_t = r$, all others to match the constraints. Then

$$\sum_{i} (\delta_t(s_i) - \delta_s(s_i)) a_i = r.$$

The Importance of Example 2

We can *isometrically* embed the original space in the metric space of distributions.

Example 3 - I

- Let P(s) = r, P(t) = 0 if $s \neq t$. Let Q(s) = r', Q(t) = 0 if $s \neq t$.
- Then m(P, Q) = |r r'|.
- Assume that $r \ge r'$. Lower bound from primal: yielded by $\forall i.a_i = 1$.

$$\sum_{i} (P(s_i) - Q(s_i))a_i = P(s) - Q(s) = r - r'.$$

Example 3 - I

- Let P(s) = r, P(t) = 0 if $s \neq t$. Let Q(s) = r', Q(t) = 0 if $s \neq t$.
- Then m(P, Q) = |r r'|.
- Assume that $r \ge r'$. Lower bound from primal: yielded by $\forall i.a_i = 1$

$$\sum_{i} (P(s_i) - Q(s_i))a_i = P(s) - Q(s) = r - r'.$$

Example 3 - I

- Let P(s) = r, P(t) = 0 if $s \neq t$. Let Q(s) = r', Q(t) = 0 if $s \neq t$.
- Then m(P, Q) = |r r'|.
- Assume that $r \ge r'$. Lower bound from primal: yielded by $\forall i.a_i = 1$,

$$\sum_{i} (P(s_i) - Q(s_i))a_i = P(s) - Q(s) = r - r'.$$

Example 3 - II

Upper bound from dual: $I_{ss} = r'$ and $x_s = r - r'$, all others 0

$$\sum_{i,j} l_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j = x_s = r - r'.$$

and the constraints are satisfied:

$$\sum_{j} I_{sj} + X_{s} = I_{ss} + X_{s} = r$$

$$\sum_{i} I_{is} + y_{s} = I_{ss} = r'.$$

Return from Detour

Summary of detour: Given a metric on states in a metric space, can lift to a metric on probability distributions on states.

Metric "Bisimulation"

• m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists. Usual fixed-point theory arguments.

Metric "Bisimulation"

• m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists. Usual fixed-point theory arguments.

Metric "Bisimulation"

• m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists. Usual fixed-point theory arguments.

Metrics: some details

M: 1-bounded pseudometrics on states with ordering

$$m_1 \leq m_2$$
 if $(\forall s, t)$ $[m_1(s, t) \geq m_2(s, t)]$

• (\mathcal{M}, \preceq) is a complete lattice.

•

$$\bot(s,t) = \begin{cases}
0 \text{ if } s = t \\
1 \text{ otherwise}
\end{cases}$$

$$\top(s,t) = 0, (\forall s,t)$$

$$(\sqcap\{m_i\}(s,t) = \sup_i m_i(s,t)$$

Metrics: some details

M: 1-bounded pseudometrics on states with ordering

$$m_1 \leq m_2$$
 if $(\forall s, t)$ $[m_1(s, t) \geq m_2(s, t)]$

• (\mathcal{M}, \preceq) is a complete lattice.

0

$$\bot(s,t) = \begin{cases}
0 \text{ if } s = t \\
1 \text{ otherwise}
\end{cases}$$

$$\top(s,t) = 0, (\forall s,t)$$

$$(\sqcap\{m_i\}(s,t) = \sup_i m_i(s,t)$$

Metrics: some details

M: 1-bounded pseudometrics on states with ordering

$$m_1 \leq m_2$$
 if $(\forall s, t)$ $[m_1(s, t) \geq m_2(s, t)]$

• (\mathcal{M}, \preceq) is a complete lattice.

•

$$\bot(s,t) = \begin{cases}
0 \text{ if } s = t \\
1 \text{ otherwise}
\end{cases}$$

$$\top(s,t) = 0, (\forall s,t)$$

$$(\sqcap\{m_i\}(s,t) = \sup_i m_i(s,t)$$

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- F(m)(s,t) can be given by an explicit expression.
- F is monotone on M, and metric-bisimulation is the greatest fixed point of F.
- The closure ordinal of F is ω .

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- F(m)(s,t) can be given by an explicit expression.
- F is monotone on M, and metric-bisimulation is the greatest fixed point of F.
- The closure ordinal of F is ω .

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- F(m)(s,t) can be given by an explicit expression.
- F is monotone on M, and metric-bisimulation is the greatest fixed point of F.
- The closure ordinal of F is ω .

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- F(m)(s,t) can be given by an explicit expression.
- F is monotone on M, and metric-bisimulation is the greatest fixed point of F.
- The closure ordinal of F is ω .

A Key Tool: Splitting

Let P and Q be probability distributions on a set of states. Let P_1 and P_2 be such that: $P = P_1 + P_2$. Then, there exist Q_1, Q_2 , such that $Q_1 + Q_2 = Q$ and

$$m(P, Q) = m(P_1, Q_1) + m(P_2, Q_2).$$

The proof uses the duality theory of LP.

What about Continuous-State Systems?

Develop a real-valued "modal logic" based on the analogy:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

- Define a metric based on how closely the random variables agree.
- We did this before the LP based techniques became available.

What about Continuous-State Systems?

Develop a real-valued "modal logic" based on the analogy:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

- Define a metric based on how closely the random variables agree.
- We did this before the LP based techniques became available.

What about Continuous-State Systems?

Develop a real-valued "modal logic" based on the analogy:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula ϕ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

- Define a metric based on how closely the random variables agree.
- We did this before the LP based techniques became available.

Real-valued Modal Logic

$$f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle_{\cdot} f$$

$$\begin{array}{llll} \textbf{1}(s) & = & 1 & & \text{True} \\ \max(f_1,f_2)(s) & = & \max(f_1(s),f_2(s)) & & \text{Conjunction} \\ h \circ f(s) & = & h(f(s)) & & \text{Lipschitz} \\ \langle a \rangle.f(s) & = & \gamma \int_{s' \in S} f(s') \tau_a(s,\mathrm{d}s') & a\text{-transition} \end{array}$$

where h 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

- $d(s, t) = \sup_{t} |f(s) f(t)|$
- Thm: d coincides with the canonical metric-bisimulation.

Real-valued Modal Logic

 $f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle_f$

$$\begin{array}{llll} \textbf{1}(s) & = & 1 & \text{True} \\ \max(f_1,f_2)(s) & = & \max(f_1(s),f_2(s)) & \text{Conjunction} \\ h\circ f(s) & = & h(f(s)) & \text{Lipschitz} \\ \langle a\rangle_.f(s) & = & \gamma\int_{s'\in S}f(s')\tau_a(s,\mathrm{d}s') & a\text{-transition} \end{array}$$

where h 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

- $d(s,t) = \sup_{f} |f(s) f(t)|$
- Thm: d coincides with the canonical metric-bisimulation.

Real-valued Modal Logic

 $f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle f$

$$\begin{array}{llll} \textbf{1}(s) & = & 1 & \text{True} \\ \max(f_1,f_2)(s) & = & \max(f_1(s),f_2(s)) & \text{Conjunction} \\ h\circ f(s) & = & h(f(s)) & \text{Lipschitz} \\ \langle a \rangle_.f(s) & = & \gamma \int_{s' \in S} f(s') \tau_a(s,\mathrm{d}s') & a\text{-transition} \end{array}$$

where
$$h$$
 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

- $d(s,t) = \sup_{f} |f(s) f(t)|$
- Thm: *d* coincides with the canonical metric-bisimulation

Real-valued Modal Logic

•

$$f ::= \mathbf{1} \mid \max(f, f) \mid h \circ f \mid \langle a \rangle_f$$

•

$$\begin{array}{lll} \textbf{1}(s) & = & 1 & \text{True} \\ \max(f_1,f_2)(s) & = & \max(f_1(s),f_2(s)) & \text{Conjunction} \\ h\circ f(s) & = & h(f(s)) & \text{Lipschitz} \\ \langle a \rangle_.f(s) & = & \gamma \int_{s' \in S} f(s') \tau_a(s,\mathrm{d}s') & a\text{-transition} \end{array}$$

where *h* 1-Lipschitz : $[0,1] \rightarrow [0,1]$ and $\gamma \in (0,1]$.

- $d(s, t) = \sup_{f} |f(s) f(t)|$
- Thm: *d* coincides with the canonical metric-bisimulation.

Finitary syntax for Real-valued modal logic

$$\begin{array}{llll} \textbf{1}(s) & = & 1 & \text{True} \\ \max(f_1,f_2)(s) & = & \max(f_1(s),f_2(s)) & \text{Conjunction} \\ (1-f)(s) & = & 1-f(s) & \text{Negation} \\ \lfloor f_q(s) \rfloor & = & \begin{cases} q \;, & f(s) \geq q \\ f(s) \;, & f(s) < q \end{cases} & \text{Cutoffs} \\ \langle a \rangle_{\cdot} f(s) & = & \gamma \int_{s' \in \mathcal{S}} f(s') \tau_a(s,\mathrm{d}s') & a\text{-transition} \\ \end{array}$$

q is a rational.

- ullet γ discounts the value of future steps.
- γ < 1 and γ = 1 yield very different topologies
- The approximants defined last week converge in the metric $\gamma < 1$.
- The γ < 1 metric yields the Lawson topology.
- For γ < 1 there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma =$ 1 the existence of an algorithm to compute the metric has just been discovered by van Breugel et al.

- ullet γ discounts the value of future steps.
- γ < 1 and γ = 1 yield very different topologies
- The approximants defined last week converge in the metric $\gamma < 1$.
- The γ < 1 metric yields the Lawson topology.
- For γ < 1 there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma =$ 1 the existence of an algorithm to compute the metric has just been discovered by van Breugel et al.

- ullet γ discounts the value of future steps.
- γ < 1 and γ = 1 yield very different topologies
- The approximants defined last week converge in the metric $\gamma <$ 1.
- The γ < 1 metric yields the Lawson topology.
- For γ < 1 there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma =$ 1 the existence of an algorithm to compute the metric has just been discovered by van Breugel et al.

- ullet γ discounts the value of future steps.
- γ < 1 and γ = 1 yield very different topologies
- The approximants defined last week converge in the metric $\gamma < 1$.
- The γ < 1 metric yields the Lawson topology.
- For γ < 1 there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma =$ 1 the existence of an algorithm to compute the metric has just been discovered by van Breugel et al.

- ullet γ discounts the value of future steps.
- γ < 1 and γ = 1 yield very different topologies
- The approximants defined last week converge in the metric $\gamma < 1$.
- The γ < 1 metric yields the Lawson topology.
- For γ < 1 there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma = 1$ the existence of an algorithm to compute the metric has just been discovered by van Breugel et al.

- ullet γ discounts the value of future steps.
- γ < 1 and γ = 1 yield very different topologies
- The approximants defined last week converge in the metric $\gamma < 1$.
- The γ < 1 metric yields the Lawson topology.
- For γ < 1 there is an LP-based strongly-polynomial (in the number of constraints, and the number of bits of precision required) algorithm to compute the metric.
- For $\gamma = 1$ the existence of an algorithm to compute the metric has just been discovered by van Breugel et al.

- For a CSP-like process algebra (without hiding) the process combinators are all contractive.
- We can show that if one perturbs the probabilities slightly the resulting process is close to the unperturbed one.
- We have an asymptotic version of the metric.
- We can extend the LP-based theory to continuous state spaces using the theory of infinite dimensional LP: recent PhD thesis of Norm Ferns.

- For a CSP-like process algebra (without hiding) the process combinators are all contractive.
- We can show that if one perturbs the probabilities slightly the resulting process is close to the unperturbed one.
- We have an asymptotic version of the metric.
- We can extend the LP-based theory to continuous state spaces using the theory of infinite dimensional LP: recent PhD thesis of Norm Ferns.

- For a CSP-like process algebra (without hiding) the process combinators are all contractive.
- We can show that if one perturbs the probabilities slightly the resulting process is close to the unperturbed one.
- We have an asymptotic version of the metric.
- We can extend the LP-based theory to continuous state spaces using the theory of infinite dimensional LP: recent PhD thesis of Norm Ferns.

- For a CSP-like process algebra (without hiding) the process combinators are all contractive.
- We can show that if one perturbs the probabilities slightly the resulting process is close to the unperturbed one.
- We have an asymptotic version of the metric.
- We can extend the LP-based theory to continuous state spaces using the theory of infinite dimensional LP: recent PhD thesis of Norm Ferns.