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Introduction

Process Equivalence is Fundamental

@ Markov chains:

@ Lumpability

@ Labelled Markov processes: Bisimulation
@ Markov decision processes: Bisimulation
°

Labelled Concurrent Markov Chains with 7 transitions:
Weak Bisimulation
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@ In the context of probability is exact equivalence
reasonable?

@ We say “no”. A small change in the probability distributions
may result in bisimilar processes no longer being bisimilar
though they may be very “close” in behaviour.
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Introduction

@ In the context of probability is exact equivalence
reasonable?

@ We say “no”. A small change in the probability distributions
may result in bisimilar processes no longer being bisimilar
though they may be very “close” in behaviour.

@ Instead one should have a (pseudo)metric for probabilistic
processes.

o & = = 2L NGe
Panangaden Labelled Markov Processes



Introduction

Bisimulation

@ Let R be an equivalence relation. R is a bisimulation if:
sRtif(Va):

(s 3>P)=[t>Q,P =k Q]

t>Q)=[s>P,P=RQ]
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Bisimulation

@ Let R be an equivalence relation. R is a bisimulation if:
sRtif(Va):

(s 3>P)=[t>Q,P =k Q]

t>Q)=[s>P,P=RQ]

@ s, t are bisimilar if there is a bisimulation relating them.
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Introduction

Bisimulation

@ Let R be an equivalence relation. R is a bisimulation if:
sRtif(Va):
(s 5P)=[t > Q.P = Q]

t>Q)=[s>P,P=RQ]

@ s, t are bisimilar if there is a bisimulation relating them.
@ There is a maximum bisimulation relation.
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Introduction

Properties of Bisimulation

bisimulation R that relates states s, t.
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Properties of Bisimulation

@ Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, t.

@ Distinguishing states: Simple logic is complete for
bisimulation.

pu=true |1 Aoz (a)sqo
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@ Distinguishing states: Simple logic is complete for
bisimulation.
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Introduction

Properties of Bisimulation

@ Establishing equality of states: Coinduction. Establish a
bisimulation R that relates states s, t.

@ Distinguishing states: Simple logic is complete for
bisimulation.

pu=true |1 Aoz (a)sqo

@ Bisimulation is sound for much richer logic pCTL*.
@ Bisimulation is a congruence for usual process operators.
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Introduction

A metric-based approximate viewpoint

@ Move from equality between processes to distances
between processes (Jou and Smolka 1990).
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Introduction

A metric-based approximate viewpoint

@ Move from equality between processes to distances

between processes (Jou and Smolka 1990).
@ Formalize distance as a metric:

d(s,s) =0,d(s,t) =d(t,s),d(s,u) <d(s,t) +d(t,u).
Quantitative analogue of an equivalence relation.
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Introduction

A metric-based approximate viewpoint

@ Move from equality between processes to distances

between processes (Jou and Smolka 1990).
@ Formalize distance as a metric:

@ Quantitative measurement of the distinction between
processes.
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Summary of results

@ Establishing closeness of states: Coinduction
@ Distinguishing states: Real-valued modal logics

@ Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics
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Introduction

Summary of results

@ Establishing closeness of states: Coinduction
@ Distinguishing states: Real-valued modal logics

@ Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics

@ Compositional reasoning by Non-Expansivity.
Process-combinators take nearby processes to nearby
processes.

d(Sl,tl) < €1, d(Sz,tz) < €2
d(s || s2,t1[|t2) <e1+e
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Introduction

Summary of results

@ Establishing closeness of states: Coinduction
@ Distinguishing states: Real-valued modal logics

@ Equational and logical views coincide: Metrics yield same
distances as real-valued modal logics

@ Compositional reasoning by Non-Expansivity.
Process-combinators take nearby processes to nearby
processes.

d(Sl,tl) < €1, d(Sz,tz) < €2
d(s || s2,t1[|t2) <e1+e

® Results work for Markov chains, Labelled Markov
processes, Markov decision processes and Labelled
Concurrent Markov chains with T—transitions.ﬁ

DA
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Criteria on Metrics

@ Soundness:

d(s,t) =0« s,t are bisimilar
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Criteria on Metrics

@ Soundness:

d(s,t) =0« s,t are bisimilar

@ Stability of distance under temporal evolution:*Nearby
states stay close forever.”
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Metrics for bisimulation

Criteria on Metrics

@ Soundness:

d(s,t) =0« s,t are bisimilar

@ Stability of distance under temporal evolution:*Nearby
states stay close forever.”

@ Metrics should be computable (efficiently?).
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Metrics for bisimulation

Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R t if:

(s—P)=[t—Q,P=rQ]

(t—Q)=[s—P,P=kQ]
where P =g Q if

(VR —closed E) P(E) = Q(E)
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Metrics for bisimulation

A putative definition of a metric-bisimulation

@ m is a metric-bisimulation if: m(s,t) < e =
s —P=1t—Q,

m(P,Q) < e
t—Q=s—P, mP,Q)<e
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Metrics for bisimulation

A putative definition of a metric-bisimulation

@ m is a metric-bisimulation if: m(s,t) < e =
s—P=t—Q, mP,Q)<e

t—Q=s—P, mP,Q)<e
@ Problem: what is m(P, Q)? — Type mismatch!!
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Metrics for bisimulation

A putative definition of a metric-bisimulation

@ m is a metric-bisimulation if: m(s,t) < e =
s—P=t—Q, mP,Q)<e
t—Q=s—P, mP,Q)<e

@ Problem: what is m(P, Q)? — Type mismatch!!

@ Need a way to lift distances from states to a distances on
distributions of states.
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Metrics for bisimulation

A detour: Kantorovich metric

@ Metrics on probability measures on metric spaces.
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A detour: Kantorovich metric

@ Metrics on probability measures on metric spaces.
@ M: 1-bounded pseudometrics on states.
°

d(p,v) = sup|/fdu— /fdz/|,f 1-Lipschitz
f
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Metrics for bisimulation

A detour: Kantorovich metric

@ Metrics on probability measures on metric spaces.
@ M: 1-bounded pseudometrics on states.
°

d(p,v) = sup|/fdu— /fdz/|,f 1-Lipschitz
f

@ Arises in the solution of an LP problem: transshipment.
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Metrics for bisimulation

An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions
Then:
m(P,Q) = max ) (P(si) — Q(si))a
i
subject to:
Vio<a <1

vi,j.ai —a; < m(s;, ;).
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Metrics for bisimulation

The Dual Form

@ Dual form from Worrell and van Breugel:
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Metrics for bisimulation

The Dual Form

@ Dual form from Worrell and van Breugel:
°

min E lim(si,sj) + E Xi + E Yj
i [ j
subject to:

VIZJ Iij + X = P(Si)

Vi 2ol +yp = Qls)
Vi, j. L, xi,y; > 0.
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Metrics for bisimulation

The Dual Form

@ Dual form from Worrell and van Breugel:
°

min E lim(si,sj) + E Xi + E Yj
i [ j
subject to:

VIZJ Iij + X = P(Si)
Vil +y = Qlsy)
Vi, j. L, xi,y; > 0.
@ We prove many equations by using the primal form to
show one direction and the dual to show the other.
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Metrics for bisimulation

Example 1

@ m(P,P)=0.
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Metrics for bisimulation

Example 1

@ m(P,P)=0.

@ In dual, match each state with itself,
lj = 6P (si),xi =y; = 0. So:

Zlijm(si,sj) + ZXi + ZYj
i i j
becomes 0.
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Metrics for bisimulation

Example 1

@ m(P,P)=0.

@ In dual, match each state with itself,
lj = 6P (si),xi =y; = 0. So:

Zlijm(si,sj) + ZXi + ZYj
i i j
becomes 0.

@ This clearly cannot be lowered further so this is the min.
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Metrics for bisimulation

Example 2

@ Letm(s,t) =r < 1. Let ds(¢t) be the probability measure
concentrated at s(t). Then,

m(55, (St) =T
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Metrics for bisimulation

Example 2

@ Letm(s,t) =r < 1. Let ds(¢t) be the probability measure
concentrated at s(t). Then,

m(55, (St) =T
@ Upper bound from dual: Choose sy = 1 all other [ = 0.
Then

Zlijm(si,sj) =m(s,t) =r.
ij
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Metrics for bisimulation

Example 2

@ Letm(s,t) =r < 1. Let ds(¢t) be the probability measure
concentrated at s(t). Then,
m(55, (St) =T
@ Upper bound from dual: Choose sy = 1 all other [ = 0.
Then
D hm(si,sj) =m(s,t) =r.
ij

@ Lower bound from primal: Choose as = 0,a; =, all others
to match the constraints. Then

Z(5t(3i) —ds(si))a =r.

1
o & = = 2L NGe
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Metrics for bisimulation

The Importance of Example 2

We can isometrically embed the original space in the metric
space of distributions.
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Metrics for bisimulation

Example 3 - |

@ LetP(s)

r,P(t)=0ifs #t. Let
Q(s) =r.Q(t) = 0if s #t.
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Metrics for bisimulation

Example 3 - |

@ LetP(s)=r,P(t) =0ifs #t. Let
Q(s) =r",Q(t) =0ifs #t.
@ Thenm(P,Q) = |r —r’|
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Metrics for bisimulation

Example 3 - |

@ LetP(s)=r,P(t) =0ifs #t. Let
Q(s) =r",Q(t) =0ifs #t.
@ Thenm(P,Q) =|r —r’|.
@ Assume thatr >r’.
Lower bound from primal: yielded by Vi.a; = 1,

> (P(si) = Q(si))ai =P(s) - Q(s) =r —r".
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Metrics for bisimulation

Example 3 - I

Upper bound from dual: lIss = r" and x¢ =r —r’, all others 0

D Om(si, )+ X+ yy=x=r—r"
i i i

and the constraints are satisfied:

Z|5j+X5:ISS +X5:r
j

Zlis +ys =lss =1
i
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Metrics for bisimulation

Return from Detour

Summary of detour: Given a metric on states in a metric space,
can lift to a metric on probability distributions on states.
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Metrics for bisimulation

Metric “Bisimulation”

@ m is a metric-bisimulation if: m(s,t) < e =
s—P=1t—Q,

m(P,Q) <e
t—Q=s—P, mP,Q)<e
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Metrics for bisimulation

Metric “Bisimulation”

@ m is a metric-bisimulation if: m(s,t) < e =
s—P=1t—Q,

m(P,Q) < e

t—Q=s—P, mP,Q)<e
@ The required canonical metric on processes is the least
such: ie. the distances are the least possible.
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Metrics for bisimulation

Metric “Bisimulation”

@ m is a metric-bisimulation if: m(s,t) < e =

s—P=1t—Q, mP,Q)<e

t—Q=s—P, mP,Q)<e

@ The required canonical metric on processes is the least
such: ie. the distances are the least possible.

@ Thm: Canonical least metric exists. Usual fixed-point
theory arguments.
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Metrics for bisimulation

Metrics: some details

@ M: 1-bounded pseudometrics on states with ordering

my =< my if (¥s,t) [my(s,t) > my(s,t)]
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Metrics: some details

@ M: 1-bounded pseudometrics on states with ordering

my; < my if (vsvt) [ml(svt) > mz(S,t)]
@ (M, =) is a complete lattice.

o & = 2L NGe
Panangaden Labelled Markov Processes



Metrics for bisimulation

Metrics: some details

@ M: 1-bounded pseudometrics on states with ordering

my =< my if (¥s,t) [my(s,t) > my(s,t)]

@ (M, =) is a complete lattice.
°

Oifs =t
LY = { 1 otherwise

T(s,t) = 0,(Vs,t)
(I‘I{mi}(s,t) = Sl_'lpmi(&t)
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Metrics for bisimulation

Maximum fixed point definition

@ Letm e M. F(m)(s,t) < elf:

s—P=1t—Q,

m(P,Q) < e
t—Q=s—P, mP,Q)<e

o & = = 2L NGe
Panangaden Labelled Markov Processes



Metrics for bisimulation

Maximum fixed point definition

@ Letm e M. F(m)(s,t) < elf:

s—P=1t—Q, mP,Q)<e

t—Q=s—P, mP,Q)<e
@ F(m)(s,t) can be given by an explicit expression.
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Metrics for bisimulation

Maximum fixed point definition

@ Letm e M. F(m)(s,t) < elf:

s—P=1t—Q, mP,Q)<e
t—Q=s—P, mP,Q)<e
@ F(m)(s,t) can be given by an explicit expression.
@ F is monotone on M, and metric-bisimulation is the
greatest fixed point of F.
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Metrics for bisimulation

Maximum fixed point definition

@ Letm e M. F(m)(s,t) < elf:
s—P=t—Q, mP,Q)<e

t—Q=s—P, mP,Q)<e

@ F(m)(s,t) can be given by an explicit expression.

@ F is monotone on M, and metric-bisimulation is the
greatest fixed point of F.

@ The closure ordinal of F is w.

o F = = DA
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Metrics for bisimulation

A Key Tool: Splitting

such that Q; + Q2 = Q and

Let P and Q be probability distributions on a set of states. Let
P, and P, be such that: P = P; + P,. Then, there exist Q1, Q»,

m(Pv Q) = m(P17 Ql) + m(P2> QZ)
The proof uses the duality theory of LP.
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Continuous-state systems

What about Continuous-State Systems?

@ Develop a real-valued “modal logic” based on the analogy:

Program Logic Probabilistic Logic
State s Distribution p
Formula ¢ Random Variable f

Satisfactions = ¢ [ fdu

o F = = DA
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Continuous-state systems

What about Continuous-State Systems?

@ Develop a real-valued “modal logic” based on the analogy
Program Logic
State s

Probabilistic Logic
Distribution p

Formula ¢ Random Variable f

Satisfactions = ¢ [ fdu

agree.

@ Define a metric based on how closely the random variables
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Continuous-state systems

What about Continuous-State Systems?

@ Develop a real-valued “modal logic” based on the analogy
Program Logic
State s

Probabilistic Logic
Distribution p

Formula ¢ Random Variable f

Satisfactions = ¢ [ fdu

agree.

@ We did this before the LP based techniques became
available.
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@ Define a metric based on how closely the random variables



Continuous-state systems

Real-valued Modal Logic

fo=1|max(f,f) |hof| (a)f
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Continuous-state systems

Real-valued Modal Logic

°
fo=1|max(f,f) |hof| (a)f
°
1(s) =1 True
max(fi,f2)(s) = max(fi(s),f2(s)) Conjunction
hof(s) = h(f(s)) Lipschitz
(a) f(s) = 7 Jyes T(s')a(s,ds’) a-transition

where h 1-Lipschitz : [0, 1] — [0, 1] and v € (0, 1].

o F = = DA
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Continuous-state systems

Real-valued Modal Logic

°
fo=1|max(f,f) |hof| (a)f
°
1(s) =1 True
max(fi,f2)(s) = max(fi(s),f2(s)) Conjunction
hof(s) = h(f(s)) Lipschitz
(a) f(s) = 7 Jyes T(s')a(s,ds’) a-transition

where h 1-Lipschitz : [0, 1] — [0, 1] and v € (0, 1].
@ d(s,t) = sup [f(s) —f(t)|

o F = = DA
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Continuous-state systems

Real-valued Modal Logic

°
fo=1|max(f,f) |hof| (a)f
°
1(s) =1 True
max(fi,f2)(s) = max(fi(s),f2(s)) Conjunction
hof(s) = h(f(s)) Lipschitz
(a) f(s) = 7 Jyes T(s')a(s,ds’) a-transition

where h 1-Lipschitz : [0, 1] — [0, 1] and v € (0, 1].
@ d(s,t) = sups [f(s) — f(t)]
® Thm: d coincides with the canonical metric-bisimulation.

o F = = DA
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Continuous-state systems

Finitary syntax for Real-valued modal logic

1(s) =1 True
max(fy,f2)(s) = max(fi(s),f2(s)) Conjunction
(1 —f)(s) = 1-1(s) Negation
[fq(s)) = { ]9 (s’) 7 ff((ss))qu Cutoffs

(a) f(s) = 7 JyesT(s')a(s,ds’) a-transition

g is a rational.
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The role of ~

Concluding remarks

@ ~ discounts the value of future steps.
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@ ~ discounts the value of future steps.
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Concluding remarks

The role of ~

@ ~ discounts the value of future steps.
@ v < 1and vy = 1 yield very different topologies

@ The approximants defined last week converge in the metric
v <1

@ The v < 1 metric yields the Lawson topology.
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Concluding remarks

The role of ~

@ ~ discounts the value of future steps.

@ ~v < 1 and~ = 1 yield very different topologies

@ The approximants defined last week converge in the metric
v <1

@ The v < 1 metric yields the Lawson topology.

@ For v < 1 there is an LP-based strongly-polynomial (in the
number of constraints, and the number of bits of precision
required) algorithm to compute the metric.

o F = = DA
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Concluding remarks

The role of ~

@ ~ discounts the value of future steps.

@ ~v < 1 and~ = 1 yield very different topologies

@ The approximants defined last week converge in the metric
v <1

@ The v < 1 metric yields the Lawson topology.

@ For v < 1 there is an LP-based strongly-polynomial (in the
number of constraints, and the number of bits of precision
required) algorithm to compute the metric.

@ For v = 1 the existence of an algorithm to compute the
metric has just been discovered by van Breugel et al.

o F = = DA
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Conclusions

Concluding remarks

@ For a CSP-like process algebra (without hiding) the
process combinators are all contractive.
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Concluding remarks

Conclusions

@ For a CSP-like process algebra (without hiding) the
process combinators are all contractive.

@ We can show that if one perturbs the probabilities slightly
the resulting process is close to the unperturbed one.

o & = = 2L NGe
Panangaden Labelled Markov Processes



Concluding remarks

Conclusions

@ For a CSP-like process algebra (without hiding) the
process combinators are all contractive.

@ We can show that if one perturbs the probabilities slightly
the resulting process is close to the unperturbed one.

@ We have an asymptotic version of the metric.
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Concluding remarks

Conclusions

@ For a CSP-like process algebra (without hiding) the
process combinators are all contractive.

@ We can show that if one perturbs the probabilities slightly
the resulting process is close to the unperturbed one.

@ We have an asymptotic version of the metric.

@ We can extend the LP-based theory to continuous state

spaces using the theory of infinite dimensional LP: recent
PhD thesis of Norm Ferns.

o F = = DA
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