Labelled Markov Processes

Lecture 2: Probabilistic Transition Systems

Prakash Panangaden¹

¹School of Computer Science McGill University

January 2008, Winter School on Logic, IIT Kanpur

- Introduction
- Discrete probabilistic transition systems
- 3 Labelled Markov processes
- Probabilistic bisimulation
- Simulation

- Introduction
- Discrete probabilistic transition systems
- 3 Labelled Markov processes
- 4 Probabilistic bisimulation
- Simulation

- Introduction
- Discrete probabilistic transition systems
- 3 Labelled Markov processes
- Probabilistic bisimulation
- Simulation

- Introduction
- Discrete probabilistic transition systems
- 3 Labelled Markov processes
- Probabilistic bisimulation
- Simulation

- Introduction
- Discrete probabilistic transition systems
- 3 Labelled Markov processes
- Probabilistic bisimulation
- Simulation

- Discrete probabilistic transition system.
- Labelled Markov processes: probabilistic transition systems with continuous state spaces.
- Bisimulation for LMPs.
- Logical characterization.
- Simulation.

- Discrete probabilistic transition system.
- Labelled Markov processes: probabilistic transition systems with continuous state spaces.
- Bisimulation for LMPs.
- Logical characterization.
- Simulation.

- Discrete probabilistic transition system.
- Labelled Markov processes: probabilistic transition systems with continuous state spaces.
- Bisimulation for LMPs.
- Logical characterization.
- Simulation.

- Discrete probabilistic transition system.
- Labelled Markov processes: probabilistic transition systems with continuous state spaces.
- Bisimulation for LMPs.
- Logical characterization.
- Simulation.

- Discrete probabilistic transition system.
- Labelled Markov processes: probabilistic transition systems with continuous state spaces.
- Bisimulation for LMPs.
- Logical characterization.
- Simulation.

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

Labelled Transition System

- A set of states S,
- a set of labels or actions, L or A and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq S \times S$$
.

The transitions could be indeterminate (nondeterministic).

Labelled Transition System

- A set of states S,
- a set of labels or actions, L or A and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq S \times S$$
.

The transitions could be indeterminate (nondeterministic).

Labelled Transition System

- A set of states S,
- a set of labels or actions, L or A and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq S \times S$$
.

The transitions could be indeterminate (nondeterministic).

Markov Chains

- A discrete-time Markov chain is a finite set S (the state space) together with a transition probability function T: S × S → [0, 1].
- A Markov chain is just a probabilistic automaton; if we add labels we get a PTS.
- The key property is that the transition probability from s to s' only depends on s and s' and not on the past history of how it got there. This is what allows the probabilistic data to be given as a single matrix T.

Markov Chains

- A discrete-time Markov chain is a finite set S (the state space) together with a transition probability function T: S × S → [0, 1].
- A Markov chain is just a probabilistic automaton; if we add labels we get a PTS.
- The key property is that the transition probability from s to s' only depends on s and s' and not on the past history of how it got there. This is what allows the probabilistic data to be given as a single matrix T.

Markov Chains

- A discrete-time Markov chain is a finite set S (the state space) together with a transition probability function T: S × S → [0, 1].
- A Markov chain is just a probabilistic automaton; if we add labels we get a PTS.
- The key property is that the transition probability from s to s' only depends on s and s' and not on the past history of how it got there. This is what allows the probabilistic data to be given as a single matrix T.

Discrete probabilistic transition systems

 Just like a labelled transition system with probabilities associated with the transitions.

d

$$(S, L, \forall a \in L \ T_a : S \times S \rightarrow [0, 1])$$

 The model is reactive: All probabilistic data is internal - no probabilities associated with environment behaviour.

Discrete probabilistic transition systems

 Just like a labelled transition system with probabilities associated with the transitions.

•

$$(S, L, \forall a \in L \ T_a : S \times S \rightarrow [0, 1])$$

• The model is *reactive*: All probabilistic data is *internal* - no probabilities associated with environment behaviour.

Discrete probabilistic transition systems

 Just like a labelled transition system with probabilities associated with the transitions.

•

$$(S, L, \forall a \in L \ T_a : S \times S \rightarrow [0, 1])$$

 The model is reactive: All probabilistic data is internal - no probabilities associated with environment behaviour.

Examples of PTSs

Bisimulation for PTS: Larsen and Skou

Consider

- Should s_0 and t_0 be bisimilar?
- Yes, but we need to add the probabilities.

Bisimulation for PTS: Larsen and Skou

Consider

- Should s_0 and t_0 be bisimilar?
- Yes, but we need to add the probabilities.

Bisimulation for PTS: Larsen and Skou

Consider

- Should s_0 and t_0 be bisimilar?
- Yes, but we need to add the probabilities.

The Official Definition

- Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, A, $T_a(s, A) = T_a(s', A)$.
- The notation $T_a(s, A)$ means "the probability of starting from s and jumping to a state in the set A."
- Two states are bisimilar if there is some bisimulation relation R relating them.

The Official Definition

- Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, A, $T_a(s, A) = T_a(s', A)$.
- The notation $T_a(s, A)$ means "the probability of starting from s and jumping to a state in the set A."
- Two states are bisimilar if there is some bisimulation relation R relating them.

The Official Definition

- Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, A, $T_a(s, A) = T_a(s', A)$.
- The notation $T_a(s, A)$ means "the probability of starting from s and jumping to a state in the set A."
- Two states are bisimilar if there is some bisimulation relation R relating them.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.
- In general, the state space of a labelled Markov process may be a continuum.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.
- In general, the state space of a labelled Markov process may be a continuum.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.
- In general, the state space of a labelled Markov process may be a continuum.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.
- In general, the state space of a labelled Markov process may be a continuum.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

An Example of a Continuous-State System

990

Actions

a - turn left, b - turn right, c - keep on course
The actions move the craft sideways with some probability distributions on how far it moves. The craft may "drift" even with c. The action a (b) must be disabled when the craft is too near the left (right) boundary.

Schematic of Example

 This picture is misleading: unless very special conditions hold the process cannot be compressed into an *equivalent* (?) finite-state model. In general, the transition probabilities should depend on the position.

Schematic of Example

 This picture is misleading: unless very special conditions hold the process cannot be compressed into an *equivalent* (?) finite-state model. In general, the transition probabilities should depend on the position.

- This is a toy model but exemplifies the issues.
- Can be used for reasoning much better if we could have a finite-state version.
- Why not discretize right away and never worry about the continuous case? Because we lose the ability to refine the model later.
- A better model would be to base it on rewards and think about finiding optimal policies as in Al literature.

- This is a toy model but exemplifies the issues.
- Can be used for reasoning much better if we could have a finite-state version.
- Why not discretize right away and never worry about the continuous case? Because we lose the ability to refine the model later.
- A better model would be to base it on rewards and think about finiding optimal policies as in Al literature.

- This is a toy model but exemplifies the issues.
- Can be used for reasoning much better if we could have a finite-state version.
- Why not discretize right away and never worry about the continuous case? Because we lose the ability to refine the model later.
- A better model would be to base it on rewards and think about finiding optimal policies as in Al literature.

- This is a toy model but exemplifies the issues.
- Can be used for reasoning much better if we could have a finite-state version.
- Why not discretize right away and never worry about the continuous case? Because we lose the ability to refine the model later.
- A better model would be to base it on rewards and think about finiding optimal policies as in Al literature.

The Need for Measure Theory

- Basic fact: There are subsets of R for which no sensible notion of size can be defined.
- More precisely, there is no translation-invariant measure defined on all the subsets of the reals.

The Need for Measure Theory

- Basic fact: There are subsets of R for which no sensible notion of size can be defined.
- More precisely, there is no translation-invariant measure defined on all the subsets of the reals.

Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function
 h: S × Σ → [0,1] with (a) h(s,·): Σ → [0,1] a
 (sub)probability measure and (b) h(·, A): X → [0,1] a
 measurable function.
- Though apparantly asymmetric, these are the stochastic analogues of binary relations
- and the uncountable generalization of a matrix.

Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function
 h: S × Σ → [0,1] with (a) h(s,·): Σ → [0,1] a
 (sub)probability measure and (b) h(·, A): X → [0,1] a
 measurable function.
- Though apparantly asymmetric, these are the stochastic analogues of binary relations
- and the uncountable generalization of a matrix.

Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function
 h: S × Σ → [0,1] with (a) h(s,·): Σ → [0,1] a
 (sub)probability measure and (b) h(·, A): X → [0,1] a
 measurable function.
- Though apparantly asymmetric, these are the stochastic analogues of binary relations
- and the uncountable generalization of a matrix.

Formal Definition of LMPs

- An LMP is a tuple (S, Σ, L, ∀α ∈ L.τα) where
 τα: S × Σ → [0, 1] is a transition probability function such that
- ∀s: S.λA: Σ.τ_α(s, A) is a subprobability measure and
 ∀A: Σ.λs: S.τ_α(s, A) is a measurable function.

Formal Definition of LMPs

- An LMP is a tuple (S, Σ, L, ∀α ∈ L.τα) where
 τα: S × Σ → [0, 1] is a transition probability function such that
- ∀s: S.λA: Σ.τ_α(s, A) is a subprobability measure and
 - $\forall A : \Sigma . \lambda s : S.\tau_{\alpha}(s, A)$ is a measurable function.

Larsen-Skou Bisimulation

- Let $S = (S, i, \Sigma, \tau)$ be a labelled Markov process. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-closed measurable set $A \in \Sigma$, $\tau_a(s, A) = \tau_a(s', A)$. Two states are bisimilar if they are related by a bisimulation relation.
- Can be extended to bisimulation between two different

 I MPs

Larsen-Skou Bisimulation

- Let $S = (S, i, \Sigma, \tau)$ be a labelled Markov process. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-closed measurable set $A \in \Sigma$, $\tau_a(s, A) = \tau_a(s', A)$. Two states are bisimilar if they are related by a bisimulation relation.
- Can be extended to bisimulation between two different LMPs.

Logical Characterization

$$\mathcal{L} ::== \mathsf{T}|\phi_1 \wedge \phi_2|\langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s,A) > q).$$

• Two systems are bisimilar iff they obey the same formulas of \mathcal{L} . [DEP 1998 LICS, I and C 2002]

Logical Characterization

•

$$\mathcal{L} ::== \mathsf{T}|\phi_1 \wedge \phi_2|\langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s, A) > q).$$

• Two systems are bisimilar iff they obey the same formulas of \mathcal{L} . [DEP 1998 LICS, I and C 2002]

Logical Characterization

•

$$\mathcal{L} ::== \mathsf{T}|\phi_1 \wedge \phi_2|\langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s, A) > q).$$

• Two systems are bisimilar iff they obey the same formulas of \mathcal{L} . [DEP 1998 LICS, I and C 2002]

That cannot be right?

Two processes that cannot be distinguished without negation. The formula that distinguishes them is $\langle a \rangle (\neg \langle b \rangle \top)$.

But it is!

 S_0 a[p] a[q] S_1 S_2 b

We add probabilities to the transitions.

- If p + q < r or p + q > r we can easily distinguish them.
- If p + q = r and p > 0 then q < r so $\langle a \rangle_r \langle b \rangle_1 \top$ distinguishes them.

But it is!

4

We add probabilities to the transitions.

- If p + q < r or p + q > r we can easily distinguish them.
- If p + q = r and p > 0 then q < r so $\langle a \rangle_r \langle b \rangle_1 \top$ distinguishes them.

But it is!

•

We add probabilities to the transitions.

- If p + q < r or p + q > r we can easily distinguish them.
- If p + q = r and p > 0 then q < r so $\langle a \rangle_r \langle b \rangle_1 \top$ distinguishes them.

Proof idea

- Show that the relation "s and s' satisfy exactly the same formulas" is a bisimulation.
- Can easily show that $\tau_a(s, A) = \tau_a(s', A)$ for A of the form $\llbracket \phi \rrbracket$.
- Use Dynkin's lemma to show that we get a well defined measure on the σ-algebra generated by such sets and the above equality holds.
- Use special properties of analytic spaces to show that this σ -algebra is the same as the original σ -algebra.

Proof idea

- Show that the relation "s and s' satisfy exactly the same formulas" is a bisimulation.
- Can easily show that $\tau_a(s, A) = \tau_a(s', A)$ for A of the form $\llbracket \phi \rrbracket$.
- Use Dynkin's lemma to show that we get a well defined measure on the σ-algebra generated by such sets and the above equality holds.
- Use special properties of analytic spaces to show that this σ -algebra is the same as the original σ -algebra.

Proof idea

- Show that the relation "s and s' satisfy exactly the same formulas" is a bisimulation.
- Can easily show that $\tau_a(s, A) = \tau_a(s', A)$ for A of the form $\llbracket \phi \rrbracket$.
- Use Dynkin's lemma to show that we get a well defined measure on the σ -algebra generated by such sets and the above equality holds.
- Use special properties of analytic spaces to show that this σ -algebra is the same as the original σ -algebra.

Proof idea

- Show that the relation "s and s' satisfy exactly the same formulas" is a bisimulation.
- Can easily show that $\tau_a(s, A) = \tau_a(s', A)$ for A of the form $\llbracket \phi \rrbracket$.
- Use Dynkin's lemma to show that we get a well defined measure on the σ -algebra generated by such sets and the above equality holds.
- Use special properties of analytic spaces to show that this σ -algebra is the same as the original σ -algebra.

Simulation

Let $S = (S, \Sigma, \tau)$ be a labelled Markov process. A preorder R on S is a **simulation** if whenever sRs', we have that for all $a \in \mathcal{A}$ and every R-closed measurable set $A \in \Sigma$, $\tau_a(s, A) \leq \tau_a(s', A)$. We say s is simulated by s' if sRs' for some simulation relation R.

Logic for simulation?

- The logic used in the characterization has no negation, not even a limited negative construct.
- One can show that if s simulates s' then s satisfies all the formulas of L that s' satisfies.
- What about the converse?

Logic for simulation?

- The logic used in the characterization has no negation, not even a limited negative construct.
- One can show that if s simulates s' then s satisfies all the formulas of L that s' satisfies.
- What about the converse?

Logic for simulation?

- The logic used in the characterization has no negation, not even a limited negative construct.
- One can show that if s simulates s' then s satisfies all the formulas of L that s' satisfies.
- What about the converse?

Counter example!

In the following picture, t satisfies all formulas of \mathcal{L} that s satisfies but t does not simulate s.

All transitions from s and t are labelled by a.

Counter example (contd.)

• A formula of \mathcal{L} that is satisfied by t but not by s.

$$\langle a \rangle_0 (\langle a \rangle_0 \mathsf{T} \wedge \langle b \rangle_0 \mathsf{T}).$$

A formula with disjunction that is satisfied by s but not by t:

$$\langle a \rangle_{\frac{3}{4}} (\langle a \rangle_0 \mathsf{T} \vee \langle b \rangle_0 \mathsf{T}).$$

Counter example (contd.)

A formula of L that is satisfied by t but not by s.

$$\langle a \rangle_0 (\langle a \rangle_0 \mathsf{T} \wedge \langle b \rangle_0 \mathsf{T}).$$

• A formula with disjunction that is satisfied by s but not by t:

$$\langle \textbf{\textit{a}} \rangle_{\frac{3}{4}} (\langle \textbf{\textit{a}} \rangle_0 T \vee \langle \textbf{\textit{b}} \rangle_0 T).$$

A logical characterization for simulation

 \bullet The logic ${\cal L}$ does not characterize simulation. One needs disjunction.

$$\mathcal{L}_{\vee} := \mathcal{L}\phi \mathbf{1} \vee \phi_{\mathbf{2}}.$$

With this logic we have:
 An LMP s₁ simulates s₂ if and only if for every formula φ of L_V we have

$$s_1 \models \phi \Rightarrow s_2 \models \phi.$$

The only proof we know uses domain theory.

A logical characterization for simulation

 \bullet The logic ${\cal L}$ does not characterize simulation. One needs disjunction.

$$\mathcal{L}_{\vee} := \mathcal{L}\phi \mathbf{1} \vee \phi_{\mathbf{2}}.$$

With this logic we have:
 An LMP s₁ simulates s₂ if and only if for every formula φ of L_V we have

$$s_1 \models \phi \Rightarrow s_2 \models \phi$$
.

The only proof we know uses domain theory.

A logical characterization for simulation

• The logic $\mathcal L$ does **not** characterize simulation. One needs disjunction.

$$\mathcal{L}_{\vee} := \mathcal{L}\phi \mathbf{1} \vee \phi_{\mathbf{2}}.$$

• With this logic we have: An **LMP** s_1 simulates s_2 if and only if for every formula ϕ of \mathcal{L}_{\vee} we have

$$s_1 \models \phi \Rightarrow s_2 \models \phi$$
.

The only proof we know uses domain theory.

