Labelled Markov Processes

Lecture 2: Probabilistic Transition Systems

Prakash Panangaden?

1School of Computer Science
McGill University

January 2008, Winter School on Logic, IIT Kanpur

o & = = 2L NGe
Panangaden Labelled Markov Processes



Outline

e Introduction

o & = = 2L NGe
Panangaden Labelled Markov Processes



Outline

e Introduction

e Discrete probabilistic transition systems

o & = = 2L NGe
Panangaden Labelled Markov Processes



Outline

e Introduction

e Discrete probabilistic transition systems

e Labelled Markov processes

o & = = 2L NGe
Panangaden Labelled Markov Processes



Outline

e Introduction
e Discrete probabilistic transition systems
e Labelled Markov processes

@ Probabilistic bisimulation

o & = = 2L NGe
Panangaden Labelled Markov Processes



Outline

e Introduction

e Discrete probabilistic transition systems
e Labelled Markov processes

@ Probabilistic bisimulation

a Simulation

o F = = DA

Panangaden Labelled Markov Processes



Introduction

Overview

@ Discrete probabilistic transition system.

o & = = 2L NGe
Panangaden Labelled Markov Processes



Introduction

Overview

@ Discrete probabilistic transition system.

@ Labelled Markov processes: probabilistic transition
systems with continuous state spaces.

o & = = 2L NGe
Panangaden Labelled Markov Processes



Introduction

Overview

@ Discrete probabilistic transition system.

@ Labelled Markov processes: probabilistic transition
systems with continuous state spaces.

@ Bisimulation for LMPs.

(=] = = =

2L NGe
Panangaden Labelled Markov Processes



Introduction

Overview

@ Discrete probabilistic transition system.

@ Labelled Markov processes: probabilistic transition
systems with continuous state spaces.

@ Bisimulation for LMPs.
@ Logical characterization.

o & = = 2L NGe
Panangaden Labelled Markov Processes



Introduction

Overview

@ Discrete probabilistic transition system.

@ Labelled Markov processes: probabilistic transition
systems with continuous state spaces.

@ Bisimulation for LMPs.
@ Logical characterization.
@ Simulation.

o F = = DA

Panangaden Labelled Markov Processes



Introduction

Summary of Results

@ Probabilistic bisimulation can be defined for continuous
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Introduction

Summary of Results

Probabilistic bisimulation can be defined for continuous
state-space systems. [LICS97]

@ Logical characterization. [LICS98,Info and Comp 2002]
@ Metric analogue of bisimulation. [CONCUR99, TCS2004]
@ Approximation of LMPs. [LICS00,Info and Comp 2003]

@ Weak bisimulation. [LICS02,CONCURO02]

@ Real time. [QEST 2004, JLAP 2003,LMCS 2006]
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Discrete probabilistic transition systems

Labelled Transition System

@ A set of states S,

@ a set of labels or actions, L or A and

@ atransition relation C S x A x S, usually written

—>a§S XS.

The transitions could be indeterminate (nondeterministic).
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Discrete probabilistic transition systems

Markov Chains

space) together with a transition probability function
T:SxS—]0,1].

=} = APXN G4
Panangaden Labelled Markov Processes

@ A discrete-time Markov chain is a finite set S (the state



Discrete probabilistic transition systems

Markov Chains

@ A discrete-time Markov chain is a finite set S (the state
space) together with a transition probability function
T:SxS—]0,1].

@ A Markov chain is just a probabilistic automaton; if we add
labels we get a PTS.
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Discrete probabilistic transition systems

Markov Chains

@ A discrete-time Markov chain is a finite set S (the state
space) together with a transition probability function
T:SxS—]0,1].

@ A Markov chain is just a probabilistic automaton; if we add
labels we get a PTS.

@ The key property is that the transition probability from s to
s’ only depends on s and s’ and not on the past history of
how it got there. This is what allows the probabilistic data
to be given as a single matrix T.
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Discrete probabilistic transition systems

@ Just like a labelled transition system with probabilities
associated with the transitions.
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@ Just like a labelled transition system with probabilities
associated with the transitions.
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(S,L,vaeLTa:S xS —[0,1])
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Discrete probabilistic transition systems

Discrete probabilistic transition systems

@ Just like a labelled transition system with probabilities
associated with the transitions.
°

(S,L,vaeLTa:S xS —[0,1])

@ The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Discrete probabilistic transition systems

Examples of PTSs

So So

a[ﬁ]/ ‘[\i] a[j]/ wﬂ
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Discrete probabilistic transition systems

Bisimulation for PTS: Larsen and Skou

@ Consider

So
N AL
3
21 L S1
lb[l]

S2 S3
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Discrete probabilistic transition systems

Bisimulation for PTS: Larsen and Skou

@ Consider

So
N AL
3
21 L S1
lb[l]

So S3
bml A )
ts Sa
Py
@ Should sg and tg be bisimilar?

P2
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Discrete probabilistic transition systems

Bisimulation for PTS: Larsen and Skou

@ Consider

So
N
3
21 L S1
lb[l]

S2

S3
t3

b[l]l A )
P1

@ Should sg and tg be bisimilar?

P2
@ Yes, but we need to add the probabilities.
o =2 = = DAl



Discrete probabilistic transition systems

The Official Definition

@ LetS = (S,L,T,) be a PTS. An equivalence relation R on
S is a bisimulation if whenever sRs’, with s,s’ € S, we

have that for all a € A and every R-equivalence class, A,
Ta(s, A) == Ta(sl, A)
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The Official Definition

@ LetS = (S,L,T,) be a PTS. An equivalence relation R on
S is a bisimulation if whenever sRs’, with s,s’ € S, we
have that for all a € A and every R-equivalence class, A,
Ta(s,A) = Ta(s', A).

@ The notation T4(s,A) means “the probability of starting
from s and jumping to a state in the set A”
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Discrete probabilistic transition systems

The Official Definition

@ LetS = (S,L,T,) be a PTS. An equivalence relation R on
S is a bisimulation if whenever sRs’, with s,s’ € S, we
have that for all a € A and every R-equivalence class, A,
Ta(s,A) = Ta(s', A).

@ The notation T4(s,A) means “the probability of starting
from s and jumping to a state in the set A”

@ Two states are bisimilar if there is some bisimulation
relation R relating them.
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Labelled Markov processes

What are labelled Markov processes?

@ Labelled Markov processes are probabilistic versions of
labelled transition systems. Labelled transition systems
where the final state is governed by a probability
distribution - no other indeterminacy.
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Labelled Markov processes

What are labelled Markov processes?

@ Labelled Markov processes are probabilistic versions of
labelled transition systems. Labelled transition systems
where the final state is governed by a probability
distribution - no other indeterminacy.

@ All probabilistic data is internal - no probabilities associated
with environment behaviour.

@ We observe the interactions - not the internal states.

@ In general, the state space of a labelled Markov
process may be a continuum.

o F = = DA

Panangaden Labelled Markov Processes



Labelled Markov processes

Motivation

Model and reason about systems with continuous state spaces
or continuous time evolution or both.

@ hybrid control systems; e.g. flight management systems.
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Labelled Markov processes

Motivation

Model and reason about systems with continuous state spaces
or continuous time evolution or both.
@ hybrid control systems; e.g. flight management systems.

@ telecommunication systems with spatial variation; e.g. cell
phones

@ performance modelling,
@ continuous time systems,
@ probabilistic process algebra with recursion.
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Labelled Markov processes

An Example of a Continuous-State System

a - turn left

b - turn right

Panangaden

[m]
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&
Labelled Markov Processes

DA



Labelled Markov processes

Actions

a - turn left, b - turn right, ¢ - keep on course
The actions move the craft sideways with some probability
distributions on how far it moves. The craft may “drift” even with

c. The action a (b) must be disabled when the craft is too near
the left (right) boundary.
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Labelled Markov processes

Schematic of Example

a,c

C L ae T
-~ O OO -~ @ OO
b.e a,b,ckf

b,c

angaden

[m]

&
Labelled Markov Processes

DA




Labelled Markov processes

Schematic of Example

a,c

O—==o=—=0

b,c
a,b,c

@ This picture is misleading: unless very special conditions
hold the process cannot be compressed into an equivalent

(?) finite-state model. In general, the transition probabilities
should depend on the position.

[m] [ =
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Labelled Markov processes

Some remarks on the use of this model

@ This is a toy model but exemplifies the issues.
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Some remarks on the use of this model

@ This is a toy model but exemplifies the issues.

@ Can be used for reasoning - much better if we could have a
finite-state version.

@ Why not discretize right away and never worry about the

continuous case? Because we lose the ability to refine the
model later.
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Labelled Markov processes

Some remarks on the use of this model

@ This is a toy model but exemplifies the issues.

@ Can be used for reasoning - much better if we could have a
finite-state version.

@ Why not discretize right away and never worry about the
continuous case? Because we lose the ability to refine the
model later.

@ A better model would be to base it on rewards and think
about finiding optimal policies as in Al literature.
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Labelled Markov processes

The Need for Measure Theory

@ Basic fact: There are subsets of R for which no sensible
notion of size can be defined.
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Labelled Markov processes

The Need for Measure Theory

@ Basic fact: There are subsets of R for which no sensible
notion of size can be defined.

@ More precisely, there is no translation-invariant measure
defined on all the subsets of the reals.
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Labelled Markov processes

Stochastic Kernels

@ A stochastic kernel (Markov kernel) is a function

h:S x X — [0,1] with (a) h(s,-) : X — [0,1] a
(sub)probability measure and (b) h(-,A) : X — [0,1] a
measurable function.
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@ A stochastic kernel (Markov kernel) is a function
h:S x X — [0,1] with (a) h(s,-) : X — [0,1] a
(sub)probability measure and (b) h(-,A) : X — [0,1] a
measurable function.

@ Though apparantly asymmetric, these are the stochastic
analogues of binary relations
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Labelled Markov processes

Stochastic Kernels

@ A stochastic kernel (Markov kernel) is a function
h:S x X — [0,1] with (a) h(s,-) : X — [0,1] a
(sub)probability measure and (b) h(-,A) : X — [0,1] a
measurable function.

@ Though apparantly asymmetric, these are the stochastic
analogues of binary relations

@ and the uncountable generalization of a matrix.
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Labelled Markov processes

Formal Definition of LMPs

@ AnLMP is atuple (S,%,L,Va € L.7,) where
that

Ta : S x £ — [0, 1] is a transition probability function such
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Labelled Markov processes

Formal Definition of LMPs

@ AnLMP is atuple (S,%,L,Va € L.7,) where
that

Ta : S x £ — [0, 1] is a transition probability function such
and

® Vs :S.)\A: X.7,(s,A) is a subprobability measure

VA : X.As : S.1,(S,A) is a measurable function.
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Probabilistic bisimulation

Larsen-Skou Bisimulation

@ LetS = (S,i,x, ) be alabelled Markov process. An
equivalence relation R on S is a bisimulation if whenever
sRs’, with s, s’ € S, we have that for all a € A and every
R-closed measurable set A € X, 74(s,A) = 7a(s’, A).

Two states are bisimilar if they are related by a bisimulation
relation.

o F = = DA
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Probabilistic bisimulation

Larsen-Skou Bisimulation

@ LetS = (S,i,x, ) be alabelled Markov process. An
equivalence relation R on S is a bisimulation if whenever
sRs’, with s, s’ € S, we have that for all a € A and every
R-closed measurable set A € X, 74(s,A) = 7a(s’, A).

Two states are bisimilar if they are related by a bisimulation
relation.

@ Can be extended to bisimulation between two different
LMPs.

o F = = DA

Panangaden Labelled Markov Processes



Probabilistic bisimulation

Logical Characterization

L == T|p1 A ¢2[(a)qo
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Probabilistic bisimulation

Logical Characterization

L == T|ps A d2|(a)q¢
@ We say s |= (a)q¢ iff

JA € T.(Vs' € As’ = @) A (7a(s,A) > q).
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Probabilistic bisimulation

Logical Characterization

L == T|ps A d2|(a)q¢
@ We say s |= (a)q¢ iff

JA € T.(Vs' € As’ = @) A (7a(s,A) > q).

@ Two systems are bisimilar iff they obey the same formulas
of £. [DEP 1998 LICS, | and C 2002]

o & = = 2L NGe
Panangaden Labelled Markov Processes



Probabilistic bisimulation

That cannot be right?

So to
7N J
S1 S2 t1
lb ;
S3 t,

Two processes that cannot be distinguished without negation.
The formula that distinguishes themis (a) (—(b) T)
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Probabilistic bisimulation
But it is!

°
So to
N b
S1 S2 t1
i £
S3 t,
We add probabilities to the transitions.
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Probabilistic bisimulation
But it is!

So to
AN
S1 S2 tl
lb

lb
S3
We add probabilities to the transitions.

@ Ifp+qg <rorp+q>r we can easily distinguish them.
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Probabilistic bisimulation
But it is!

°
So to
N b
S1 S2 t1
i £
S3 t,
We add probabilities to the transitions.

@ Ifp+g=randp >0thenqg <rso(a)(b);T
distinguishes them.
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Probabilistic bisimulation
Proof idea

@ Show that the relation “s and s’ satisfy exactly the same
formulas” is a bisimulation.
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Probabilistic bisimulation
Proof idea

[4]-

@ Can easily show that 75(s,A) = 7a(s’, A) for A of the form
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Probabilistic bisimulation

Proof idea

@ Show that the relation “s and s’ satisfy exactly the same
formulas” is a bisimulation.

@ Can easily show that 75(s,A) = 7a(s’, A) for A of the form
[4]-
@ Use Dynkin’s lemma to show that we get a well defined

measure on the o-algebra generated by such sets and the
above equality holds.
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Probabilistic bisimulation

Proof idea

@ Show that the relation “s and s’ satisfy exactly the same
formulas” is a bisimulation.

@ Can easily show that 75(s,A) = 7a(s’, A) for A of the form
[4]-
@ Use Dynkin’s lemma to show that we get a well defined

measure on the o-algebra generated by such sets and the
above equality holds.

@ Use special properties of analytic spaces to show that this
o-algebra is the same as the original o-algebra.

o F = = DA
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Simulation

Simulation

Let S = (S, X, ) be a labelled Markov process. A preorder R
on S is a simulation if whenever sRs’, we have that for all
a € A and every R-closed measurable set A € ¥,

Ta(S,A) < 1a(s’,A). We say s is simulated by s’ if sRs’ for some
simulation relation R.
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Simulation

Logic for simulation?

@ The logic used in the characterization has no negation, not
even a limited negative construct.
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Simulation

Logic for simulation?

@ The logic used in the characterization has no negation, not
even a limited negative construct.

@ One can show that if s simulates s’ then s satisfies all the
formulas of £ that s’ satisfies.
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Simulation

Logic for simulation?

@ The logic used in the characterization has no negation, not
even a limited negative construct.

@ One can show that if s simulates s’ then s satisfies all the
formulas of £ that s’ satisfies.

@ What about the converse?

o F = = DA
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Counter example!

Simulation

In the following picture, t satisfies all formulas of £ that s
satisfies but t does not simulate s.

S
1 1
N
S1 So .
al

A

All transitions from s and t are labelled by a.

Panangaden
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Simulation
Counter example (contd.)

@ A formula of £ that is satisfied by t but not by s.

(@o((@)oT A (b)oT).
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Simulation
Counter example (contd.)

@ A formula of £ that is satisfied by t but not by s.

(@o((@)oT A (b)oT).

(@3 ((@)oT V (b)oT).

o & = = 2L NGe
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@ A formula with disjunction that is satisfied by s but not by t:



Simulation

A logical characterization for simulation

@ The logic £ does not characterize simulation. One needs
disjunction.

Ly :=LPLV ¢ps.
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Simulation

A logical characterization for simulation

@ The logic £ does not characterize simulation. One needs
disjunction.

Ly :=LPLV ¢po.
@ With this logic we have:
Ly we have

An LMP s; simulates s, if and only if for every formula ¢ of

SiE¢=>S2 ¢
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Simulation

A logical characterization for simulation

@ The logic £ does not characterize simulation. One needs
disjunction.

Ly :=LPLV ¢po.
@ With this logic we have:
Ly we have

An LMP s; simulates s, if and only if for every formula ¢ of

S1E¢ =95 ¢

@ The only proof we know uses domain theory.
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