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Summary of Results

Probabilistic bisimulation can be defined for continuous
state-space systems. [LICS97]

Logical characterization. [LICS98,Info and Comp 2002]

Metric analogue of bisimulation. [CONCUR99, TCS2004]

Approximation of LMPs. [LICS00,Info and Comp 2003]

Weak bisimulation. [LICS02,CONCUR02]

Real time. [QEST 2004, JLAP 2003,LMCS 2006]
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The definition

A set of states S,

a set of labels or actions, L or A and

a transition relation ⊆ S ×A× S, usually written

→a⊆ S × S.

The transitions could be indeterminate (nondeterministic).

We write s a
−−→ s′ for (s, s′) ∈→a.
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A simple example
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Vending machine LTSs

Cup
Rs 5

Rs 5

Cof Tea

R
R

Cup
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Another (?) vending machine LTSs

R Rs 5

CupCup

Cof Tea
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Are the two LTSs equivalent?

One gives us the choice whereas the other makes the
choice internally.

The sequences that the machines can perform are
identical: [Rs.5; (Cof + Tea); Cup]∗

We need to go beyond language equivalence.
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Bisimulation

s and t are states of a labelled transition system. We say s is
bisimilar to t – written s ∼ t – if

s a
−−→ s′ ⇒ ∃t ′ such that t a

−−→ t ′ and s′ ∼ t ′

and
t a
−−→ t ′ ⇒ ∃s′ such that s a

−−→ s′ and s′ ∼ t ′.
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Does it make sense?

The definition of bisimilarity seems circular.

In fact, it is perfectly well defined.

There are three or four ways of explaining it.
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Coinduction via induction

Define a family of equivalence relations ∼n indexed by the
natural numbers.

∼0 is the universal relation: ∀s, t s ∼0 t .

s ∼n+1 t if

∀a, s a
−−→ s′ ⇒ ∃t ′, t a

−−→ t ′ and s′ ∼n t ′

and vice versa.

s ∼ t if and only if ∀n, s ∼n t .
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Coinduction as a greatest fixed point

Fix a labelled transition system with state space S.

Let R be the collection of equivalence relations on S
ordered by inclusion.

Define F : R −→ R by

sF(R)t means ∀a, s a
−−→ s′ ⇒ ∃t ′, t a

−−→ t ′ and s′Rt ′

and vice versa.

R is a complete lattice partially ordered by inclusion and F
is a monotone function.

It is a (moderately) easy exercise to show that F has a
greatest fixed point: this is bisimulation.
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Bisimulation relations

Define a (note the indefinite article) bisimulation relation R
to be an equivalence relation on S such that

sRt means ∀a, s a
−−→ s′ ⇒ ∃t ′, t a

−−→ t ′ with s′Rt ′

and vice versa.

This is not circular; it is a condition on R.

We define s ∼ t if there is some bisimulation relation R
with sRt .

This is the version that is used most often.
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An example
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Here s0 and t0 are not bisimilar.

However s0 and t0 can simulate each other!
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The bisimulation game

Two players: maker (M) and spoiler (S). M wants to
establish a bisimulation and S wants to spoil the
bisimulation.

S chooses a process with which to play and makes a move.

M must match S’s move.

S chooses again which process she wants to play and
makes a move which M must match.

If M has a winning strategy then the processes are
bisimilar.

If we did not allow S to switch after the first move then a
winning strategy for M implies two-way simulation: much
weaker than bisimulation.
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How do we know that two processes are not bisimilar?

Define a logic as follows:

φ ::== T|¬φ|φ1 ∧ φ2|〈a〉φ

s |= 〈a〉φ means that s a
−−→ s′ and t |= φ.

We can define a dual to 〈〉 (written []) by using negation.

s |= [a]φ means that if s can do an a the resulting state
must satisfy φ.
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Examples of HM Logic

T is satisfied by any process, F is not satisfied by any
process.

s |= 〈a〉T means s can do an a action.

s |= ¬〈a〉φ or s |= [a]F means s cannot do an a action.

s |= 〈a〉(〈b〉T ) means that s can do an a and then do a b.
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The Hennessy-Milner theorem

Two processes are bisimilar if and only if they satisfy the
same formulas of HM logic.

Basic assumption: the processes are finitely-branching
(otherwise you need infinitary conjunctions).

To show that two processes are not bisimilar find a formula
on which they disagree.
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Our first example

s0

a

����
��

��
�
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��
;;
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;;

;

s1

b
��

s3

c
��

s4 s5

t0

a
��

t2
b

����
��

��
�

c

��
88

88
88

8

t4 t5
P1 P2

Here s0 and t0 are not bisimilar.

s0 |= 〈a〉(¬〈b〉T ) but t0 does not satisfy this formula.

t0 |= 〈a〉(〈b〉T ∧ 〈c〉T ) but s0 does not satisfy this.

The conjunction captures branching structure.
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The role of negation

Consider the processes below:

s0

a
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�

a

��
;;
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;

s1 s2

b
��

s3

t0

a
��

t2

b
��

t3

s0 |= 〈a〉¬〈b〉T but t0 does not.

s0 and t0 agree on all formulas without negation.

Note that [a] has an implicit negation.
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Simulation

Simulation can be defined by dropping the “vice versas” in
the definition of bisimulation.

We would like a theorem of the form: if s simulates t then
every formula that t satisfies is also satisfied by s.

There cannot be a logical characterization of simulation as
long as there is negation.
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Next Lecture

We do everything probabilistically.
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