Labelled Markov Processes Lecture 1: Labelled Transition Systems

Prakash Panangaden¹

¹School of Computer Science McGill University

January 2008, Winter School on Logic, IIT Kanpur

Image: The second se

SQC+

Outline

- 2 Labelled transition systems
- Bisimulation and Coinduction
- Hennessy-Milner Logic

P

• 🗆

Outline

- 2 Labelled transition systems
 - Bisimulation and Coinduction
 - Hennessy-Milner Logic

Panangaden Labelled Markov Processes

• •

P

Outline

- 2 Labelled transition systems
- Bisimulation and Coinduction

• 🗆

P

Outline

Bisimulation and Coinduction

• •

P

Overview

• Lecture 1: Labelled transition systems and bisimulation.

- Lecture 2: Labelled Markov processes.
- Lecture 3: Logical characterization of bisimulation.
- Lecture 4: The metric analogue of bisimulation.

< n

Overview

- Lecture 1: Labelled transition systems and bisimulation.
- Lecture 2: Labelled Markov processes.
- Lecture 3: Logical characterization of bisimulation.
- Lecture 4: The metric analogue of bisimulation.

< n

Overview

- Lecture 1: Labelled transition systems and bisimulation.
- Lecture 2: Labelled Markov processes.
- Lecture 3: Logical characterization of bisimulation.
- Lecture 4: The metric analogue of bisimulation.

Overview

- Lecture 1: Labelled transition systems and bisimulation.
- Lecture 2: Labelled Markov processes.
- Lecture 3: Logical characterization of bisimulation.
- Lecture 4: The metric analogue of bisimulation.

This lecture

• Labelled transition systems.

Bisimulation.

- Making sense of coinduction.
- Games for bisimulation and simulation.
- Logical characterization.

< 🗆

P

This lecture

• Labelled transition systems.

Bisimulation.

- Making sense of coinduction.
- Games for bisimulation and simulation.
- Logical characterization.

< 🗆

P

This lecture

- Labelled transition systems.
- Bisimulation.
- Making sense of coinduction.
- Games for bisimulation and simulation.
- Logical characterization.

< 🗆

This lecture

- Labelled transition systems.
- Bisimulation.
- Making sense of coinduction.
- Games for bisimulation and simulation.
- Logical characterization.

< 🗆

SQC+

This lecture

- Labelled transition systems.
- Bisimulation.
- Making sense of coinduction.
- Games for bisimulation and simulation.
- Logical characterization.

< 🗆

SQC+

Summary of Results

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00, Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

Summary of Results

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

Summary of Results

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

Summary of Results

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

Summary of Results

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

Summary of Results

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS97]
- Logical characterization. [LICS98,Info and Comp 2002]
- Metric analogue of bisimulation. [CONCUR99, TCS2004]
- Approximation of LMPs. [LICS00,Info and Comp 2003]
- Weak bisimulation. [LICS02,CONCUR02]
- Real time. [QEST 2004, JLAP 2003,LMCS 2006]

Collaborators

Josée Desharnais

- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

• 🗆

P

Jac.

Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

• 🗆

P

Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

< □

P

Collaborators

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat
- Vincent Danos

• •

P

The definition

A set of states S,

- a set of *labels* or *actions*, L or A and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq \mathbf{S} \times \mathbf{S}.$$

The transitions could be indeterminate (nondeterministic). • We write $s \xrightarrow{a} s'$ for $(s, s') \in \rightarrow_a$.

The definition

- A set of states S,
- a set of labels or actions, L or A and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq \mathbf{S} \times \mathbf{S}.$$

The transitions could be indeterminate (nondeterministic).

• We write $s \xrightarrow{a} s'$ for $(s, s') \in \rightarrow_a$.

ma Cr

The definition

- A set of states S,
- a set of labels or actions, L or \mathcal{A} and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_{a} \subseteq S \times S.$$

The transitions could be indeterminate (nondeterministic). • We write $s \xrightarrow{a} s'$ for $(s, s') \in \rightarrow_a$.

The definition

- A set of states S,
- a set of labels or actions, L or \mathcal{A} and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq S \times S.$$

The transitions could be indeterminate (nondeterministic).

• We write $s \xrightarrow{a} s'$ for $(s, s') \in \rightarrow_a$.

A simple example

P

• 🗆

5990

€

1

A vending machine

Panangaden Labelled Markov Processes

< 口 > < 同 >

▲ 글 ▶ ▲ 글 ▶

5990

∍

Vending machine LTSs

P

• 🗆

∃ ▶ ∢ ≣

5990

∍

Another (?) vending machine LTSs

・ ヨト ・ ヨト

P

< D >

5990

∍

Are the two LTSs equivalent?

• One gives *us* the choice whereas the other makes the choice *internally*.

- The sequences that the machines can perform are identical: [Rs.5; (Cof + Tea); Cup]*
- We need to go beyond language equivalence.

Are the two LTSs equivalent?

- One gives *us* the choice whereas the other makes the choice *internally*.
- The sequences that the machines can perform are identical: [Rs.5; (Cof + Tea); Cup]*
- We need to go beyond language equivalence.

Are the two LTSs equivalent?

- One gives *us* the choice whereas the other makes the choice *internally*.
- The sequences that the machines can perform are identical: [Rs.5; (Cof + Tea); Cup]*
- We need to go beyond language equivalence.

Bisimulation

s and *t* are states of a labelled transition system. We say *s* is **bisimilar** to *t* – written $s \sim t$ – if

$$s \stackrel{a}{\longrightarrow} s' \Rightarrow \exists t'$$
 such that $t \stackrel{a}{\longrightarrow} t'$ and $s' \sim t'$

and

$$t \xrightarrow{a} t' \Rightarrow \exists s' \text{ such that } s \xrightarrow{a} s' \text{ and } s' \sim t'.$$

< □ ▶

F >
Does it make sense?

• The definition of bisimilarity seems circular.

- In fact, it is perfectly well defined.
- There are three or four ways of explaining it.

< n

Does it make sense?

- The definition of bisimilarity seems circular.
- In fact, it is perfectly well defined.
- There are three or four ways of explaining it.

< n

Does it make sense?

- The definition of bisimilarity seems circular.
- In fact, it is perfectly well defined.
- There are three or four ways of explaining it.

SQC+

Coinduction via induction

- Define a *family* of equivalence relations ∼_n indexed by the natural numbers.
- \sim_0 is the universal relation: $\forall s, t \ s \sim_0 t$.
- $s \sim_{n+1} t$ if

$$\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t' \text{ and } s' \sim_n t'$$

and vice versa.

• $s \sim t$ if and only if $\forall n, s \sim_n t$.

Coinduction via induction

- Define a *family* of equivalence relations ~*n* indexed by the natural numbers.
- \sim_0 is the universal relation: $\forall s, t \ s \sim_0 t$.

• $s \sim_{n+1} t$ if

$\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t' \text{ and } s' \sim_n t'$

and vice versa.

• $s \sim t$ if and only if $\forall n, s \sim_n t$.

Coinduction via induction

- Define a *family* of equivalence relations ~*n* indexed by the natural numbers.
- \sim_0 is the universal relation: $\forall s, t \ s \sim_0 t$.
- $\mathfrak{s} \sim_{n+1} t$ if

$$\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t' \text{ and } s' \sim_n t'$$

and vice versa.

• $s \sim t$ if and only if $\forall n, s \sim_n t$.

Coinduction via induction

- Define a *family* of equivalence relations ~*n* indexed by the natural numbers.
- \sim_0 is the universal relation: $\forall s, t \ s \sim_0 t$.

•
$$s \sim_{n+1} t$$
 if

$$\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t' \text{ and } s' \sim_n t'$$

and vice versa.

• $s \sim t$ if and only if $\forall n, s \sim_n t$.

SQC+

Coinduction as a greatest fixed point

• Fix a labelled transition system with state space S.

- Let \mathcal{R} be the collection of equivalence relations on S ordered by inclusion.
- Define $\mathcal{F} : \mathcal{R} \longrightarrow \mathcal{R}$ by

 $s\mathcal{F}(R)t$ means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ and s'Rt'

and vice versa.

- *R* is a complete lattice partially ordered by inclusion and *F* is a monotone function.
- It is a (moderately) easy exercise to show that *F* has a greatest fixed point: this is bisimulation.

< n >

Coinduction as a greatest fixed point

- Fix a labelled transition system with state space S.
- Let R be the collection of equivalence relations on S ordered by inclusion.
- Define $\mathcal{F} : \mathcal{R} \longrightarrow \mathcal{R}$ by

 $s\mathcal{F}(R)t$ means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ and s'Rt'

and vice versa.

- *R* is a complete lattice partially ordered by inclusion and *F* is a monotone function.
- It is a (moderately) easy exercise to show that *F* has a greatest fixed point: this is bisimulation.

< n >

Coinduction as a greatest fixed point

- Fix a labelled transition system with state space S.
- Let \mathcal{R} be the collection of equivalence relations on S ordered by inclusion.
- Define $\mathcal{F} : \mathcal{R} \longrightarrow \mathcal{R}$ by

 $s\mathcal{F}(R)t$ means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ and s'Rt'

and vice versa.

- \mathcal{R} is a complete lattice partially ordered by inclusion and \mathcal{F} is a monotone function.
- It is a (moderately) easy exercise to show that *F* has a greatest fixed point: this is bisimulation.

< ロ > < 同

Coinduction as a greatest fixed point

- Fix a labelled transition system with state space S.
- Let R be the collection of equivalence relations on S ordered by inclusion.
- Define $\mathcal{F} : \mathcal{R} \longrightarrow \mathcal{R}$ by

 $s\mathcal{F}(R)t$ means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ and s'Rt'

and vice versa.

- *R* is a complete lattice partially ordered by inclusion and *F* is a monotone function.
- It is a (moderately) easy exercise to show that *F* has a greatest fixed point: this is bisimulation.

< 口 > < 同 >

Coinduction as a greatest fixed point

- Fix a labelled transition system with state space S.
- Let R be the collection of equivalence relations on S ordered by inclusion.
- Define $\mathcal{F} : \mathcal{R} \longrightarrow \mathcal{R}$ by

$$s\mathcal{F}(R)t$$
 means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ and $s'Rt'$

and vice versa.

- \mathcal{R} is a complete lattice partially ordered by inclusion and \mathcal{F} is a monotone function.
- It is a (moderately) easy exercise to show that *F* has a greatest fixed point: this is bisimulation.

Bisimulation relations

• Define *a* (note the indefinite article) bisimulation relation *R* to be an equivalence relation on *S* such that

sRt means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ with s'Rt'

and vice versa.

- This is not circular; it is a condition on *R*.
- We define s ~ t if there is *some* bisimulation relation R with *sRt*.
- This is the version that is used most often.

Bisimulation relations

• Define *a* (note the indefinite article) bisimulation relation *R* to be an equivalence relation on *S* such that

sRt means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ with s'Rt'

and vice versa.

- This is not circular; it is a condition on *R*.
- We define s ~ t if there is *some* bisimulation relation R with *sRt*.
- This is the version that is used most often.

Sac

Bisimulation relations

• Define *a* (note the indefinite article) bisimulation relation *R* to be an equivalence relation on *S* such that

۲

$$sRt$$
 means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ with $s'Rt'$

and vice versa.

- This is not circular; it is a condition on *R*.
- We define s ~ t if there is some bisimulation relation R with sRt.
- This is the version that is used most often.

Sac

Bisimulation relations

• Define *a* (note the indefinite article) bisimulation relation *R* to be an equivalence relation on *S* such that

۲

sRt means
$$\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$$
 with $s'Rt'$

and vice versa.

- This is not circular; it is a condition on *R*.
- We define s ~ t if there is some bisimulation relation R with sRt.
- This is the version that is used most often.

Bisimulation relations

• Define *a* (note the indefinite article) bisimulation relation *R* to be an equivalence relation on *S* such that

۲

sRt means
$$\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$$
 with $s'Rt'$

and vice versa.

- This is not circular; it is a condition on *R*.
- We define s ~ t if there is some bisimulation relation R with sRt.
- This is the version that is used most often.

ma Cr

An example

Here s₀ and t₀ are not bisimilar.

• However *s*₀ and *t*₀ can simulate each other!

• •

P

990

An example

• Here s_0 and t_0 are not bisimilar.

• However *s*₀ and *t*₀ can simulate each other!

< □

P

990

An example

٥

- Here s_0 and t_0 are not bisimilar.
- However s₀ and t₀ can simulate each other!

< 🗆

h

990

The bisimulation game

- Two players: maker (M) and spoiler (S). M wants to establish a bisimulation and S wants to spoil the bisimulation.
- S chooses a process with which to play and makes a move.
- M must match S's move.
- S chooses again which process she wants to play and makes a move which M must match.
- If M has a winning strategy then the processes are bisimilar.
- If we did not allow S to switch after the first move then a winning strategy for M implies two-way simulation: much weaker than bisimulation.

< n >

The bisimulation game

- Two players: maker (M) and spoiler (S). M wants to establish a bisimulation and S wants to spoil the bisimulation.
- S chooses a process with which to play and makes a move.
- M must match S's move.
- S chooses again which process she wants to play and makes a move which M must match.
- If M has a winning strategy then the processes are bisimilar.
- If we did not allow S to switch after the first move then a winning strategy for M implies two-way simulation: much weaker than bisimulation.

< 🗆 🕨

P

The bisimulation game

- Two players: maker (M) and spoiler (S). M wants to establish a bisimulation and S wants to spoil the bisimulation.
- S chooses a process with which to play and makes a move.
- M must match S's move.
- S chooses again which process she wants to play and makes a move which M must match.
- If M has a winning strategy then the processes are bisimilar.
- If we did not allow S to switch after the first move then a winning strategy for M implies two-way simulation: much weaker than bisimulation.

< 口 > < 何

The bisimulation game

- Two players: maker (M) and spoiler (S). M wants to establish a bisimulation and S wants to spoil the bisimulation.
- S chooses a process with which to play and makes a move.
- M must match S's move.
- S chooses again which process she wants to play and makes a move which M must match.
- If M has a winning strategy then the processes are bisimilar.
- If we did not allow S to switch after the first move then a winning strategy for M implies two-way simulation: much weaker than bisimulation.

< 口 > < 同

The bisimulation game

- Two players: maker (M) and spoiler (S). M wants to establish a bisimulation and S wants to spoil the bisimulation.
- S chooses a process with which to play and makes a move.
- M must match S's move.
- S chooses again which process she wants to play and makes a move which M must match.
- If M has a winning strategy then the processes are bisimilar.
- If we did not allow S to switch after the first move then a winning strategy for M implies two-way simulation: much weaker than bisimulation.

< 口 > < 同

The bisimulation game

- Two players: maker (M) and spoiler (S). M wants to establish a bisimulation and S wants to spoil the bisimulation.
- S chooses a process with which to play and makes a move.
- M must match S's move.
- S chooses again which process she wants to play and makes a move which M must match.
- If M has a winning strategy then the processes are bisimilar.
- If we did not allow S to switch after the first move then a winning strategy for M implies two-way simulation: much weaker than bisimulation.

< 口 > < 何?

ma @

How do we know that two processes are **not** bisimilar?

Define a logic as follows:

 $\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 | \langle \mathbf{a} \rangle \phi$

- $s \models \langle a \rangle \phi$ means that $s \xrightarrow{a} s'$ and $t \models \phi$.
- We can define a dual to $\langle \rangle$ (written []) by using negation.
- s |= [a]φ means that if s can do an a the resulting state must satisfy φ.

How do we know that two processes are **not** bisimilar?

Define a logic as follows:

۲

 $\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 | \langle \mathbf{a} \rangle \phi$

- $s \models \langle a \rangle \phi$ means that $s \xrightarrow{a} s'$ and $t \models \phi$.
- We can define a dual to $\langle \rangle$ (written []) by using negation.
- s |= [a]φ means that if s can do an a the resulting state must satisfy φ.

ma Cr

How do we know that two processes are **not** bisimilar?

Define a logic as follows:

۲

 $\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 | \langle \mathbf{a} \rangle \phi$

- $s \models \langle a \rangle \phi$ means that $s \xrightarrow{a} s'$ and $t \models \phi$.
- We can define a dual to $\langle \rangle$ (written []) by using negation.
- s |= [a]φ means that if s can do an a the resulting state must satisfy φ.

Sac

How do we know that two processes are **not** bisimilar?

Define a logic as follows:

۲

 $\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 | \langle \mathbf{a} \rangle \phi$

- $s \models \langle a \rangle \phi$ means that $s \xrightarrow{a} s'$ and $t \models \phi$.
- We can define a dual to $\langle\rangle$ (written []) by using negation.
- s |= [a]φ means that if s can do an a the resulting state must satisfy φ.

How do we know that two processes are **not** bisimilar?

Define a logic as follows:

٠

 $\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 | \langle \mathbf{a} \rangle \phi$

- $s \models \langle a \rangle \phi$ means that $s \xrightarrow{a} s'$ and $t \models \phi$.
- We can define a dual to $\langle\rangle$ (written []) by using negation.
- s |= [a]φ means that if s can do an a the resulting state must satisfy φ.

Examples of HM Logic

- *T* is satisfied by any process, *F* is not satisfied by any process.
- $s \models \langle a \rangle T$ means *s* can do an *a* action.
- $s \models \neg \langle a \rangle \phi$ or $s \models [a]F$ means s cannot do an *a* action.
- $s \models \langle a \rangle (\langle b \rangle T)$ means that s can do an *a* and then do a *b*.

Examples of HM Logic

- *T* is satisfied by any process, *F* is not satisfied by any process.
- $s \models \langle a \rangle T$ means *s* can do an *a* action.
- $s \models \neg \langle a \rangle \phi$ or $s \models [a]F$ means s cannot do an *a* action.
- $s \models \langle a \rangle (\langle b \rangle T)$ means that s can do an *a* and then do a *b*.

Examples of HM Logic

- *T* is satisfied by any process, *F* is not satisfied by any process.
- $s \models \langle a \rangle T$ means *s* can do an *a* action.
- $s \models \neg \langle a \rangle \phi$ or $s \models [a]F$ means *s* cannot do an *a* action.
- $s \models \langle a \rangle (\langle b \rangle T)$ means that s can do an *a* and then do a *b*.

Examples of HM Logic

- *T* is satisfied by any process, *F* is not satisfied by any process.
- $s \models \langle a \rangle T$ means *s* can do an *a* action.
- $s \models \neg \langle a \rangle \phi$ or $s \models [a]F$ means *s* cannot do an *a* action.
- $s \models \langle a \rangle (\langle b \rangle T)$ means that *s* can do an *a* and then do a *b*.

The Hennessy-Milner theorem

- Two processes are bisimilar if and only if they satisfy the same formulas of HM logic.
- Basic assumption: the processes are finitely-branching (otherwise you need infinitary conjunctions).
- To show that two processes are not bisimilar find a formula on which they disagree.
The Hennessy-Milner theorem

- Two processes are bisimilar if and only if they satisfy the same formulas of HM logic.
- Basic assumption: the processes are finitely-branching (otherwise you need infinitary conjunctions).
- To show that two processes are not bisimilar find a formula on which they disagree.

The Hennessy-Milner theorem

- Two processes are bisimilar if and only if they satisfy the same formulas of HM logic.
- Basic assumption: the processes are finitely-branching (otherwise you need infinitary conjunctions).
- To show that two processes are not bisimilar find a formula on which they disagree.

Our first example

• Here s_0 and t_0 are not bisimilar.

• $s_0 \models \langle a \rangle (\neg \langle b \rangle T)$ but t_0 does not satisfy this formula.

- $t_0 \models \langle a \rangle (\langle b \rangle T \land \langle c \rangle T)$ but s_0 does not satisfy this.
- The conjunction captures branching structure.

Our first example

• Here s_0 and t_0 are not bisimilar.

• $s_0 \models \langle a \rangle (\neg \langle b \rangle T)$ but t_0 does not satisfy this formula.

- $t_0 \models \langle a \rangle (\langle b \rangle T \land \langle c \rangle T)$ but s_0 does not satisfy this.
- The conjunction captures branching structure.

Our first example

• Here s_0 and t_0 are not bisimilar.

• $s_0 \models \langle a \rangle (\neg \langle b \rangle T)$ but t_0 does not satisfy this formula.

• $t_0 \models \langle a \rangle (\langle b \rangle T \land \langle c \rangle T)$ but s_0 does not satisfy this.

• The conjunction captures branching structure.

Our first example

• Here s_0 and t_0 are not bisimilar.

• $s_0 \models \langle a \rangle (\neg \langle b \rangle T)$ but t_0 does not satisfy this formula.

• $t_0 \models \langle a \rangle (\langle b \rangle T \land \langle c \rangle T)$ but s_0 does not satisfy this.

• The conjunction captures branching structure.

Our first example

• Here s_0 and t_0 are not bisimilar.

• $s_0 \models \langle a \rangle (\neg \langle b \rangle T)$ but t_0 does not satisfy this formula.

- $t_0 \models \langle a \rangle (\langle b \rangle T \land \langle c \rangle T)$ but s_0 does not satisfy this.
- The conjunction captures branching structure.

The role of negation

• Consider the processes below:

- $s_0 \models \langle a \rangle \neg \langle b \rangle T$ but t_0 does not.
- s_0 and t_0 agree on all formulas without negation.
- Note that [a] has an implicit negation.

The role of negation

• Consider the processes below:

• $s_0 \models \langle a \rangle \neg \langle b \rangle T$ but t_0 does not.

- s_0 and t_0 agree on all formulas without negation.
- Note that [a] has an implicit negation.

The role of negation

• Consider the processes below:

- $s_0 \models \langle a \rangle \neg \langle b \rangle T$ but t_0 does not.
- *s*₀ and *t*₀ agree on all formulas *without negation*.
- Note that [a] has an implicit negation.

Sac

The role of negation

• Consider the processes below:

- $s_0 \models \langle a \rangle \neg \langle b \rangle T$ but t_0 does not.
- s_0 and t_0 agree on all formulas without negation.
- Note that [a] has an implicit negation.

Sac

Simulation

- Simulation can be defined by dropping the "vice versas" in the definition of bisimulation.
- We would like a theorem of the form: if *s* simulates *t* then every formula that *t* satisfies is also satisfied by *s*.
- There cannot be a logical characterization of simulation as long as there is negation.

Simulation

- Simulation can be defined by dropping the "vice versas" in the definition of bisimulation.
- We would like a theorem of the form: if *s* simulates *t* then every formula that *t* satisfies is also satisfied by *s*.
- There cannot be a logical characterization of simulation as long as there is negation.

Simulation

- Simulation can be defined by dropping the "vice versas" in the definition of bisimulation.
- We would like a theorem of the form: if *s* simulates *t* then every formula that *t* satisfies is also satisfied by *s*.
- There cannot be a logical characterization of simulation as long as there is negation.

SQC+

Next Lecture

We do everything probabilistically.

Panangaden Labelled Markov Processes

P

• 🗆

5990

∍