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0 Introduction
e Equational reasoning

e Categorical algebra

© Metrics

© Quantitative equations

@ Examples
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Basic ideas

@ Equations are at the heart of mathematical reasoning.

@ Reasoning about programs is also based on program
equivalences.

@ A trinity of ideas: Equationally given algebras, Lawvere theories,
Monads on Set

@ The dawning of the age of quantitative reasoning.

@ We want quantitative analogues of algebraic reasoning.
@ (Pseudo)metrics instead of equivalence relations.

@ Equality indexed by a real number =..

@ Monads on Met.

@ Enriched Lawvere theories?
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Finitary equational theories

@ Signature Q ={(Op;,n;)li=1...k}

@ Terms r == x|Op(11, ..., 1)

@ Equations s =

@ Axioms, sets of equations Ax

@ Deduction AxFs =1t

@ Usual rules for deduction: equivalence relation, congruence,...
@ Theories: set of equations closed under deduction.
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Equational deduction rules

@ AXiomAxts=tifs=1¢ Ax
@ Equivalence

AxFt=t
AxtFs=tAxtt=u
AxkFs=u
AxkFs=t
AxtFt=s

@ Congruence

AxEt =s1,...AxHt, =5,
AxtE Op(ti,....t,) = Op(st,....8,)

@ Substitution
AxFt=s

Ax F tlu/x] = slu/x]
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Algebras equationally |

@ We assume that that there is one set of “basic things” —
one-sorted algebras.

@ Fix a set Q of operations, each with a fixed arity n € N. These
include constants as arity zero “operations.” Such an Q is called a
signature.

@ Everything has finite arity.

@ As Q-algebra A is a set A to interpret the basic sort and, for each
operation f of arity n a function f4 : A" — A.
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Algebras equtionally Il

@ Can define homomorphisms and subalgebras easily.

@ What about equations that are required to hold?

@ Given a set X we define the term algebra generated by X, TX
@ The elements of X are in 7X.

@ If#,...,1,arein TX and f has arity n then f (¢, ...,t,) is in TX.
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Algebras from equations |

@ Want to write things like Vx,y, z;f(x, f (v, 2)) =f(f(x,¥), 2).
@ X, set of variables.
@ Lets, tbe termsin TX, we say the equation s = holds in an

Q-algebra A if for every homomorphism 4 : TX — A we have
h(s) = h(z) where, in the latter, = means identity.

@ Let S be a set of equations between pairs of terms in TX. We
define a congruence relation ~s on TX in the evident way.
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Algebras from equations Il

@ Easy to check that if 1; ~g s1, ..., t; ~s s, then
flt, ... ty) ~sf(s1,...,s,) we can define f_, on TX/ ~s.

@ Let [t] be an equivalence class of ~g; f. ([t], ..., [t,]) is well
defined by [f(71, ..., )],

@ A class of Q-algebras satisfying a set of equations is called a
variety of algebras (not the same as an algebraic variety!).

@ When are a set of equations bad? If we can derive x =y from §
then the only algebras have one element.
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@ Monoids, groups, rings, lattices, boolean algebras are all
examples.

@ Vector spaces have two sorts.

@ Fields are annoying because we have to say x # 0 implies x~!
exists. Fields do not form an equational variety.

@ Sometimes we need to state conditional equations; these are
called Horn clauses. Example: cancellative monoids,
x-y=x-zFy=2z

@ Stacks are equationally definable but queues are not.
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Example: barycentric algebras (Stone 1949)

@ Signature:

{+ele €10, 1]}

@ Axioms:
(Bl)Ft+1t =t
(Bo)Ft+et=t
(SC)Ft+et =t +1_ct
(SA) F (t+et) dert” =t4cer (' +ercer 1)

1—ee’
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Universal properties

@ Let K(Q, S) be the collection of algebras satisfying the equations
in S. K(Q, S) becomes a category if we take the morphisms to be
Q-homomorphisms.

@ Let X be a set of generators. We write T[X] for TX/ ~5. There is a
map ny : X — T[X] given by nx(x) = [x].

@ Universal property.

Set K(Q,S)
nx
X —==T[X] T[X]
X\ | |
I h | h
Y Y
A A
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Variety theorem

A collection of algebras is a variety of algebras if and only if it is closed
under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses:
quasivariety theorems.

Consider Z, x Z,. It’s not a field because, e.g. (1,0) x (0,1) = (0, 0).
Hence fields cannot be described by equations!
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@ Capturing universal algebra categorically.

@ Data: (i) Endofunctor T: ¢ — €, (ii) n : I — T natural, and (iii)
w:T? — T also natural.

@ Some diagrams are required to commute.

Tma

T34 1 124 TA 724 TA
d N
T°A ——TA TA
Ha

@ Examples: powerset, “free” constructions e.g. monoid, group, the
Giry monad.
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The Kleisli construction

@ Fromamonad T : ¢ — € make a new category: the Kleisli
category Cr.

@ Objects, the same as those of C.

@ Morphismsf:A — BinCraref:A — TBin C.

@ Composition? f: A — TB and g : B — TC don’t match.

@ f:A— TBand Tg: TB — T>C to match but we are in T%C.

@ Compose with pc: 7°C — TC to get A — TC.

@ The Kleisli category of the powerset monad is the category of sets
and relations.
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The Giry monad |

@ Mes: objects are sets equipped with a c-algebra (X, X),
morphisms f : (X, X) — (Y, A) are functions f : X — Y such that
VBe A f1(B) e L.

@ G:Mes — Mes, §(X, X) = {p|p is a probability measure on X}.

@ Foreach A € X, define es : G(X) — [0, 1] by ea(p) = p(A). Equip
G(X) with the smallest o-algebra making all the e, measurable.

@ f:X—Y,58(f):9(X) — G(Y) given by
S (p)(B e A) =p(f'(B)).
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The Giry monad |l

@ nx : X — G(X) given by nx(x) = 8., where 6,(A) =1ifxe Aand 0
if x € A.

@ ux(0 € 9% (X)) = | eadQ. Averaging over G using Q.
@ Probabilistic analogue of the powerset.
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The Kleisli category of G

@ Objects: Same as Mes, morphisms from X to Y are measurable
functions from X to G(Y).

@ Compose: h: X — G(Y), k: Y — G(Z) by the formula:
(kdh) = (nz) o (G(k)) o h where & is the Kleisli composition and o is
composition in Mes.

@ Curry the definition of morphism: i : X x Xy — [0, 1]. Markov
kernels. We call this category Ker. Probabilistic relations.

@ Composition in terms of kernels:
(k3h)(x, C C Z) = [ k(y, C)h(x, -). Relational composition, matrix
multiplication.
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The Eilenberg-Moore category

@ From T we can construct a category of algebras: objects a : TA
— A
@ and morphisms f : A — B such that

TA—2 A

o)

TBT>B

commute.

@ Many categories of algebras (monoids, groups, rings, lattices) can
be reconstructed this way.

@ The Kleisli category = the category of “free” algebras.

@ We get a monad on Set from X — T[X]. The Eilenberg-Moore
category for this monad is isomorphic to K(Q, §).

@ Algebras for a monad < Algebras given by equations and
operations.
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Pseudometrics

@ Quantitative analogue of an equivalence relation.

@ Space M, (pseudo)metricd : M x M — R>?

@ d(x,x)=0,d(x,y) =d(y,x) and d(x,z) < d(x,y) +d(y,z).

@ Ifd(x,y) = 0implies x = y we say d is a metric.

@ We can define usual notions of convergence, completeness,
topology, continuity etc.

@ Maps: f(X,d) — (Y,d’) are nonexpansive d’ (f(x),f(y)) < d(x,y);
automtically continuous

@ We define M: objects metric spaces, morphisms are
nonexpansive functions.

@ Quantitative equations give monads on M.
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Metrics between probability distributions

Let p, g be probability distributions on (X, d, Z).
@ Total variation tv(p, ¢) = sup |p(E) — ¢q(E)|.
Eex

@ Kantorovich: k(p, g) = sup| dep — deq| where f is nonexpansive.
S

@ A coupling m between p, ¢ is a distribution on X x X such that the
marginals of 7t are p, gq. Write C(p, q) for the space of couplings.

@ Kantorovich: k(p,g) = inf J d(x,y)dm(x, y).
Clp.q) Jxxx
Kantorovich-Rubinshtein duality.

@ Wasserstein: W) (p,¢) = inf [J d(x, y)dr(x, y)]'/!. 1 =1 gives
Clp.g) Jxxx
Kantorovich.

o WW(s,,8,) =d(x,y).
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Quantitative equations

@ Signature Q, variables X we get terms TX.
@ Quantitative equations: V(TX):

s=¢t, s,t€TX, ecQnI0,1]

@ A substitution o is a map X — TX; we write £(X) for the set of
substitutions.
@ Any o extends to a map TX — TX.

@ Quantitative inferences: &(TX) = P5in (V(TX)) x V(TX)

{s1 =e, N, ..., Sn =¢, b s =t
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Deducibility relations

(Refl) Ot =¢t
(Symm) {t=¢ s}t s=¢1t.
(Triang) {t=¢ s, s =cr u}Ft =c¢r u.

(Max) Fore’ > 0,{tr=¢ sttt=c,¢s s.

(Arch) Forall e > 0,{t=¢s| e’ > e}t =, s. Infinitary!
(NExp) Forf:ne Q,

{H =¢ s1,..., th = spr B8, 15, 1) = f(S1, .50, ..8,)
(Subst) If o € X(X), T+t =¢ simplies o(") - o(t) =¢ o(s).
(Cut) T ¢ foralld e T and I =, then T = .
(Assumpt) If ¢ € T, then T+ .
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Quantitative equational theories

@ Given S C &(TX), Fs: smallest deducibility relation containing S.
@ Equational theory: U = 5[ &(TX).
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Quantitative algebras

@ Q: signature; A = (A, d),
A an Q-algebra and (A, d) a metric space.
@ All functions in Q are nonexpansive.

@ Morphisms are Q-algebra homomorphisms that are
nonexpansive.

@ TX is an Q-algebra. o : TX — A, Q-homomorphism.
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Quantitative algebras Il

@ (A, d) satisfies {s; =, t;/i=1,...,n}Fs =, tif
Vo, d(o(s;), o)) <&, i=1,...,n
implies
d(o(s),o(z)) < e.

@ Wewrite {s; =¢, t;/i=1,...,nf|Eq s =¢ 1.
@ We write K(U, Q) for the algebras satisfying U.
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A metric on TX

d%(s,t) =infle |0 F s =, 1 € U} J

@ Why not use the following?

d%(s, 1) = infle | VV € Pr(V(X)), VI s = t € U} )

@ They are the same!

@ The (pseudo)metric can take on infinite values.

@ The kernel is a congruence for Q.

@ If we take the quotient we get an (extended) metric space.
@ The resulting algebra is in K(Q, U).

@ We can do this for any set M of generators and produce a “free”
quantitative algebra.
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Completeness

VA e K(U,Q), T E4 ¢ ifand only if [T &) € U. J

@ Analogue of the usual completeness theorem for equational logic.
@ Right to left is by definition.
@ Left to right is by a model construction.

@ The proof needs to deal with quantitative aspects and uses the
archimedean property.
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Free construction from a metric space

@ Starting from a metric space (M, d) we can define TM by adding
constants foreach m ¢ M

@ and axioms () - m =, n for every rational e such that d(m, n) < e.
@ Call this extended signature Q) and the extended theory Uy,.

@ Any algebra in K(U,,, Uy,) can be viewed as an algebra in K(Q, U)
by forgetting about the interpretation of the constants from M.

@ Given any «: M — A non-expansive we can turn A = (A, d) into
an algebra in K(Q,, Uy ) by interpreting each m € M as «(m) € A.
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Universal property

Met K(Q,U)
(M, dM) ™~ T[M] TIM]
| |
X U L
Y i
(A, d) A
Uy, is consistent if and only if the map ny, is an isometry. ]

We have a monad on M.
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Barycentric algebras again

@ O ={+,:2le € [0, 1]}; uncountably many operations!
@ (Bl) Dkx+1y=ox
@ B2) OFx+ex=ox
® (SC) DFx+ey=oy+i—ex
@ (SA)(x+¢, ¥) +e, 2=0X+ere, ¥ +62 —e1e, 2) Where eq, e, € (0, 1)

I—erey

@ (LI) x+.z=cy+e.zWheree<ecQnlo,1]

@ The last equation uses one of the new indexed equations in a
nontrivial way.

@ We call it the left-invariant axiom scheme; LIB algebras for short.
@ What does this axiomatize?
@ The total variation metric on probability distributions.
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Total variation metric

TV(p,q) = sup Ip(E) — g(E)|. J
Ecx

@ It measures the size of the set on which p, ¢ disagree the most.

@ There is a duality theorem that gives it as a minimum rather than a
maximum.
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Couplings

@ Let B(M, L) be the Borel measures on a metric space M with
Borel algera X.

@ We have a product space M x M with product c-algebra £ ® £ and
Borel measures B(M x M, X ® X).

@ Given probability measures p, g a coupling is a probability
measure won (M x M, L ® ) such thatforall E € X:

W(Ex M) =p(E) and w(M x E) = ¢(E).

@ C(p, q) is the set of couplings for (p, q).
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Couplings Il

@ Write A for the diagonal in M x M.
@ TV duality: TV(p, ¢) = min{w(A°)|w € C(p, g)}; min is attained.
@ Convex combinations of couplings are couplings.

@ Splitting lemma: If p, ¢ are Borel probability measures on M and
e=T(p,q). There are p’, q’, r such that

p=ep'+(1—e)randg=eq’ + (1 —e)r.
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Freely generated LIB algebra

@ We know there is a freely generated LIB algebra from a metric
space M. What is it concretely?

@ Let TT[M] be the LIB algebra obtained by taking the
finitely-supported probability measures on M and interpreting +.
as convex combination.

@ We endow it with the total-variation metric to make it a quantitative
algebra.
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Freely generated LIB algebra Il

@ Theorem: TT[M] € K(B, UH).
@ Use convexity and splitting lemma to show LI and Nexp.
@ Theorem: TT[M] is the free algebra generated by M.

@ Use the embedding of convex spaces into vector spaces (Stone
49).
@ The axioms give rise to the total-variation metric.
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Interpolative barycentric algebras

@ Same signature as barycentric algebras.
@ Axioms (B1), (B2), (SC), (SA); drop (LI).
e (IB))
x=e y.x =,y I x+ex" =5 y+o ),
where (eef] + (1 —e)eh)/P < 6.
@ Now we need assumptions in the equation.
@ If p =1 we get

{x=¢, yx' =, Y} x+ox" =5 y+.y',

where eg + (1 —e)ep < 0.
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Picture of 1B,
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Kantorovich-Wasserstein metric

Let (M, d) be a complete separable metric space and p > 1.

Wasserstein-p metric

W21, v) = inf{ [JMxM @ (x ydw] " e G(u,\/)}

}

Ki(u,v) = min{ UMXMd(x,y)dw} ‘w € C(u, v)}

| A\

Kantorovich

[ ran— [ e

| A\

Duality

\
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@ We take the finitely supported measures on M and interpret it as a
barycentric algebra as before.

@ We give it the Wasserstein metric and show that we get an IB
algebra.

@ This uses the definition of the W/, metrics as an inf and convexity
of couplings.

@ We prove a splitting lemma for this case and show that we get the
free algebra by similar, but more involved arguments.

@ How do we lift it to the continuous case?
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Weak convergence

@ Suppose we have a sequence of measures {y;|i € I}. What does it
mean to converge?

@ For a “suitable” class of functions:
deu,- 5 deu.

@ For Kantorovich use contractive functions; for Wasserstein use a
class of functions whose growth is controlled by 4 and p.

@ The Wasserstein metrics give the topology of weak convergence
on measures of finite p-moment.

@ The finitely supported probability measures are dense in the
space of all probability measures with weak topology.
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Complete separable metric spaces

@ A separable metric space has a countable dense subset.

@ Define A[M] to be the space of all Borel probability measures on a
complete separable metric space. We give it the W/, metric and
interpret 4+, as convex combination.

@ This gives an IB algebra.

@ If we construct the term algebra T[M] as before and complete it
we get an algebra isomorphic to AlM].

@ In this case we get a monad on CSMet,;: complete separable
1-bounded metric spaces.
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Conclusions

@ Quantitative equations give a handle on otherwise arcane things
like the Wasserstein metrics.

@ Other examples: Hausdorff metric, pointed barycentric algebras.
@ To do; many more examples:

Markov processes

Choquet capacities and games

quantitative theory of effects

quantitative equational axioms for probabilistic programming
languages.
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