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Basic ideas

Equations are at the heart of mathematical reasoning.
Reasoning about programs is also based on program
equivalences.
A trinity of ideas: Equationally given algebras, Lawvere theories,
Monads on Set
The dawning of the age of quantitative reasoning.
We want quantitative analogues of algebraic reasoning.
(Pseudo)metrics instead of equivalence relations.
Equality indexed by a real number =ε.
Monads on Met.
Enriched Lawvere theories?
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Finitary equational theories

Signature Ω = {(Opi, ni)|i = 1 . . . k}

Terms t ::== x|Op(t1, . . . , tn)

Equations s = t

Axioms, sets of equations Ax

Deduction Ax ` s = t

Usual rules for deduction: equivalence relation, congruence,...
Theories: set of equations closed under deduction.
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Equational deduction rules

Axiom Ax ` s = t if s = t ∈ Ax
Equivalence

Ax ` t = t
Ax ` s = t,Ax ` t = u

Ax ` s = u
Ax ` s = t
Ax ` t = s

Congruence

Ax ` t1 = s1, . . .Ax ` tn = sn

Ax ` Op(t1, . . . , tn) = Op(s1, . . . , sn)

Substitution
Ax ` t = s

Ax ` t[u/x] = s[u/x]
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Algebras equationally I

We assume that that there is one set of “basic things” –
one-sorted algebras.
Fix a set Ω of operations, each with a fixed arity n ∈ N. These
include constants as arity zero “operations.” Such an Ω is called a
signature.
Everything has finite arity.
As Ω-algebra A is a set A to interpret the basic sort and, for each
operation f of arity n a function fA : An −→ A.
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Algebras equtionally II

Can define homomorphisms and subalgebras easily.
What about equations that are required to hold?
Given a set X we define the term algebra generated by X, TX

The elements of X are in TX.
If t1, . . . , tn are in TX and f has arity n then f (t1, . . . , tn) is in TX.
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Algebras from equations I

Want to write things like ∀x, y, z; f (x, f (y, z)) = f (f (x, y), z).
X, set of variables.
Let s, t be terms in TX, we say the equation s = t holds in an
Ω-algebra A if for every homomorphism h : TX −→ A we have
h(s) = h(t) where, in the latter, = means identity.
Let S be a set of equations between pairs of terms in TX. We
define a congruence relation ∼S on TX in the evident way.
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Algebras from equations II

Easy to check that if t1 ∼S s1, . . . , tn ∼S sn then
f (t1, . . . , tn) ∼S f (s1, . . . , sn) we can define f∼S on TX/ ∼S.
Let [t] be an equivalence class of ∼S; f∼S([t1], . . . , [tn]) is well
defined by [f (t1, . . . , tn)].
A class of Ω-algebras satisfying a set of equations is called a
variety of algebras (not the same as an algebraic variety!).
When are a set of equations bad? If we can derive x = y from S
then the only algebras have one element.
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Examples

Monoids, groups, rings, lattices, boolean algebras are all
examples.
Vector spaces have two sorts.
Fields are annoying because we have to say x 6= 0 implies x−1

exists. Fields do not form an equational variety.
Sometimes we need to state conditional equations; these are
called Horn clauses. Example: cancellative monoids,
x · y = x · z ` y = z.
Stacks are equationally definable but queues are not.
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Example: barycentric algebras (Stone 1949)

Signature:

{+ε|ε ∈ [0, 1]}

Axioms:
(B1) ` t +1 t ′ = t
(B2) ` t +ε t = t
(SC) ` t +ε t ′ = t ′ +1−ε t
(SA) ` (t +ε t ′) +ε ′ t ′′ = t +εε ′ (t ′ +ε ′−εε ′

1−εε ′
t ′′)
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Universal properties

Let K(Ω, S) be the collection of algebras satisfying the equations
in S. K(Ω, S) becomes a category if we take the morphisms to be
Ω-homomorphisms.
Let X be a set of generators. We write T[X] for TX/ ∼S. There is a
map ηX : X −→ T[X] given by ηX(x) = [x].
Universal property.

Set K(Ω, S)

X
α

""

ηX // T[X]

h
��

T[X]

h
��

A A
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Variety theorem

Birkhoff
A collection of algebras is a variety of algebras if and only if it is closed
under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses:
quasivariety theorems.

Example
Consider Z2 × Z2. It’s not a field because, e.g. (1, 0)× (0, 1) = (0, 0).
Hence fields cannot be described by equations!
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Monads

Capturing universal algebra categorically.
Data: (i) Endofunctor T : C −→ C, (ii) η : I −→ T natural, and (iii)
µ : T2 −→ T also natural.
Some diagrams are required to commute.

T3A
µTA //

TµA
��

T2A

µA

��

TA
ηTA // T2A

µA

��

TA
TηAoo

T2A
µA

// TA TA

Examples: powerset, “free” constructions e.g. monoid, group, the
Giry monad.
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The Kleisli construction

From a monad T : C −→ C make a new category: the Kleisli
category CT .
Objects, the same as those of C.
Morphisms f : A −→ B in CT are f : A −→ TB in C.
Composition? f : A −→ TB and g : B −→ TC don’t match.
f : A −→ TB and Tg : TB −→ T2C to match but we are in T2C.
Compose with µC : T2C −→ TC to get A −→ TC.
The Kleisli category of the powerset monad is the category of sets
and relations.
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The Giry monad I

Mes: objects are sets equipped with a σ-algebra (X,Σ),
morphisms f : (X,Σ) −→ (Y,Λ) are functions f : X −→ Y such that
∀B ∈ Λ, f−1(B) ∈ Σ.
G : Mes −→Mes, G(X,Σ) = {p|p is a probability measure on Σ}.
For each A ∈ Σ, define eA : G(X) −→ [0, 1] by eA(p) = p(A). Equip
G(X) with the smallest σ-algebra making all the eA measurable.
f : X −→ Y, G(f ) : G(X) −→ G(Y) given by
G(f )(p)(B ∈ Λ) = p(f−1(B)).
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The Giry monad II

ηX : X −→ G(X) given by ηX(x) = δx, where δx(A) = 1 if x ∈ A and 0
if x 6∈ A.
µX(Q ∈ G2(X))(A) =

∫
eAdQ. Averaging over G using Q.

Probabilistic analogue of the powerset.
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The Kleisli category of G

Objects: Same as Mes, morphisms from X to Y are measurable
functions from X to G(Y).
Compose: h : X −→ G(Y), k : Y −→ G(Z) by the formula:
(k◦̃h) = (µZ) ◦ (G(k)) ◦ h where ◦̃ is the Kleisli composition and ◦ is
composition in Mes.
Curry the definition of morphism: h : X × ΣY −→ [0, 1]. Markov
kernels. We call this category Ker. Probabilistic relations.
Composition in terms of kernels:
(k◦̃h)(x,C ⊂ Z) =

∫
k(y,C)h(x, ·). Relational composition, matrix

multiplication.
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The Eilenberg-Moore category

From T we can construct a category of algebras: objects a : TA
−→ A
and morphisms f : A −→ B such that

TA a //

Tf
��

A

f
��

TB
b
// B

commute.
Many categories of algebras (monoids, groups, rings, lattices) can
be reconstructed this way.
The Kleisli category = the category of “free” algebras.
We get a monad on Set from X 7→ T[X]. The Eilenberg-Moore
category for this monad is isomorphic to K(Ω, S).
Algebras for a monad⇔ Algebras given by equations and
operations.
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Pseudometrics

Quantitative analogue of an equivalence relation.
Space M, (pseudo)metric d : M ×M −→ R>0

d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) 6 d(x, y) + d(y, z).
If d(x, y) = 0 implies x = y we say d is a metric.
We can define usual notions of convergence, completeness,
topology, continuity etc.
Maps: f (X, d) −→ (Y, d ′) are nonexpansive d ′(f (x), f (y)) 6 d(x, y);
automtically continuous
We define M: objects metric spaces, morphisms are
nonexpansive functions.
Quantitative equations give monads on M.

Panangaden (McGill) Quantitative Equational Reasoning January 2018 20 / 43



Metrics between probability distributions

Let p, q be probability distributions on (X, d,Σ).
Total variation tv(p, q) = sup

E∈Σ
|p(E) − q(E)|.

Kantorovich: κ(p, q) = sup
f

|

∫
f dp −

∫
f dq| where f is nonexpansive.

A coupling π between p, q is a distribution on X × X such that the
marginals of π are p, q. Write C(p, q) for the space of couplings.

Kantorovich: κ(p, q) = inf
C(p,q)

∫
X×X

d(x, y)dπ(x, y).

Kantorovich-Rubinshtein duality.

Wasserstein: W(l)(p, q) = inf
C(p,q)

[

∫
X×X

d(x, y)ldπ(x, y)]1/l. l = 1 gives

Kantorovich.
W(l)(δx, δy) = d(x, y).
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Quantitative equations

Signature Ω, variables X we get terms TX.
Quantitative equations: V(TX):

s =ε t, s, t ∈ TX, ε ∈ Q ∩ [0, 1]

A substitution σ is a map X −→ TX; we write Σ(X) for the set of
substitutions.
Any σ extends to a map TX −→ TX.
Quantitative inferences: E(TX) = Pfin(V(TX))× V(TX)

{s1 =ε1 t1, . . . , sn =εn tn} ` s =ε t
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Deducibility relations

(Refl) ∅ ` t =0 t

(Symm) {t =ε s} ` s =ε t.
(Triang) {t =ε s, s =ε ′ u} ` t =ε+ε ′ u.

(Max) For e ′ > 0, {t =ε s} ` t =ε+ε ′ s.
(Arch) For all ε > 0, {t =ε ′ s | ε ′ > ε} ` t =ε s. Infinitary!

(NExp) For f : n ∈ Ω,
{t1 =ε s1, . . . , tn =ε sn} ` f (t1, ..ti, ..tn) =ε f (s1, ..si, ..sn)

(Subst) If σ ∈ Σ(X), Γ ` t =ε s implies σ(Γ) ` σ(t) =ε σ(s).
(Cut) If Γ ` φ for all φ ∈ Γ ′ and Γ ′ ` ψ, then Γ ` ψ.

(Assumpt) If φ ∈ Γ , then Γ ` φ.
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Quantitative equational theories

Given S ⊂ E(TX), `S: smallest deducibility relation containing S.
Equational theory: U = `S

⋂
E(TX).
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Quantitative algebras

Ω: signature; A = (A, d),
A an Ω-algebra and (A, d) a metric space.
All functions in Ω are nonexpansive.
Morphisms are Ω-algebra homomorphisms that are
nonexpansive.
TX is an Ω-algebra. σ : TX −→ A, Ω-homomorphism.
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Quantitative algebras II

(A, d) satisfies {si =εi ti/i = 1, . . . , n} ` s =ε t if

∀σ, d(σ(si),σ(ti)) 6 εi, i = 1, . . . , n
implies

d(σ(s),σ(t)) 6 ε.

We write {si =εi ti/i = 1, . . . , n} |=A s =ε t.
We write K(U,Ω) for the algebras satisfying U.
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A metric on TX

dU(s, t) = inf{ε | ∅ ` s =ε t ∈ U}

Why not use the following?

dU(s, t) = inf{ε | ∀V ∈ Pf (V(X)),V ` s =ε t ∈ U}

They are the same!
The (pseudo)metric can take on infinite values.
The kernel is a congruence for Ω.
If we take the quotient we get an (extended) metric space.
The resulting algebra is in K(Ω,U).
We can do this for any set M of generators and produce a “free”
quantitative algebra.
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Completeness

∀A ∈ K(U,Ω), Γ |=A φ if and only if [Γ ` φ] ∈ U.

Analogue of the usual completeness theorem for equational logic.
Right to left is by definition.
Left to right is by a model construction.
The proof needs to deal with quantitative aspects and uses the
archimedean property.

Panangaden (McGill) Quantitative Equational Reasoning January 2018 28 / 43



Free construction from a metric space

Starting from a metric space (M, d) we can define TM by adding
constants for each m ∈ M

and axioms ∅ ` m =e n for every rational e such that d(m, n) 6 e.
Call this extended signature ΩM and the extended theory UM.
Any algebra in K(UM,UM) can be viewed as an algebra in K(Ω,U)
by forgetting about the interpretation of the constants from M.
Given any α : M −→ A non-expansive we can turn A = (A, d) into
an algebra in K(ΩM,UM) by interpreting each m ∈ M as α(m) ∈ A.
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Universal property

Met K(Ω,U)

(M, dM)

α

$$

ηM // T[M]

h
��

T[M]

h
��

(A, dA) A

UM is consistent if and only if the map ηM is an isometry.

We have a monad on M.
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Barycentric algebras again

Ω = {+e : 2|e ∈ [0, 1]}; uncountably many operations!
(B1) ∅ ` x +1 y =0 x

(B2) ∅ ` x +e x =0 x

(SC) ∅ ` x +e y =0 y +1−e x

(SA)(x +e1 y) +e2 z =0 x +e1e2 (y + e2−e1e2
1−e1e2

z) where e1, e2 ∈ (0, 1)

(LI) x +e z =ε y +e z where e 6 ε ∈ Q ∩ [0, 1]

The last equation uses one of the new indexed equations in a
nontrivial way.
We call it the left-invariant axiom scheme; LIB algebras for short.
What does this axiomatize?
The total variation metric on probability distributions.
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Total variation metric

TV(p, q) = sup
E∈Σ

|p(E) − q(E)|.

It measures the size of the set on which p, q disagree the most.
There is a duality theorem that gives it as a minimum rather than a
maximum.

Panangaden (McGill) Quantitative Equational Reasoning January 2018 32 / 43



Couplings

Let B(M,Σ) be the Borel measures on a metric space M with
Borel algera Σ.
We have a product space M ×M with product σ-algebra Σ⊗Σ and
Borel measures B(M ×M,Σ⊗ Σ).
Given probability measures p, q a coupling is a probability
measure ω on (M ×M,Σ⊗ Σ) such that for all E ∈ Σ:

ω(E ×M) = p(E) and ω(M × E) = q(E).

C(p, q) is the set of couplings for (p, q).
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Couplings II

Write ∆ for the diagonal in M ×M.
TV duality: TV(p, q) = min {ω(∆c)|ω ∈ C(p, q)}; min is attained.
Convex combinations of couplings are couplings.
Splitting lemma: If p, q are Borel probability measures on M and
e = T(p, q). There are p ′, q ′, r such that

p = ep ′ + (1 − e)r and q = eq ′ + (1 − e)r.
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Freely generated LIB algebra

We know there is a freely generated LIB algebra from a metric
space M. What is it concretely?
Let Π[M] be the LIB algebra obtained by taking the
finitely-supported probability measures on M and interpreting +e

as convex combination.
We endow it with the total-variation metric to make it a quantitative
algebra.
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Freely generated LIB algebra II

Theorem: Π[M] ∈ K(B,ULI).
Use convexity and splitting lemma to show LI and Nexp.
Theorem: Π[M] is the free algebra generated by M.
Use the embedding of convex spaces into vector spaces (Stone
49).
The axioms give rise to the total-variation metric.

Panangaden (McGill) Quantitative Equational Reasoning January 2018 36 / 43



Interpolative barycentric algebras

Same signature as barycentric algebras.
Axioms (B1), (B2), (SC), (SA); drop (LI).
(IBp)

{x =ε1 y, x ′ =ε2 y ′} ` x +e x ′ =δ y +e y ′,

where (eεp
1 + (1 − e)εp

2)
1/p 6 δ.

Now we need assumptions in the equation.
If p = 1 we get

{x =ε1 y, x ′ =ε2 y ′} ` x +e x ′ =δ y +e y ′,

where eε1 + (1 − e)ε2 6 δ.
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Picture of IB1

x y

x ′ y ′

x +e x ′ y +e y ′

ε1

ε2

ε ′

e

1 − e
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Kantorovich-Wasserstein metric

Let (M, d) be a complete separable metric space and p > 1.

Wasserstein-p metric

Wp
d (µ,ν) = inf

{[∫
M×M

dp(x, y)dω
]1/p∣∣∣ω ∈ C(µ,ν)

}

Kantorovich

Kd(µ,ν) = sup

{∣∣∣∣∣
∫

f dµ−

∫
f dν

∣∣∣∣∣
}

Duality

Kd(µ,ν) = min

{[∫
M×M

d(x, y)dω
]∣∣∣ω ∈ C(µ,ν)

}
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Finitary case

We take the finitely supported measures on M and interpret it as a
barycentric algebra as before.
We give it the Wasserstein metric and show that we get an IB
algebra.
This uses the definition of the Wp

d metrics as an inf and convexity
of couplings.
We prove a splitting lemma for this case and show that we get the
free algebra by similar, but more involved arguments.
How do we lift it to the continuous case?
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Weak convergence

Suppose we have a sequence of measures {µi|i ∈ I}. What does it
mean to converge?
For a “suitable” class of functions:∫

f dµi −→
∫

f dµ.

For Kantorovich use contractive functions; for Wasserstein use a
class of functions whose growth is controlled by d and p.
The Wasserstein metrics give the topology of weak convergence
on measures of finite p-moment.
The finitely supported probability measures are dense in the
space of all probability measures with weak topology.
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Complete separable metric spaces

A separable metric space has a countable dense subset.
Define ∆[M] to be the space of all Borel probability measures on a
complete separable metric space. We give it the Wp

d metric and
interpret +e as convex combination.
This gives an IB algebra.
If we construct the term algebra T[M] as before and complete it
we get an algebra isomorphic to ∆[M].
In this case we get a monad on CSMet1: complete separable
1-bounded metric spaces.
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Conclusions

Quantitative equations give a handle on otherwise arcane things
like the Wasserstein metrics.
Other examples: Hausdorff metric, pointed barycentric algebras.
To do; many more examples:

Markov processes
Choquet capacities and games
quantitative theory of effects
quantitative equational axioms for probabilistic programming
languages.

Panangaden (McGill) Quantitative Equational Reasoning January 2018 43 / 43


	Introduction
	Equational reasoning
	Categorical algebra
	Metrics
	Quantitative equations
	Examples

